JPH0550082B2 - - Google Patents

Info

Publication number
JPH0550082B2
JPH0550082B2 JP62139900A JP13990087A JPH0550082B2 JP H0550082 B2 JPH0550082 B2 JP H0550082B2 JP 62139900 A JP62139900 A JP 62139900A JP 13990087 A JP13990087 A JP 13990087A JP H0550082 B2 JPH0550082 B2 JP H0550082B2
Authority
JP
Japan
Prior art keywords
weight
glass
insulating layer
powder
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62139900A
Other languages
Japanese (ja)
Other versions
JPS63304509A (en
Inventor
Shuichi Nomura
Tooru Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP62139900A priority Critical patent/JPS63304509A/en
Publication of JPS63304509A publication Critical patent/JPS63304509A/en
Publication of JPH0550082B2 publication Critical patent/JPH0550082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は多層電子回路の絶縁層形成に好適の組
成物に関するものである。 〔従来の技術〕 多層電子回路とは、アルミナ等のセラミツク基
板に導体回路と絶縁層を交互に多層に形成して回
路の集積化を図つたもので、必要により絶縁層に
接続孔を設けて上下の導体回路が接続されてい
る。このような多層電子回路には通常絶縁ガラス
をペースト状にしたものが用いられ、このガラス
として850〜950℃の温度で結晶化するタイプのも
のが一般的である。 ところで上記導体回路の形成には従来、Au,
Ag,Pt,Pd,W,Mo等の金属、合金粉末をガ
ラス粉とともにペースト状とした厚膜導体組成物
が用いられて来たが、得られる導体線幅は100μm
程度までであり、更に細い線幅を要する高密度回
路の場合はメツキに依る外ない。然るに従来絶縁
層に用いられているガラスはメツキ液に対する耐
食性に乏しく、メツキ時に絶縁層の表面粗さが増
して上層の絶縁層形成の際にふくれを生じたり、
極端な場合は絶縁層内に不測の導電パスが形成さ
れることがある。 〔発明が解決しようとする問題点〕 本発明の目的は、上記厚膜絶縁組成物のメツキ
液に対する耐食性を改善し、信頼性の高い多層電
子回路を製造し得るようにすることにある。 〔問題点を解決するための手段〕 上記目的を達成するため本発明の組成物は、重
量%表示で、SiO245〜65%、Al2O33〜10%、
Na2O0.5〜4%、K2O0.5〜4%、CaO2〜8%、
MgO2〜8%、PbO8〜18%、ZrO22〜12%、B2
O34〜20%及びF20.1〜2%を合計で100%となる
ように含有し、上記組成中の塩基性酸化物R2
及びROに対する酸性酸化物RO2のモル比が2〜
4の範囲にあり、R2Oに対するROのモル比が1
以上であるガラス粉末40〜60重量部と、Al2O3
末60〜40重量部を合計で100重量部となるように
含有せしめた点に特徴がある。 〔作用〕 SiO2はガラスのネツトワークフオーマーであ
り、絶縁層のマトリツクス部を構成する主成分
で、又耐食性の主要因となる、ガラスを熱処理し
て結晶化するとき析出するカリ長石(K2O・Al2
O3・6SiO2)結晶を構成する成分でもある。この
SiO2は45重量%未満ではガラスの軟化点が低く
なり過ぎて熱処理時結晶化してガラスの粘性が増
大する前に軟化流動するようになり、又60重量%
を超えるとガラスの結晶化に要する温度が1000℃
以上となり、850〜950℃の熱処理で充分な性能の
絶縁層が得られない。 Al2O3はガラスの分相化を防止し、化学的耐久
性を増大させるとともに前記のカリ長石を構成す
る成分である。このAl2O3は3重量%未満ではあ
まり効果がなく、一方10重量%を超えると熱処理
後の絶縁層中に気泡が多く残留するようになる。 Na2O及びK2Oはガラスの熔解性を向上させ、
軟化点を制御するために必要であるが、それぞれ
0.5重量%未満では効果がなく、4重量%を超え
るとガラスの電気的特性を劣化するので好ましく
ない。 CaOはガラスの絶縁性を増し、耐湿性を向上さ
せるが、2重量%未満では効果が乏しく、8重量
%を超えると耐酸性が劣化する。 MgOは、ガラスの熔解性を向上させると共に
結晶化で析出するカリ長石の量と大きさを安定さ
せるが、2重量%未満では効果が乏しく、8重量
%を超えると結晶化に要する温度が高くなり過ぎ
る。 PbOはガラス熔解時に融剤として働くが、8重
量%未満ではガラスの溶解性が不充分となり、18
重量%を超えると軟化点が低くなり過ぎ、しかも
ガラスの保存性が低下する。 ZrO2はガラスの耐食性を向上させるが、2重
量%未満では効果がなく、12重量%を超えると熱
処理後の絶縁層中に微細な気泡が多くなる。 B2O3はガラス熔解時に融剤として働くほかに
電気的特性を著しく向上するが、4重量%未満で
はこの効果が乏しく、20重量%を超えるとガラス
の熱膨張係数が小さくなり過ぎる上、ホウ酸異常
を起す恐れがある。 F2はガラスの熔解性を改善すると共に本発明
組成物の保存性を向上する。しかし0.1重量%未
満ではこれらの効果がなく、2重量%を超えると
ガラス熔融の際、炉を汚染する恐れがある。 以上のガラス成分は合計して100重量%となる
ようにガラス中に含まれていれば良いが、該ガラ
ス組成中において、塩基性酸化物(R2O及び
RO)に対する酸性酸化物RO2のモル比を2〜4、
R2Oに対するROのモル比を1以上とする必要が
ある。R2O及びROに対するRO2のモル比が2未
満ではガラスが水溶性となつて使用できず、4を
超えるとガラス中に未溶解分が残り不均質とな
り、又R2Oに対するROのモル比が1未満ではガ
ラス粉末の保存性が悪いからである。 上記ガラスは1200〜1500℃、2〜4時間程度の
熔解で製造でき、これを急冷してガラス片とした
後ボールミル等で平均粒径3〜8μmに粉砕して用
いる。従来の絶縁組成物はガラスの他にセラミツ
ク材料を混合して熱伝導率を改善しているが、本
発明においては上記ガラス組成の粉末40〜60重量
部に対してアルミナ粉末60〜40重量部を混合し、
合計で100重量部となるようにする。アルミナ粉
末がこの割合より少な過ぎると熱伝導率が低下
し、又多過ぎると緻密な絶縁層が得られにくくな
るからである。該組成物をペースト状にするには
適量の有機質ビヒクルと混練すれば良い。 〔実施例〕 第1表に示す組成で9種類のガラスを調整し、
このガラス粉末にAl2O3粉末を混合し、エチルセ
ルロースを10重量%含有するターピネオール溶液
をビヒクルとして該混合粉末をペースト状とし
た。このペースト状絶縁組成物を次のようにして
評価した。 (A) 電気特性…アルミナ基板にAuペーストで直
径20mmの電極を焼付形成し、該電極上に直径22
mmで上記絶縁ペーストを塗布してピーク温度
935℃、ピーク時間8分間のベルト炉で焼成す
ることを2回繰り返して膜厚ほぼ50μmの絶縁
層を形成し、該絶縁層上に直径20mmの電極を
Auペーストで形成してLCRメーターによる試
験に供し、誘電率、絶縁抵抗、絶縁耐圧、散逸
係数を測定した。 (B) 耐食性…上記とほぼ同様にして上部電極のな
い試料を作製し、該試料の下部電極を負極と
し、別に設けた銅棒を正極としてこれらを5重
量%のNaCl水溶液に浸漬し、極間に10V印加
して下部電極に流れる電流(リーク電流)を測
定した。 (C) 熱特性…第1表の組成の混合粉末を900Kg/
cm2で加圧成形し、これを935℃で8分間電気炉
中で焼成し、直径4mm、長さ40mmの棒状焼結体
を得、該試料により熱膨張係数を測定した。又
同様に処理して直径8mm、厚さ1mmの円盤状焼
結体を得、これを試料として熱伝導率を測定し
た。 結果を第1表にまとめて示す。
[Industrial Application Field] The present invention relates to a composition suitable for forming an insulating layer of a multilayer electronic circuit. [Prior Art] A multilayer electronic circuit is one in which conductor circuits and insulating layers are alternately formed in multiple layers on a ceramic substrate such as alumina to achieve circuit integration. Connection holes may be provided in the insulating layers if necessary. The upper and lower conductor circuits are connected. A paste of insulating glass is usually used for such multilayer electronic circuits, and this glass is generally of a type that crystallizes at a temperature of 850 to 950°C. By the way, conventionally, Au,
Thick film conductor compositions have been used in which metal and alloy powders such as Ag, Pt, Pd, W, and Mo are made into a paste together with glass powder, but the resulting conductor line width is 100 μm.
