JPH0549691B2 - - Google Patents

Info

Publication number
JPH0549691B2
JPH0549691B2 JP58082600A JP8260083A JPH0549691B2 JP H0549691 B2 JPH0549691 B2 JP H0549691B2 JP 58082600 A JP58082600 A JP 58082600A JP 8260083 A JP8260083 A JP 8260083A JP H0549691 B2 JPH0549691 B2 JP H0549691B2
Authority
JP
Japan
Prior art keywords
molecular weight
ethylene
distribution curve
copolymer
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58082600A
Other languages
Japanese (ja)
Other versions
JPS59207907A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Masahiro Kaneko
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8260083A priority Critical patent/JPS59207907A/en
Publication of JPS59207907A publication Critical patent/JPS59207907A/en
Publication of JPH0549691B2 publication Critical patent/JPH0549691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は低温衝撃性、剛性、透明性に優れ、し
かもフイルムを成形した時、表面がくもつたり、
べたついたりすることのないエチレン/プロピレ
ンランダム共重合体に関する。 [従来の技術] 各種用途、特に食品包装用として適した低温衝
撃性、剛性、透明性に優れたエチレン/プロピレ
ン共重合体に関してはすでに多くの組成物及び共
重合方法が提案されている。 [発明が解決しようとする課題] 低温耐衝撃性を改良するためにはエチレン含量
を多くする必要があるエチレン含量の多いエチレ
ン/プロピレンランダム共重合体でフイルムを成
形すると、表面がくもつたりべたついたりする問
題があつた。 本発明者らは、上記問題を解決する方法につい
て種々の検討を行つた結果、特定の共重合体が低
温耐衝撃性、剛性、透明性に優れ、しかもフイル
ムを成形した時にも表面がくもつたりべたついた
りするという問題のないことを見い出し本発明を
完成した。 本発明の目的は低温衝撃性、剛性、透明性に優
れしかも外観が良好であるエチレン−プロピレン
共重合体を得ることにある。 [課題を解決するための手段] 本発明は、 C−O又はC−N結合を有する有機化合物を含
有するハロゲン化マグネシウムに四塩化チタンを
担持して得た触媒成分と有機アルミニウム化合物
と有機酸エステルとからなる触媒を用いて得た、 イ 30℃の白灯油可溶分が20重量%以下であり且
つそのエチレン含量が20重量%以下であり、 ロ 全重合体のエチレン含量が2〜7重量%であ
り、 ハ GPCで測定した、横軸を分子量の自然対数
で表わした分子量分布曲線を3分割し、低分子
量側の分子量分布曲線をガウス分布で近似して
求めたMw/Moが5.0以下であり、 ニ メルトフローインデツクスが0.2〜20g/
10minである、 ことを特徴とするフイルム用エチレン−プロピレ
ンランダム共重合体に関する。 本発明の共重合体は、イ)30℃の白灯油可溶分
が20重量%以下である必要がある。即ち10gの共
重合体を酸化防止剤を0.2重量%含有する白灯油
に120〜130℃で完全に溶解させ、次いで4〜5時
間かけて30℃に降温し、次いで30℃で2時間放置
した後濾過して、白灯油に可溶な部分を取り出
す。その可溶部を次いでメタノール−アセトン混
合溶媒中に投じて不溶化し、得られた不溶部を濾
別する。この濾残が30℃の白灯油に可溶部分であ
る。この30℃可溶部分が20重量%をこえると共重
合体の剛性が不良であり好ましくない。又該部の
エチレン含量が20重量%をこえると共重合体の透
明性が不良となる。好ましい範囲は白灯油可溶分
は5〜15重量%、該部のエチレン含量は5〜18重
量%である。 本発明の共重合体は、ロ)エチレン含量が2〜
7重量%である必要があり、2重量%未満では衝
撃性が劣り、又7重量%をこえると剛性が不良と
なる。 本発明の共重合体は、ハ)GPCで測定した、
横軸を分子量の自然対数で表わした分子量分布曲
線を3分割し、低分子量側の分子量分布曲線をガ
ウス分布で近似して求めたMw/Moが5以下であ
る必要がある。 このMw/Moの測定法はJournal of
Chromatographic Science,Vo120,June
1982,252〜255に詳細に開示されている。GPC
の測定は135℃で、移動層としてトリクロロトル
エンを用いて測定される。カラムの分離能は例え
ば昭和電工製、Shodex AD80MSを2本連結し
た如き程度のものであればよい。 添付図面に示すとおり、横軸をln(分子量)で
表わした分子量分布曲線を3分割し、a:高分子
量側(1/3)、b:ピーク付近(1/3)、c:低分子
量側(1/3)とする。分子量分布曲線の3分割は
詳しくは次の通りに行なう。図面に示したGPC
溶出曲線の溶出量につきピーク位置及び高分子量
側ならびに低分子量側の検出限界位置のそれぞれ
に対応する横軸上の3点(Xn,X1及びX2)を定
め、Xnよりの隔りの大なる検出限界位置(図面
の例ではX2)を選び、このX2とXnの間の長さを
3等分して得た距離lの2倍(2l)の長さでX2
を基点として、他の検出限界位置(X1)側へ横
軸を、低分子領域c、ピーク領域b、及び高分子
量領域aの3領域に分割して行なう。かくして得
られたc領域の分子量分布曲線を下式で近似して
Mw/Moを求める。 Y=Yn・exp[−(X−Xn2/2S2] Y:分子量の自然対数ln(分子量)がXのときの
高さ Yn:ピーク分子量の自然対数ln(ピーク分子量)
がXnのときの高さ S:√(w o) 上記方法で測定したMw/Moが5をこえるとフ
イルムとした時に表面がくもつたり、べとついた
りして好ましくない。Mw/Moの下限はとくに限
定されないが、理論的には1.0であり、通常はポ
リマーの性質より2以上である。 本発明の共重合体は、従来のエチレン/プロピ
レンランダム共重合体と同様に、メルトフローイ
ンデツクスが0.2〜20g/10min程度、通常は1.5
〜12g/10min程度である。これは極限粘度
[η]1.3〜3.1に相当し、従つて分子量18万〜54
万に相当する。 本発明の共重合体は、C−O又はC−N結合を
有する有機化合物を含有するハロゲン化マグネシ
ウムに四塩化チタンを担持して得た触媒成分と有
機アルミニウム化合物と有機酸エステルとからな
る触媒を用いて、芳香族炭化水素を含有する液状
プロピレン中で50〜70℃でエチレンと共重合し、
次いでプロピレンで洗浄することによつて得られ
る。 以下に実施例を挙げ本発明をさらに具体的に説
明する。 実施例及び比較例に於て 物性は生成したエチレン/プロピレン共重合体
に対して、フエノール系安定剤を20/10000の重
量比で、ステアリン酸カルシウムを10/10000の
重量比で、滑剤を20/10000の重量比で添加し、
250℃で造粒して得た共重合体を240℃で厚さ
30μ、幅25cmのTダイフイルム作り評価した。 測定方法は次のとおりである。 メルトフローインデツクス(g/10min):230
℃、荷重2.16Kg、ASTM D−1238−62Tによる。 ヘイズ(%):ASTM 1003−53による。 ブロツキング:フイルムを2枚重ねあわせ、2
Kgの錘りを乗せ、50℃で24時間保つた後密着
面積の割合として算出する。 ヤング率(Kg/mm2):20mm×220mmのフイルムを
用いてノンストロンで測定する。 引張り強さ(Kg/cm2):ASTM D882−64Tに
準ず。 低温衝撃性(Kg・cm/mm):5℃で10cm×10cm
のフイルムに球形の錘りで衝撃を与え、破壊
した時の衝撃エネルギーより算出する。 浮き出し:フイルムを50℃で24時間保持した
後、目視により判定する。 実施例 1 1 触媒の合成 直径12mmの剛球9Kgの入つた内容積4の粉砕
用ポツトを4個装備した振動ミルを用意した。各
ポツトに窒素雰囲気下で塩化マグネシウム300g、
テトラエトキシシラン60ml及びα,α,α−トリ
クロロトルエン45mlを装入し、40時間粉砕した。
充分に乾燥し、窒素雰囲気とした50のオートク
レーブに上記粉砕物3Kgと四塩化チタン20を装
入し、80℃で120分間攪拌した後静置して上澄み
液を除いた。次いでn−ヘプタン35を加え、80
℃で15分間攪拌した後、静置し、上澄み液を除く
洗浄操作を7回繰り返し、その後さらにn−ヘプ
タン20を追加して固体触媒スラリーとした。固
体触媒スラリーの一部をサンプリングし、n−ヘ
プタンを蒸発させ、分析したところ固体触媒中に
チタンを1.9wt%含有していた。 2 重合反応 充分に乾燥し、窒素で置換し、さらにプロピレ
ンで置換したジヤケツト付の100のオートクレ
ーブにプロピレン25Kgとトルエン2.5Kgを装入し
た。一方1のフラスコにn−ヘプタン500ml、
ジエチルアルミニウムクロリド2.6ml、P−トル
イル酸メチル1.4ml及び上記固体触媒1gを入れ、
室温で1分間攪拌した後トリエチルアルミニウム
0.5mlを加えたものを上記100のオートクレーブ
に圧入した。水素及びエチレンの装入を開始した
後ジヤケツトに温水を通じて内温を65℃に維持
し、また気相水素濃度が6vol%、エチレンの気相
濃度が2.5vol%となるように水素及びエチレンを
装入しながら重合を続けた。一方、56.5mlのn−
ヘプタンに3.5mlのトリエチルアルミニウムを溶
解したものを0.5ml/min、プロピレンを125g/
minの割合でオートクレーブに連続的に圧入しな
がら2時間重合を続けた。2時間経過後10mlのジ
エチレングリコールモノイソプロピルエーテルを
入れ、60℃で30分間攪拌し、ついで細い部分の内
径が10cm、上部の太い部分の内径が30cm、細い部
分の長さが10m、上部の太い部分の長さが2mの
向流洗浄塔の上部にスラリーを30Kg/h、下部よ
りプロピレン95%、トルエン5%の組成の洗浄液
を40Kg/hの割合で導入し、上部より洗浄液を44
Kg/h、下部より洗浄されたスラリーを26Kg/h
の割合で取り出し、取り出されたスラリーは内径
3/4インチ、長さ60mの2重管を経て大気圧に保
たれたサイクロンに放出してポリマーを分離し
た。得られたポリマーはさらに20mmHg、80℃で
4時間乾燥したところ15Kgのパウダーが得られ、
この得られたパウダーについて上述の方法で評価
した。その結果を表に示す。 比較例 1 重合に際しトルエンを用いなかつた他は実施例
1と同様にした。その結果を表に示す。 比較例 2 重合の初期にはプロピレン単独で重合を行い、
1時間30分重合の後にエチレンの気相濃度を
8.5vol%としてさらに30分重合した他は実施例1
と同様にした。その結果を表に示す。 比較例 3 重合に際しトルイル酸メチルに変えテトラエト
キシシランを用いた他は実施例1と同様にした。
その結果を表に示す。 実施例 2 トルエンの使用量を4Kgとし、気相のエチレン
の濃度を3.0vol%とした他は実施例1と同様にし
た。その結果を表に示す。 実施例 3 重合温度を70℃とし、脱活温度を50℃とした他
は実施例1と同様にした。その結果を表に示す。 比較例 4 重合の際にトルエンにかえヘキサン1Kg用いた
他は実施例1と同様にした。その結果を表に示
す。
[Industrial Application Field] The present invention has excellent low-temperature impact resistance, rigidity, and transparency, and when the film is molded, the surface does not become cloudy.
This invention relates to an ethylene/propylene random copolymer that does not become sticky. [Prior Art] Many compositions and copolymerization methods have already been proposed for ethylene/propylene copolymers that have excellent low-temperature impact resistance, rigidity, and transparency and are suitable for various uses, particularly for food packaging. [Problem to be solved by the invention] When a film is formed from an ethylene/propylene random copolymer with a high ethylene content, which requires a high ethylene content in order to improve low-temperature impact resistance, the surface becomes cloudy or sticky. I had a problem. The inventors of the present invention have conducted various studies on methods to solve the above problems, and have found that a specific copolymer has excellent low-temperature impact resistance, rigidity, and transparency. The present invention was completed by discovering that there is no problem of stickiness. An object of the present invention is to obtain an ethylene-propylene copolymer that has excellent low-temperature impact resistance, rigidity, and transparency, and also has a good appearance. [Means for Solving the Problems] The present invention provides a catalyst component obtained by supporting titanium tetrachloride on magnesium halide containing an organic compound having a C-O or C-N bond, an organoaluminum compound, and an organic acid. (a) white kerosene soluble content at 30°C is 20% by weight or less and its ethylene content is 20% by weight or less, and (b) the ethylene content of the entire polymer is 2 to 7. M w /M o is obtained by dividing the molecular weight distribution curve measured by GPC, with the horizontal axis expressed as the natural logarithm of the molecular weight, into three, and approximating the molecular weight distribution curve on the lower molecular weight side with a Gaussian distribution . is 5.0 or less, and the melt flow index is 0.2 to 20 g/
