JPS583382A - Power supply for dc-dc converter - Google Patents

Power supply for dc-dc converter

Info

Publication number
JPS583382A
JPS583382A JP10008581A JP10008581A JPS583382A JP S583382 A JPS583382 A JP S583382A JP 10008581 A JP10008581 A JP 10008581A JP 10008581 A JP10008581 A JP 10008581A JP S583382 A JPS583382 A JP S583382A
Authority
JP
Japan
Prior art keywords
voltage
heater
winding
switch
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10008581A
Other languages
Japanese (ja)
Inventor
Teruo Kataoka
片岡 暉雄
Takashi Tsukada
敬 塚田
Hideji Kazuma
数馬 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10008581A priority Critical patent/JPS583382A/en
Publication of JPS583382A publication Critical patent/JPS583382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • H04N5/68Circuit details for cathode-ray display tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Details Of Television Scanning (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To increase the efficiency of pre-heating, by suitably selecting the rate of reduction of an output voltage of the secondary winding and a heater winding of a converter transformer at preheating to the output voltage in normal operation. CONSTITUTION:At normal operation, a switch 22' is connected to a heater voltage output terminal 23A and a current is applied from the terminal 23A to a heater H. At pre-heating, the switch 22' is changed over to a voltage output terminal 11. The terminal 11 outputs a higher output voltage than a heater voltage and a power is applied to a circuit load 25 of the device. At pre-heating, a DC voltage is applied to a control terminal 19' with a switch 20' interlocked with the switch 22' to lower an output voltage of each output winding of a converter transformer T. The rate of reduction of an output voltage at the transformer T at pre-heating to that of the secondary winding 6 and a heater winding 12 is almost made equal to the winding ratio of the intermediate tap of the primary winding 5 to the winding 12, allowing to apply a voltage of the same degree of the heater H both at normal and pre-heating states.

Description

【発明の詳細な説明】 この発明はテレビカメラ等に用いられる陰極線管のヒー
タおよび陰極線管駆動回路へ給電するとともに陰極線管
の作IIJIiIに予め陰Ili線管のヒータに給電し
てヒータをプリヒートするアリヒート機能付のDC−D
Cコンバータ電源に関するものである。
Detailed Description of the Invention This invention supplies power to the heater and cathode ray tube drive circuit of a cathode ray tube used in television cameras, etc., and also supplies power to the heater of the cathode ray tube in advance to preheat the heater before the cathode ray tube is manufactured. DC-D with ant heat function
This relates to a C converter power supply.

陰Ii線管のヒータを陰極線管の作動前にプリヒートす
るには、交流電源駆動の場合はヒータトランスを用いる
等、プリヒートのための部品や電力が必要であった。
In order to preheat the heater of the cathode ray tube before operation of the cathode ray tube, components and electric power for preheating are required, such as the use of a heater transformer in the case of an AC power supply drive.