For high-density circuits that require even thinner line widths, plating is the only option. However, the glass conventionally used for the insulating layer has poor corrosion resistance against plating liquid, and the surface roughness of the insulating layer increases during plating, causing blisters when forming the upper insulating layer.
In extreme cases, unexpected conductive paths may be formed within the insulating layer. [Problems to be Solved by the Invention] An object of the present invention is to improve the corrosion resistance of the above thick film insulating composition against plating solutions, thereby making it possible to manufacture highly reliable multilayer electronic circuits. [Means for Solving the Problems] In order to achieve the above object, the composition of the present invention contains 45 to 65% SiO 2 , 3 to 10% Al 2 O 3 in weight percent,
Na2O0.5-4 %, K2O0.5-4 %, CaO2-8%,
MgO2~8%, PbO8~18%, ZrO2 2 ~12%, B2
Contains 4-20% O 3 and 0.1-2% F 2 for a total of 100%, and the basic oxide R 2 O in the above composition.
and the molar ratio of acidic oxide RO2 to RO is 2 ~
4, and the molar ratio of RO to R 2 O is 1.
It is characterized by containing 40 to 60 parts by weight of the above glass powder and 60 to 40 parts by weight of Al 2 O 3 powder for a total of 100 parts by weight. [Function] SiO 2 is a network former of glass, the main component of the matrix part of the insulating layer, and the main factor of corrosion resistance. 2 O・Al 2
O 3 6SiO 2 ) It is also a constituent of crystals. this
If SiO 2 is less than 45% by weight, the softening point of the glass becomes too low and crystallizes during heat treatment, causing the glass to soften and flow before its viscosity increases;
If the temperature exceeds 1000℃, the temperature required for glass crystallization will exceed 1000℃.
As a result, an insulating layer with sufficient performance cannot be obtained by heat treatment at 850 to 950°C. Al 2 O 3 prevents phase separation of glass, increases chemical durability, and is a component of the above-mentioned potassium feldspar. If this Al 2 O 3 is less than 3% by weight, it is not very effective, while if it exceeds 10% by weight, many bubbles will remain in the insulating layer after heat treatment. Na 2 O and K 2 O improve the solubility of glass,
are necessary to control the softening point, respectively
If it is less than 0.5% by weight, there is no effect, and if it exceeds 4% by weight, it deteriorates the electrical properties of the glass, which is not preferable. CaO increases the insulating properties of the glass and improves its moisture resistance, but if it is less than 2% by weight, the effect is poor, and if it exceeds 8% by weight, the acid resistance deteriorates. MgO improves the solubility of glass and stabilizes the amount and size of potassium feldspar that precipitates during crystallization, but if it is less than 2% by weight, the effect is poor, and if it exceeds 8% by weight, the temperature required for crystallization is high. Too much. PbO acts as a fluxing agent during glass melting, but if it is less than 8% by weight, the meltability of the glass will be insufficient, and 18
If it exceeds % by weight, the softening point becomes too low and the storage stability of the glass deteriorates. ZrO 2 improves the corrosion resistance of glass, but if it is less than 2% by weight it has no effect, and if it exceeds 12% by weight, many fine bubbles will form in the insulating layer after heat treatment. In addition to acting as a flux during glass melting, B 2 O 3 significantly improves the electrical properties, but if it is less than 4% by weight, this effect is poor, and if it exceeds 20% by weight, the coefficient of thermal expansion of the glass becomes too small, and May cause boric acid abnormality. F 2 improves the solubility of glass and the storage stability of the composition of the present invention. However, if it is less than 0.1% by weight, these effects will not be achieved, and if it exceeds 2% by weight, there is a risk of contaminating the furnace during glass melting. It is sufficient that the above glass components are contained in the glass so that the total amount is 100% by weight, but basic oxides (R 2 O and
The molar ratio of acidic oxide RO2 to RO) is 2 to 4,
The molar ratio of RO to R 2 O needs to be 1 or more. If the molar ratio of RO 2 to R 2 O and RO is less than 2, the glass becomes water-soluble and cannot be used. If it exceeds 4, undissolved components remain in the glass and the glass becomes heterogeneous, and the molar ratio of RO to R 2 O This is because if the ratio is less than 1, the storage stability of the glass powder is poor. The above-mentioned glass can be produced by melting at 1200 to 1500°C for about 2 to 4 hours, which is then rapidly cooled into glass pieces and then ground into pieces with an average particle size of 3 to 8 μm using a ball mill or the like. Conventional insulating compositions mix ceramic materials in addition to glass to improve thermal conductivity, but in the present invention, 60 to 40 parts by weight of alumina powder is mixed with 40 to 60 parts by weight of powder of the above glass composition. mix,
The total weight should be 100 parts. This is because if the amount of alumina powder is too less than this ratio, the thermal conductivity will decrease, and if it is too much, it will be difficult to obtain a dense insulating layer. The composition can be made into a paste by kneading it with an appropriate amount of an organic vehicle. [Example] Nine types of glasses were prepared with the compositions shown in Table 1,
This glass powder was mixed with Al 2 O 3 powder, and the mixed powder was made into a paste using a terpineol solution containing 10% by weight of ethyl cellulose as a vehicle. This pasty insulating composition was evaluated as follows. (A) Electrical characteristics: An electrode with a diameter of 20 mm is baked on an alumina substrate using Au paste, and a diameter of 22 mm is formed on the electrode.
Apply the above insulation paste to the peak temperature
Firing in a belt furnace at 935°C for 8 minutes at peak time was repeated twice to form an insulating layer with a thickness of approximately 50 μm, and an electrode with a diameter of 20 mm was placed on the insulating layer.
It was formed using Au paste and tested using an LCR meter, and the dielectric constant, insulation resistance, dielectric strength voltage, and dissipation coefficient were measured. (B) Corrosion resistance: A sample without an upper electrode was prepared in almost the same manner as above, and the lower electrode of the sample was used as a negative electrode, and a separately provided copper rod was used as a positive electrode. 10V was applied between them, and the current (leakage current) flowing through the lower electrode was measured. (C) Thermal properties... 900 kg of mixed powder with the composition shown in Table 1
cm 2 and then fired in an electric furnace at 935° C. for 8 minutes to obtain a rod-shaped sintered body with a diameter of 4 mm and a length of 40 mm, and the thermal expansion coefficient of this sample was measured. Further, a disk-shaped sintered body having a diameter of 8 mm and a thickness of 1 mm was obtained by the same treatment, and the thermal conductivity was measured using this as a sample. The results are summarized in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の組成物により形成される絶縁層は耐食
性が大幅に改善される。このため本発明は信頼性
の高い多層電子回路の製造に大きく寄与すること
ができる。
The insulating layer formed by the composition of the present invention has significantly improved corrosion resistance. Therefore, the present invention can greatly contribute to the production of highly reliable multilayer electronic circuits.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%表示で、SiO245〜65%、Al2O33〜10
%、Na2O0.5〜4%、K2O0.5〜4%、CaO2〜8
%、MgO2〜8%、PbO8〜18%、ZrO22〜12
%、B2O34〜20%及びF20.1〜2%を合計で100
%となるように含有し、上記組成物中の塩基性酸
化物R2O及びROに対する酸性酸化物RO2のモル
比が2〜4の範囲にあり、R2Oに対するROのモ
ル比が1以上であるガラス粉末40〜60重量部と、
Al2O3粉末60〜40重量部を合計で100重量部とな
るように含有せしめてなる厚膜絶縁組成物。
1 In weight%, SiO 2 45-65%, Al 2 O 3 3-10
%, Na2O0.5 ~4%, K2O0.5 ~4%, CaO2~8
%, MgO2~8%, PbO8~18%, ZrO2 2 ~12
%, B 2 O 3 4-20% and F 2 0.1-2% in total 100
%, the molar ratio of the acidic oxide RO 2 to the basic oxide R 2 O and RO in the composition is in the range of 2 to 4, and the molar ratio of RO to R 2 O is 1. 40 to 60 parts by weight of glass powder which is or more,
A thick film insulation composition containing 60 to 40 parts by weight of Al 2 O 3 powder in a total amount of 100 parts by weight.
JP62139900A 1987-06-05 1987-06-05 Thick film insulating composite material Granted JPS63304509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139900A JPS63304509A (en) 1987-06-05 1987-06-05 Thick film insulating composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139900A JPS63304509A (en) 1987-06-05 1987-06-05 Thick film insulating composite material

Publications (2)

Publication Number Publication Date
JPS63304509A JPS63304509A (en) 1988-12-12
JPH0550082B2 true JPH0550082B2 (en) 1993-07-28

Family

ID=15256235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139900A Granted JPS63304509A (en) 1987-06-05 1987-06-05 Thick film insulating composite material

Country Status (1)

Country Link
JP (1) JPS63304509A (en)

Also Published As

Publication number Publication date
JPS63304509A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US4152282A (en) Silk-screening dielectric paste for multilayer circuit fabrication comprising aluminum oxide and a borosilicate glass
KR100366928B1 (en) Conductive paste and ceramic electronic component
US3238151A (en) Resistor composition
JP3230394B2 (en) Porcelain capacitors
JP2003077336A (en) Conductive paste and laminated ceramic capacitor using the same
JPS6316345B2 (en)
JPS62137897A (en) Insulating layer compound
JPH0550082B2 (en)
JP2001118427A (en) Thick film electrode paste
JPH0452561B2 (en)
JPS5946701A (en) Inorganic composition for insulating ceramic paste
KR100438126B1 (en) Ceramic electronic component
JP2000036220A (en) Conductive paste and ceramic electronic part using same
JPH046046B2 (en)
JPH057343B2 (en)
JPS623039A (en) Material for insulation layer
JPH10340621A (en) Conductive paste
JPS5946703A (en) Inorganic composition for insulating ceramic paste
JP4254136B2 (en) Conductive paste and ceramic electronic components
JPH0558201B2 (en)
JPH02212336A (en) Glass-ceramic composition and its use
JPS5954106A (en) Inorganic composition for insulating ceramic paste
JPS6233682B2 (en)
JPH051963B2 (en)
JPS5820155B2 (en) thick film conductor