The present invention relates to an ethylene-propylene random copolymer for film, characterized in that the processing time is 10 min. The copolymer of the present invention needs to have a) white kerosene soluble content at 30°C of 20% by weight or less. That is, 10 g of the copolymer was completely dissolved in white kerosene containing 0.2% by weight of antioxidant at 120 to 130°C, then the temperature was lowered to 30°C over 4 to 5 hours, and then left at 30°C for 2 hours. It is then filtered to remove the white kerosene-soluble portion. The soluble portion is then poured into a methanol-acetone mixed solvent to make it insolubilized, and the resulting insoluble portion is filtered off. This filter residue is the part that is soluble in white kerosene at 30°C. If the 30°C soluble portion exceeds 20% by weight, the copolymer will have poor rigidity, which is not preferred. Moreover, if the ethylene content of the part exceeds 20% by weight, the transparency of the copolymer will be poor. The preferred range is that the white kerosene soluble content is 5 to 15% by weight, and the ethylene content of this part is 5 to 18% by weight. The copolymer of the present invention has (b) an ethylene content of 2 to 2;
It needs to be 7% by weight; if it is less than 2% by weight, the impact resistance will be poor, and if it exceeds 7% by weight, the rigidity will be poor. The copolymer of the present invention c) measured by GPC,
The molecular weight distribution curve whose horizontal axis is represented by the natural logarithm of the molecular weight is divided into three parts, and the molecular weight distribution curve on the lower molecular weight side is approximated by a Gaussian distribution, and M w /M o is required to be 5 or less. This method of measuring M w /M o is published in the Journal of
Chromatographic Science, Vo120, June
1982, 252-255. G.P.C.
is measured at 135°C using trichlorotoluene as the mobile phase. The separation power of the column may be as long as, for example, two Shodex AD80MS manufactured by Showa Denko connected together. As shown in the attached drawing, the molecular weight distribution curve with the horizontal axis expressed in ln (molecular weight) is divided into three parts: a: high molecular weight side (1/3), b: near the peak (1/3), c: low molecular weight side (1/3). The molecular weight distribution curve is divided into three parts in detail as follows. GPC shown in the drawing
For the elution amount of the elution curve, determine three points (X n , X 1 and X 2 ) on the horizontal axis corresponding to the peak position and the detection limit positions on the high molecular weight side and low molecular weight side, respectively, and calculate the distance from X n . Select the detection limit position (X 2 in the example in the drawing) that has a large detection limit, and divide the length between X 2 and X n into three equal parts, and then divide the length between X 2 and
The measurement is performed by dividing the horizontal axis toward the other detection limit position (X 1 ) into three regions: a low molecular weight region c, a peak region b, and a high molecular weight region a. The molecular weight distribution curve of the c region thus obtained is approximated by the following formula.
Find M w /M o . Y=Y n・exp[−(X−X n ) 2 /2S 2 ] Y: Height when the natural logarithm of molecular weight ln (molecular weight) is X Y n : Natural logarithm of peak molecular weight ln (peak molecular weight)
Height S when is X n : √ ( w o ) If M w /M o measured by the above method exceeds 5, the surface will become cloudy or sticky when made into a film, which is undesirable. The lower limit of M w /M o is not particularly limited, but theoretically it is 1.0, and usually it is 2 or more depending on the properties of the polymer. The copolymer of the present invention, like the conventional ethylene/propylene random copolymer, has a melt flow index of about 0.2 to 20 g/10 min, usually 1.5.
~12g/10min. This corresponds to an intrinsic viscosity [η] of 1.3 to 3.1, and therefore a molecular weight of 180,000 to 54
Equivalent to 10,000. The copolymer of the present invention is a catalyst comprising a catalyst component obtained by supporting titanium tetrachloride on magnesium halide containing an organic compound having a C-O or C-N bond, an organoaluminum compound, and an organic acid ester. copolymerized with ethylene at 50-70°C in liquid propylene containing aromatic hydrocarbons using
It is then obtained by washing with propylene. EXAMPLES The present invention will be explained in more detail with reference to Examples below. In Examples and Comparative Examples, physical properties were determined by using a phenolic stabilizer at a weight ratio of 20/10,000, calcium stearate at a weight ratio of 10/10,000, and a lubricant at a weight ratio of 20/10,000 for the produced ethylene/propylene copolymer. Added at a weight ratio of 10000,
The thickness of the copolymer obtained by granulating at 250℃ at 240℃
A T-die film of 30μ and width 25cm was made and evaluated. The measurement method is as follows. Melt flow index (g/10min): 230
°C, load 2.16 kg, according to ASTM D-1238-62T. Haze (%): According to ASTM 1003-53. Blocking: Layer two films together,
Calculate as a percentage of the contact area after placing a kg weight on it and keeping it at 50℃ for 24 hours. Young's modulus (Kg/mm 2 ): Measured using a 20 mm x 220 mm film with non-stron. Tensile strength (Kg/cm 2 ): According to ASTM D882-64T. Low temperature impact resistance (Kg・cm/mm): 10cm x 10cm at 5℃
It is calculated from the impact energy when a spherical weight is applied to the film and it breaks. Embossment: Visually judge after holding the film at 50°C for 24 hours. Example 1 1 Synthesis of catalyst A vibratory mill equipped with four crushing pots each having an internal volume of 4 and containing 9 kg of hard balls each having a diameter of 12 mm was prepared. 300 g of magnesium chloride in each pot under nitrogen atmosphere,
60 ml of tetraethoxysilane and 45 ml of α,α,α-trichlorotoluene were charged and pulverized for 40 hours.
3 kg of the above-mentioned pulverized material and 20 kg of titanium tetrachloride were placed in a sufficiently dried autoclave under a nitrogen atmosphere, and after stirring at 80°C for 120 minutes, the mixture was allowed to stand and the supernatant liquid was removed. Then add 35% of n-heptane and add 80% of n-heptane.
After stirring at °C for 15 minutes, the mixture was allowed to stand and the washing operation to remove the supernatant liquid was repeated 7 times, followed by further addition of 20 g of n-heptane to form a solid catalyst slurry. A portion of the solid catalyst slurry was sampled, n-heptane was evaporated, and analysis revealed that the solid catalyst contained 1.9 wt% titanium. 2. Polymerization Reaction 25 kg of propylene and 2.5 kg of toluene were charged into a jacketed autoclave which had been thoroughly dried, purged with nitrogen, and further purged with propylene. Meanwhile, in flask 1, add 500 ml of n-heptane.
Add 2.6 ml of diethylaluminum chloride, 1.4 ml of methyl P-toluate, and 1 g of the above solid catalyst,
After stirring for 1 minute at room temperature, triethylaluminum
0.5 ml was added and press-fitted into the above 100 autoclave. After starting the charging of hydrogen and ethylene, the internal temperature was maintained at 65°C by pouring hot water into the jacket, and hydrogen and ethylene were charged so that the gas phase concentration of hydrogen was 6 vol% and the ethylene gas phase concentration was 2.5 vol%. Polymerization continued while adding On the other hand, 56.5 ml of n-
3.5ml of triethylaluminum dissolved in heptane at 0.5ml/min, propylene at 125g/min.
Polymerization was continued for 2 hours while being continuously pressurized into the autoclave at a rate of min. After 2 hours, add 10 ml of diethylene glycol monoisopropyl ether, stir at 60℃ for 30 minutes, and then add 10 ml of diethylene glycol monoisopropyl ether and stir for 30 minutes at 60°C.Then, the inner diameter of the thin part is 10 cm, the inner diameter of the thick part at the top is 30 cm, the length of the thin part is 10 m, and the thick part at the top. Slurry was introduced at a rate of 30 kg/h into the upper part of a countercurrent washing tower with a length of 2 m, and a cleaning liquid with a composition of 95% propylene and 5% toluene was introduced from the bottom at a rate of 40 kg/h.
Kg/h, slurry washed from the bottom 26Kg/h
The slurry was taken out through a double tube with an inner diameter of 3/4 inch and a length of 60 m, and then discharged into a cyclone maintained at atmospheric pressure to separate the polymer. The obtained polymer was further dried at 20 mmHg and 80°C for 4 hours, yielding 15 kg of powder.
The obtained powder was evaluated by the method described above. The results are shown in the table. Comparative Example 1 The same procedure as Example 1 was carried out except that toluene was not used during the polymerization. The results are shown in the table. Comparative Example 2 At the initial stage of polymerization, propylene was used alone,
After 1 hour and 30 minutes of polymerization, the gas phase concentration of ethylene was
Example 1 except that the polymerization was further increased to 8.5 vol% for 30 minutes.
I did the same thing. The results are shown in the table. Comparative Example 3 The same procedure as Example 1 was carried out except that tetraethoxysilane was used instead of methyl toluate during polymerization.
The results are shown in the table. Example 2 The same procedure as in Example 1 was carried out except that the amount of toluene used was 4 kg and the concentration of ethylene in the gas phase was 3.0 vol%. The results are shown in the table. Example 3 The same procedure as Example 1 was carried out except that the polymerization temperature was 70°C and the deactivation temperature was 50°C. The results are shown in the table. Comparative Example 4 The same procedure as in Example 1 was carried out except that 1 kg of hexane was used instead of toluene during polymerization. The results are shown in the table.