一方、電池駆動で陰M線管を駆動する小型の機器、例え
ば撮倫管(使用したテレビカメラ等では陰極線管の1リ
ヒ一ト時には、コンバータ前作を停止させて電力の浪費
を避け、直流電源(電池出力)から抵抗等の直列インピ
ーダンスを介してヒ−タへ電圧を供給している。このよ
うな構成をもつ従来のスイッチングレギュレータ方式の
DC−DCコンバータ電源を第1図に示す。91図にお
いて、lけ直流電源入力端子であり、コンバータトラン
スTの1次巻線5は、直流電源入力端子lと界イツチン
グトランジスタ4のコレクタに接続され、スイッチング
トランジスタ40ベースは、誤差増幅lI2とパルス制
御回路3とKよってスイッチング駆動すれる。コンバー
タトランスTの2次巻線6には、陰極線管24の駆動や
機器の回路の[1に必要な種々の電圧を取り出すために
1整流ダイオード7.9と平滑コンデンサ8.IQi接
続している。そして、一般的にヒータ電流は大きいので
、コンバータトランスTKヒータ巻@12を設けて整流
ダイオード13と平滑コンデンサ14によってヒータ電
圧出力端子23Aにヒータ用電圧を与える。多出力の場
合、一般に安定化の精度が要求される電圧出力端子例え
ば11の電圧が検出抵抗15.16によって分圧されて
誤差増幅112の入力端子17に印加され、基準電圧端
子18に加えられる基準電圧vRと比較され、電圧端子
11の出力電圧が一定圧なるように制御されろ。パルス
制御回路3は、自励型コンバータで屯他励型コンバータ
の場合でも本質的に同じである。第1図の場合は、直流
電源入カー子IKm見られる直流電圧十B−がflll
′Jしても安定化出力が得られるスイッチングレギュレ
ータ方式になっているため、誤差増幅器2が存在してい
るが、安定化直流電源の電圧1に直流電源入力端子lに
印加する場合は、誤差増幅器2の無いいわゆるDC−D
Cコンバータ電源となる。
On the other hand, in the case of small devices that drive cathode ray tubes using battery power, such as TV cameras, when the cathode ray tube is in full operation, the previous converter is stopped to avoid wasting power, and the DC power source is Voltage is supplied from the battery output to the heater via a series impedance such as a resistor.A conventional switching regulator type DC-DC converter power supply having such a configuration is shown in Figure 1.Figure 91 , the primary winding 5 of the converter transformer T is connected to the DC power input terminal l and the collector of the field switching transistor 4, and the base of the switching transistor 40 is connected to the error amplifier lI2 and the pulse It is switched and driven by the control circuits 3 and K.The secondary winding 6 of the converter transformer T is equipped with rectifier diodes 7, 1 and 1 to extract various voltages necessary for driving the cathode ray tube 24 and for the equipment circuits. 9 and a smoothing capacitor 8.IQi are connected. Since the heater current is generally large, a converter transformer TK heater winding @12 is provided, and the heater voltage is applied to the heater voltage output terminal 23A by the rectifier diode 13 and the smoothing capacitor 14. In the case of multiple outputs, the voltage at the voltage output terminal, for example 11, which generally requires stabilization accuracy, is divided by the detection resistor 15, 16 and applied to the input terminal 17 of the error amplifier 112, and the voltage at the reference voltage terminal 18 The pulse control circuit 3 is compared with a reference voltage vR applied to the voltage terminal 11, and is controlled so that the output voltage at the voltage terminal 11 is a constant voltage.The pulse control circuit 3 is essentially the same in the case of a self-excited converter or a separately excited converter. In the case of Fig. 1, the DC voltage 10B- seen at the DC power supply switch IKm is flll
Since the switching regulator system is used to obtain a stabilized output even when the output voltage is J, an error amplifier 2 is present. So-called DC-D without amplifier 2
Becomes the C converter power supply.

以上のようなりC−DCCコンパ−電源において、陰極
線管24のヒータHは、通常時はヒータ電圧出力端子2
3Aにスイッチ22が接続されており、ヒータ巻Jl1
2よりヒータ電圧が印加され、スイッチ22と連1する
スイッチ20が接地端子26AK接続されて正常なスイ
ッチング動作が行われている。
In the C-DCC comparator power supply as described above, the heater H of the cathode ray tube 24 is normally connected to the heater voltage output terminal 2.
Switch 22 is connected to 3A, and heater winding Jl1
Heater voltage is applied from switch 2, switch 20 connected to switch 22 is connected to ground terminal 26AK, and normal switching operation is performed.

一方、プリヒート時には、スイッチ20 、22が端子
26B、23Bにそれぞれ接続され、スイッチングレギ
ュレータの停止制御端子19に制御電圧を印加すること
によりスイッチング動作を停止させてできるだけ電力t
−削減する。ヒータHには、直流電源入力端子1から1
リヒート用の抵抗21を介して電流が供給される。
On the other hand, during preheating, the switches 20 and 22 are connected to the terminals 26B and 23B, respectively, and the switching operation is stopped by applying a control voltage to the stop control terminal 19 of the switching regulator.
-Reduce. