JPH0549728B2 - - Google Patents

Info

Publication number
JPH0549728B2
JPH0549728B2 JP17516485A JP17516485A JPH0549728B2 JP H0549728 B2 JPH0549728 B2 JP H0549728B2 JP 17516485 A JP17516485 A JP 17516485A JP 17516485 A JP17516485 A JP 17516485A JP H0549728 B2 JPH0549728 B2 JP H0549728B2
Authority
JP
Japan
Prior art keywords
less
temperature
low
steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17516485A
Other languages
Japanese (ja)
Other versions
JPS6237323A (en
Inventor
Masaru Oka
Kazumasa Yamazaki
Yaichiro Mizuyama
Masato Yamada
Akihiro Shimohigashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17516485A priority Critical patent/JPS6237323A/en
Publication of JPS6237323A publication Critical patent/JPS6237323A/en
Publication of JPH0549728B2 publication Critical patent/JPH0549728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、連続焼鈍による深絞り性に優れた薄
鋼板の製造方法に関するものである。 (従来の技術) 低炭素アルミキルド鋼を用いて連続焼鈍により
深絞り用冷延鋼板を製造する公知技術は2つに大
別される。 第一の方法は、熱間圧延後の巻取温度を700℃
以上の高温にする、所謂、高温巻取り法である。
これは高温で巻取ることによるセメンタイトの凝
集とAlNの析出・粗大化する効果を狙つたもの
である。しかしながら、高温巻取り法は巻取り後
の鋼板表面に酸化膜が厚く生成して酸洗性が著し
く低下する点や、冷却速度の大きいコイル内外周
部の材質は高くならないためにコイル内材質の均
一性が極めて劣り、歩留りの低下が大きい。特開
昭58−37128号公報には、高温巻取り後にコイル
を保熱炉に挿入あるいは保温カバーを装着するな
どで冷却速度を制御し、コイル内材質均一性を改
善する方法が開示されているが、この場合も酸洗
性の低下、工程の繁雑化やコスト上昇を招き問題
である。 これに対し、第二の方法は、低温巻取りによる
ものである。これに相当する方法として、特開昭
51−29696号公報に代表される如く、アルミキル
ド鋼にBを添加する方法、Al量の低減と熱延圧
下率、冷延圧下率の限定により焼鈍後の結晶粒を
粗大化する方法(特開昭58−104124号公報)、B
添加アルミキルド鋼を用い、熱延時の加熱温度、
仕上げ温度を制限することによる方法(特開昭58
−117834号公報)等が知られている。しかしなが
ら、本発明者等が詳細に調査してみると、かかる
方法では、いずれも結晶粒は比較的大きいものが
得られるので降伏強度は比較的低く、伸びもかな
り高いものが得られるものの、深絞り性の指標と
なる値は高温巻取りの場合と比較して低いもの
しか得られない。従つて、単なる軟質鋼板の製造
技術として採用できるものの、深絞り用鋼板の製
造方法としては満足できるものではない。 (発明が解決しようとする問題点) 以上述べた如く、従来法においては十分な深絞
り性(値)を得るためには高温巻取りが不可欠
であり、かかる方法は、歩留りの低下、酸洗性の
低下などいくつかの問題を抱えている。かかる現
状から、アルミキルド鋼を用いて連続焼鈍により
深絞り用鋼板を製造する場合、熱間圧延後の巻取
温度を下げる方法の開発が熱望されている。 即ち、本発明が解決しようとする問題点は、低
炭素アルミキルド鋼を素材として連続焼鈍により
深絞り性の優れた薄鋼板を製造する方法におい
て、熱間圧延後の巻取温度を高くしなければなら
ないという欠点がある。 (問題点を解決するための手段) 本発明の要旨は、C:0.05%以下、Si:0.8%以
下、Mn:1.0%以下、P:0.10%以下、S:0.05
%以下、酸可溶Al:0.010%未満、N:40ppm以
下、B:2ppm以上20ppm未満を含有し、残部Fe
および不可避的不純物からなる鋼を常法に従つて
熱間圧延を施し、400℃以上700℃未満の温度で巻
取り、次いで圧下率40%以上で冷間圧延を施し、
連続焼鈍することを特徴とする深絞り性に優れた
薄鋼板の製造方法である。 連続焼鈍でアルミキルド鋼を製造する場合の材
質、特に深絞り性値を良好ならしめるために
は、熱間圧延後の巻取り時にいかにセメンタイト
を粗大凝集させておくかということ、および鋼中
のNをいかに大きなサイズの析出物として粗大析
出させておくかが重要な要点である。 本発明者等は高温巻取りにたよらない方法で深
絞り性の優れた薄鋼板の製造方法について詳細に
検討した結果、通常の低炭素鋼において、微量の
Bを添加すること、Al添加量を著しく低減する
することの二つの条件を同時に満足させた場合に
のみ、低温巻取りでも高い値が得られるとの新
規知見を得て本発明を完成させた。 詳述すると、第一に、微量のBを添加すること
によつて、鋼中のNはBNとして析出させること
が可能となる。低炭素アルミキルド鋼においては
NはAlNとして析出するが、このAlNは低い巻
取温度では全N量に対する析出割合が低く、焼鈍
時に著しく微細に析出して粒成長を抑制したり、
深絞り性を劣化させる原因となる。BNはAlNと
比較してNとの析出物形成傾向が大きいために析
出開始温度が高く、低温巻取りでも粗大析出し
て、Nの悪影響をなくすことが可能である。従来
のB添加アルミキルド鋼におけるBもNに対して
は上記と同じ役割を有する。本発明と従来のB添
加アルミキルド鋼の相違は、B添加量の範囲と
Al添加量の範囲の違いにあり、これによつて著
しい深絞り性の差が生じる。 即ち、従来のB添加アルミキルド鋼におけるB
添加量は、特公昭51−29696号公報の例に見られ
る如く本発明と比較して多い範囲であるために、
Nは低温巻取りでBNとして十分析出固定される
ものの、セメンタイトが粒界に微細に分散して析
出し、深絞り性は低い。これに対し、本発明では
B添加量が微量であることと、後述するAl添加
量の著しい低減との相乗効果によつて、低温巻取
りでもセメンタイトは塊状に粗大析出し、これに
よつて高い値が得られる。B添加量が本発明と
同様の低い範囲にある特開昭58−117834号公報、
特開昭58−48634号公報については実施例に見ら
れる如く、Al添加量が本発明と比較して著しく
高く、この場合には、セメンタイトは微細析出
し、値は低いレベルである。 第二の要因は、Bの微量添加と同時にAl添加
量を著しく低減する点である。これにより、低温
巻取りでも熱延板中のセメンタイトは塊状に粗大
に凝集して析出し、冷延、焼鈍後の値は高くな
る。 Bの微量添加とAl添加量の著しい低減が同時
に満足された場合にのみかかる現象がおこる機構
の詳細は不明であるが、本発明者等は低炭素鋼に
おける新規知見を見出した。 Al量の低減と熱延圧下率、冷延圧下率の限定
により冷延、焼鈍後の結晶粒を粗大にする特開昭
58−104124号公報の開示技術によつては、Bの添
加がないために、低温巻取りでセメンタイトは粗
大析出せず、軟質ではあるものの、値は低い。 本発明者等はかかる知見に基づいて、低炭素鋼
を用いて、低温巻取りで連続焼鈍により深絞り性
に優れた薄鋼板の製造方法を完成したものであ
る。 (作用) 以下、本発明について詳細に説明する。 化学成分を限定する理由は次のとおりである。 Cはセメンタイト量を決める元素であり、0.05
%を越えると粗大析出するセメンタイト量自体の
増加により値が低下する傾向を示すので、0.05
%を上限とする。C量が0.02%未満の領域では、
セメンタイトの析出開始温度が低下するので、最
も好ましい範囲は、0.02%未満の範囲である。 Siは高強度化するのに有効な元素であるが、
0.8%より多く含まれると化成処理性、溶融亜鉛