【表】 備考:*公知の測定方法による。
[Table] Notes: *Based on known measurement methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明で使用する分子量分布曲線を3
分割する方法を示した説明図である。図中、aは
高分子量側(1/3)領域、bはピーク付近(1/3)
領域、cは低分子量側(1/3)領域を表わす。
The drawing shows the molecular weight distribution curve used in the present invention.
FIG. 2 is an explanatory diagram showing a dividing method. In the figure, a is the high molecular weight side (1/3) region, b is near the peak (1/3)
The region c represents the low molecular weight side (1/3) region.

Claims (1)

【特許請求の範囲】 1 C−O又はC−N結合を有する有機化合物を
含有するハロゲン化マグネシウムに四塩化チタン
を担持して得た触媒成分と有機アルミニウム化合
物と有機酸エステルとからなる触媒を用いて得
た、 イ 30℃の白灯油可溶分が20重量%以下であり且
つそのエチレン含量が20重量%以下であり、 ロ 全重合体のエチレン含量が2〜7重量%であ
り、 ハ GPCで測定した、横軸を分子量の自然対数
で表わした分子量分布曲線を3分割し、低分子
量側の分子量分布曲線をガウス分布で近似して
求めたMw/Moが5.0以下であり、 ニ メルトフローインデツクスが0.2〜20g/
10minである、 ことを特徴とするフイルム用エチレン−プロピレ
ンランダム共重合体。
[Claims] 1. A catalyst consisting of a catalyst component obtained by supporting titanium tetrachloride on magnesium halide containing an organic compound having a C-O or C-N bond, an organoaluminum compound, and an organic acid ester. (b) The ethylene content of the entire polymer is 2 to 7% by weight; The molecular weight distribution curve measured by GPC, where the horizontal axis is expressed as the natural logarithm of the molecular weight, is divided into three parts, and the molecular weight distribution curve on the lower molecular weight side is approximated by a Gaussian distribution. M w /M o is 5.0 or less, 2 Melt flow index is 0.2~20g/
10 min. An ethylene-propylene random copolymer for film use.
JP8260083A 1983-05-13 1983-05-13 Ethylene-propylene random copolymer for films Granted JPS59207907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8260083A JPS59207907A (en) 1983-05-13 1983-05-13 Ethylene-propylene random copolymer for films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8260083A JPS59207907A (en) 1983-05-13 1983-05-13 Ethylene-propylene random copolymer for films