めつき性が低下するので0.8%を上限とする。 Mnも高強度化するのに有効な元素であるが、
1.0%を超える添加は経済上好ましくなく、1.0%
を上限とする。 Pは最も効率的に強度を上昇させるのに有効に
もちいることができるが、0.1%を超えると二次
加工脆性を起こす危険性が増し、0.1%を上限と
する。 SはMnSとして析出固定されるが、含有量が
増えると、不必要なMn添加量の増大を招くので
0.05%以下とする。 Alは本発明の重要な構成要件であり、酸可溶
Al量が0.010%以上では従来の低炭素アルミキル
ド鋼と同様、低温巻取りでは低い値しか得られ
ないので、酸河溶Al量を0.010%未満とする。後
述の実施例に示す如く、最も望ましい範囲は、
0.005%未満の範囲である。 Nは析出する窒化物量の増大によりわずかに材
質を低下させる傾向があるので、40ppm以下とす
る。 Bは本発明の重要な構成要件であり、2ppm未
満ではNの悪影響の排除、セメンタイトの粗大凝
集に対する効果がなく、下限を2ppmとする。ま
た20ppm以上では、従来のB添加アルミキルド鋼
と同様の効果となり、セメンタイトの粗大凝集は
起こらないので、20ppm未満とする。上記Al添
加量の著しい低減と、Bの微量添加との二つの条
件の複合効果が本発明の基本であり、かかる二条
件を同時に満足することが必須である。 残部はFeおよび不可避的不純物からなる成分
である。 以上の化学成分範囲に成分調整された溶鋼を連
続鋳造あるいは造塊法によりスラブとなす。熱間
圧延方法としては、該スラブをAr3変態点未満の
温度まで冷却した後再加熱して、もしくは鋳込み
のまま直接熱間圧延する方法のいずれも可能であ
る。かかる熱間圧延工程の温度履歴、圧下率等の
条件については特に規定する必要はない。巻取温
度は、材質特性の観点からは上限はないが、700
℃以上では酸洗性が低下するので700℃未満とし、
400℃より低い温度ではセメンタイトが粗大凝集
しにくなり、深絞り性が低下するので、400℃以
上とする。かかる方法によつて得られた熱延コイ
ルを脱スケール処理の後、冷間圧延を施す。圧下
率40%未満では十分な値が得られないので冷延
率の下限を40%とする。 次いで再結晶焼鈍を施すが、焼鈍方法は連続焼
鈍とする。連続焼鈍としては、冷延鋼板、亜鉛め
つき、錫めつき、クロムめつきなどの種々の品種
を製造するプロセスがいずれも可能である。連続
焼鈍の条件として、焼鈍温度は、鋼板温度が再結
晶温度以上であれば特に規定する必要はない。ま
た、鋼板の時効性を低下する目的で行う過時効処
理は必要に応じて行つてよい。焼鈍後の調質圧
延、防錆処理、潤滑剤の塗布等も必要に応じて行
つてよい。 (実施例) 第1表に示す成分の鋼を溶製し、連続焼鈍によ
りスラブとなし、1000〜1250℃の温度範囲に加熱
した後、890℃以上の温度で熱間圧延を行い、300
〜750℃の温度で巻取つてコイルとなし、酸洗後
80%の圧下率で冷間圧延し、次いで、(600〜775
℃)−60秒の均熱とそれに引き続く350℃−3分の
過時効処理を施す連続焼鈍を行つて冷延鋼板とし
た。熱延コイルの段階で酸洗性を測定するととも
に、値を測定した。酸洗性8%の塩酸中(80
℃)に浸漬し、スケールが完全に剥離するまでの
時間で評価した。製造条件と測定条件を第2表に
示し、第1図にはAl添加量、B添加量の効果に
ついて抽出して示す。第2表、第1図から本発明
の方法で製造された鋼板は700℃未満の低温巻取
りにも関わらず高い値を有するとともに、高温
巻取りに付随する酸洗性の低下もない。
(Industrial Application Field) The present invention relates to a method for manufacturing a thin steel sheet with excellent deep drawability by continuous annealing. (Prior Art) Known technologies for producing cold-rolled steel sheets for deep drawing by continuous annealing using low carbon aluminum killed steel can be roughly divided into two. The first method is to set the coiling temperature after hot rolling to 700℃.
This is the so-called high-temperature winding method, in which the temperature is raised to a higher temperature.
This is aimed at the effects of coagulation of cementite and precipitation and coarsening of AlN due to high temperature winding. However, the high-temperature winding method has the disadvantage that a thick oxide film is formed on the surface of the steel sheet after winding, which significantly reduces pickling properties, and that the material inside the coil cannot be made high because the material of the inner and outer circumferential parts of the coil, where the cooling rate is high, cannot be increased. The uniformity is extremely poor and the yield is greatly reduced. JP-A No. 58-37128 discloses a method of controlling the cooling rate by inserting the coil into a heat retention furnace or attaching a heat retention cover after high-temperature winding to improve the uniformity of the material inside the coil. However, in this case as well, problems arise, such as deterioration of pickling properties, complication of the process, and increase in cost. On the other hand, the second method is based on low-temperature winding. As a method equivalent to this,
51-29696, a method of adding B to aluminum-killed steel, a method of coarsening grains after annealing by reducing the amount of Al and limiting the hot rolling reduction rate and cold rolling reduction rate (JP-A No. 51-29696). Publication No. 58-104124), B
Using additive aluminum killed steel, heating temperature during hot rolling,
Method by limiting finishing temperature
-117834) etc. are known. However, upon detailed investigation by the present inventors, it was found that with these methods, relatively large grains can be obtained, yield strength is relatively low, and elongation is quite high; The value that is an index of drawability is only low compared to the case of high-temperature winding. Therefore, although it can be adopted as a simple manufacturing technique for soft steel sheets, it is not satisfactory as a method for manufacturing deep drawing steel sheets. (Problems to be Solved by the Invention) As stated above, in the conventional method, high temperature winding is indispensable in order to obtain sufficient deep drawability (value). They have some problems such as decreased sexuality. Under these circumstances, there is a strong desire to develop a method for lowering the coiling temperature after hot rolling when producing deep drawing steel sheets by continuous annealing using aluminum killed steel. That is, the problem to be solved by the present invention is that in a method of manufacturing thin steel sheets with excellent deep drawability by continuous annealing using low carbon aluminum killed steel as a raw material, the coiling temperature after hot rolling must be raised. The disadvantage is that it does not. (Means for solving the problems) The gist of the present invention is as follows: C: 0.05% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.05
% or less, acid-soluble Al: less than 0.010%, N: 40 ppm or less, B: 2 ppm or more and less than 20 ppm, and the balance is Fe.
and steel containing unavoidable impurities is hot rolled according to a conventional method, coiled at a temperature of 400°C or more and less than 700°C, and then cold rolled at a reduction rate of 40% or more,
This is a method for producing thin steel sheets with excellent deep drawability, which is characterized by continuous annealing. In order to obtain good material quality, especially deep drawability, when producing aluminum killed steel by continuous annealing, it is important to maintain coarse cementite agglomeration during coiling after hot rolling, and to reduce N in the steel. The important point is how to precipitate coarsely as large-sized precipitates. As a result of detailed study on a method for producing thin steel sheets with excellent deep drawability by a method that does not rely on high-temperature coiling, the present inventors found that, in ordinary low-carbon steel, it is possible to add a small amount of B and to reduce the amount of Al added. The present invention was completed based on the new finding that a high value can be obtained even at low temperature winding only when the two conditions of significantly reducing it are satisfied at the same time. Specifically, first, by adding a small amount of B, N in steel can be precipitated as BN. In low-carbon aluminium-killed steel, N precipitates as AlN, but this AlN precipitates at a low ratio to the total N amount at low coiling temperatures, and precipitates extremely finely during annealing, suppressing grain growth.
This causes deterioration of deep drawability. Since BN has a greater tendency to form precipitates with N than AlN, the precipitation initiation temperature is higher, and coarse precipitation occurs even during low-temperature winding, making it possible to eliminate the adverse effects of N. B in conventional B-added aluminum killed steel also has the same role with respect to N as described above. The difference between the present invention and conventional B-added aluminum killed steel is the range of B addition amount.
There is a difference in the range of the amount of Al added, and this causes a significant difference in deep drawability. That is, B in conventional B-added aluminum killed steel
Since the amount added is in a larger range than that of the present invention, as seen in the example of Japanese Patent Publication No. 51-29696,
Although N is sufficiently extracted and fixed as BN during low-temperature winding, cementite is finely dispersed and precipitated at grain boundaries, resulting in poor deep drawability. On the other hand, in the present invention, due to the synergistic effect of the small amount of B added and the significant reduction in the amount of Al added, which will be described later, cementite precipitates coarsely in lumps even at low temperature winding. value is obtained. JP-A-58-117834, in which the amount of B added is in the same low range as the present invention;
As seen in the examples of JP-A-58-48634, the amount of Al added is significantly higher than that of the present invention, and in this case, cementite is finely precipitated and the value is at a low level. The second factor is that while adding a small amount of B, the amount of Al added is significantly reduced. As a result, cementite in the hot-rolled sheet aggregates and precipitates coarsely into lumps even during low-temperature winding, resulting in a high value after cold rolling and annealing. Although the details of the mechanism by which this phenomenon occurs only when the addition of a small amount of B and the significant reduction in the amount of Al added are satisfied at the same time are unknown, the present inventors have discovered a new finding in low carbon steel. JP-A-Sho, which coarsens the crystal grains after cold rolling and annealing by reducing the amount of Al and limiting the hot rolling reduction rate and cold rolling reduction rate.
According to the technique disclosed in Japanese Patent No. 58-104124, since B is not added, cementite does not precipitate coarsely during low-temperature winding, and although it is soft, the value is low. Based on this knowledge, the present inventors have completed a method for manufacturing a thin steel sheet with excellent deep drawability by using low carbon steel and continuous annealing at a low temperature. (Function) Hereinafter, the present invention will be explained in detail. The reason for limiting the chemical components is as follows. C is an element that determines the amount of cementite, and is 0.05
If it exceeds 0.05%, the value tends to decrease due to an increase in the amount of coarsely precipitated cementite itself.
The upper limit is %. In areas where the amount of C is less than 0.02%,
The most preferable range is less than 0.02% because the temperature at which cementite begins to precipitate is lowered. Although Si is an effective element for increasing strength,
If the content exceeds 0.8%, chemical conversion treatment properties and hot-dip galvanizing properties will decrease, so the upper limit is set at 0.8%. Mn is also an effective element for increasing strength, but
Addition of more than 1.0% is economically undesirable, and 1.0%
is the upper limit. P can be used effectively to increase strength most efficiently, but if it exceeds 0.1%, the risk of secondary processing embrittlement increases, so 0.1% is the upper limit. S is precipitated and fixed as MnS, but increasing the content will lead to an unnecessary increase in the amount of Mn added.
0.05% or less. Al is an important component of the present invention and is acid-soluble.
If the Al content is 0.010% or more, only a low value can be obtained in low-temperature coiling, similar to conventional low carbon aluminum killed steel, so the acid melt Al content is set to less than 0.010%. As shown in the examples below, the most desirable range is:
In the range of less than 0.005%. Since N tends to slightly deteriorate the material quality due to an increase in the amount of precipitated nitrides, it is set at 40 ppm or less. B is an important component of the present invention, and if it is less than 2 ppm, it has no effect on eliminating the adverse effects of N or on coarse aggregation of cementite, so the lower limit is set at 2 ppm. Moreover, if it is 20 ppm or more, the effect will be similar to that of conventional B-added aluminum killed steel, and coarse agglomeration of cementite will not occur, so the content should be less than 20 ppm. The combined effect of the two conditions of the above-mentioned significant reduction in the amount of Al added and addition of a small amount of B is the basis of the present invention, and it is essential to satisfy these two conditions at the same time. The remainder is a component consisting of Fe and unavoidable impurities. The molten steel whose chemical composition has been adjusted to the above range is made into a slab by continuous casting or ingot forming. As the hot rolling method, the slab may be cooled to a temperature below the Ar 3 transformation point and then reheated, or it may be directly hot rolled as it is cast. There is no need to particularly specify conditions such as the temperature history and rolling reduction of the hot rolling process. There is no upper limit to the winding temperature from the viewpoint of material properties, but it is
If the temperature is higher than ℃, the pickling property will decrease, so the temperature should be lower than 700℃.
If the temperature is lower than 400°C, cementite becomes difficult to coarsely aggregate and the deep drawability decreases, so the temperature is set at 400°C or higher. The hot rolled coil obtained by this method is descaled and then cold rolled. Since a sufficient value cannot be obtained with a rolling reduction of less than 40%, the lower limit of the cold rolling reduction is set at 40%. Next, recrystallization annealing is performed, and the annealing method is continuous annealing. As continuous annealing, any process for producing various types of cold-rolled steel sheets, galvanized, tin-plated, chrome-plated, etc., is possible. As a condition for continuous annealing, there is no need to particularly specify the annealing temperature as long as the steel plate temperature is equal to or higher than the recrystallization temperature. Further, over-aging treatment for the purpose of reducing the aging properties of the steel plate may be performed as necessary. After annealing, skin pass rolling, rust prevention treatment, application of lubricant, etc. may be performed as necessary. (Example) Steel having the components shown in Table 1 is melted, made into a slab by continuous annealing, heated to a temperature range of 1000 to 1250°C, and then hot rolled at a temperature of 890°C or higher.
After being wound into a coil at a temperature of ~750℃ and pickled
Cold rolled with a reduction rate of 80%, then (600~775
A cold-rolled steel sheet was obtained by continuous annealing including soaking for 60 seconds at 350°C and subsequent overaging treatment at 350°C for 3 minutes. The pickling property was measured at the stage of hot-rolled coils, and the values were also measured. Pickling property: In 8% hydrochloric acid (80
℃) and evaluated based on the time it took for the scale to completely peel off. The manufacturing conditions and measurement conditions are shown in Table 2, and the effects of the amounts of Al and B added are extracted and shown in FIG. As can be seen from Table 2 and FIG. 1, the steel sheet produced by the method of the present invention has a high value despite being rolled at a low temperature of less than 700°C, and there is no deterioration in pickling properties that accompanies high-temperature winding.

【表】 *:本発明範囲外の項目
[Table] *: Items outside the scope of the present invention

【表】【table】

【表】 (発明の効果) 本発明により、従来法と比較して低い巻取温度
で深絞り性の優れた薄鋼板が製造可能であり、高
温巻取り材に付随する歩留りの低下、酸洗性の低
下などの問題点が解消できることが明白であり、
極めて有利なものである。
[Table] (Effects of the invention) According to the present invention, thin steel sheets with excellent deep drawability can be manufactured at a lower coiling temperature than conventional methods, and the reduction in yield associated with high-temperature coiling can be avoided. It is clear that problems such as decreased sexuality can be resolved,
It is extremely advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸可溶Alと値の関係を示す説明図
である。
FIG. 1 is an explanatory diagram showing the relationship between acid-soluble Al and values.

Claims (1)

【特許請求の範囲】 1 C:0.05%以下、 Si:0.8%以下、 Mn:1.0%以下、 P :0.10%以下、 S :0.05%以下、 酸可溶Al:0.010%未満、 N :40ppm以下、 B :2ppm以上20ppm未満 を含有し、残部Feおよび不可避的不純物からな
る鋼を常法に従つて熱間圧延を施し、400℃以上
700℃未満の温度で巻取り、次いで圧下率40%以
上で冷間圧延を施し、連続焼鈍することを特徴と
する深絞り性に優れた薄鋼板の製造方法。
[Claims] 1 C: 0.05% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.05% or less, acid-soluble Al: less than 0.010%, N: 40ppm or less , B: A steel containing 2 ppm or more and less than 20 ppm, with the balance consisting of Fe and unavoidable impurities, is hot rolled according to a conventional method and heated to 400°C or more.
A method for producing a thin steel sheet with excellent deep drawability, which comprises coiling at a temperature of less than 700°C, followed by cold rolling at a reduction rate of 40% or more, and continuous annealing.
JP17516485A 1985-08-09 1985-08-09 Manufacture of steel sheet having superior deep drawability by continuous annealing Granted JPS6237323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17516485A JPS6237323A (en) 1985-08-09 1985-08-09 Manufacture of steel sheet having superior deep drawability by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17516485A JPS6237323A (en) 1985-08-09 1985-08-09 Manufacture of steel sheet having superior deep drawability by continuous annealing

Publications (2)

Publication Number Publication Date
JPS6237323A JPS6237323A (en) 1987-02-18
JPH0549728B2 true JPH0549728B2 (en) 1993-07-27

Family

ID=15991382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17516485A Granted JPS6237323A (en) 1985-08-09 1985-08-09 Manufacture of steel sheet having superior deep drawability by continuous annealing

Country Status (1)

Country Link
JP (1) JPS6237323A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139849A (en) * 1985-12-13 1987-06-23 Kobe Steel Ltd Hot rolled soft steel sheet having superior workability

Also Published As

Publication number Publication date
JPS6237323A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH0549728B2 (en)
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS59133325A (en) Manufacture of low carbon steel sheet with superior drawability
JPS5848637A (en) Manufacture of cold rolled steel plate with superior press formability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JP2506684B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability by continuous annealing
JPS6114216B2 (en)
JPS6230259B2 (en)
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH0747779B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by continuous annealing method
JP2814818B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent material stability
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JP3403637B2 (en) Hot rolled steel sheet excellent in workability and method for producing the same
JPS6372829A (en) Manufacture of steel sheet for deep drawing having superior uniformity in internal quality of coil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term