Publications (2)

Publication Number Publication Date
JPS59207907A JPS59207907A (en) 1984-11-26
JPH0549691B2 true JPH0549691B2 (en) 1993-07-27

Family

ID=13778970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8260083A Granted JPS59207907A (en) 1983-05-13 1983-05-13 Ethylene-propylene random copolymer for films

Country Status (1)

Country Link
JP (1) JPS59207907A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583382A (en) * 1981-06-27 1983-01-10 Matsushita Electric Ind Co Ltd Power supply for dc-dc converter
JPS58120616A (en) * 1982-01-14 1983-07-18 Mitsui Toatsu Chem Inc Ethylene-propylene random copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583382A (en) * 1981-06-27 1983-01-10 Matsushita Electric Ind Co Ltd Power supply for dc-dc converter
JPS58120616A (en) * 1982-01-14 1983-07-18 Mitsui Toatsu Chem Inc Ethylene-propylene random copolymer

Also Published As

Publication number Publication date
JPS59207907A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
US4307209A (en) Process for production of chemically blended composition of non-elastomeric ethylene resins
EP0168129A2 (en) Polypropylene composition
US4670529A (en) Packaging shrink film
JPH0317845B2 (en)
JPH0549691B2 (en)
JPS6234056B2 (en)
JPH0318644B2 (en)
JPH0348926B2 (en)
JPH044324B2 (en)
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPS58120615A (en) Preparation of ethylene-propylene random copolymer
EP0294767A1 (en) Process for producing polybutene-1
JPH0322890B2 (en)
JP2683363B2 (en) Propylene polymerization method
JPH0549689B2 (en)
JPH0432085B2 (en)
JPH0319850B2 (en)
JPS60195111A (en) High-fluidity impact-resistant polypropylene resin composition
JPS6340805B2 (en)
JPS6220202B2 (en)
JPS646212B2 (en)
JPH0971613A (en) 3-methylpentene-1/4-methylpentene-1 copolymer
JPS5840314A (en) Propylene block copolymer composition and its production
JPS6340804B2 (en)
JP2710799B2 (en) Method for producing polyolefin resin molded article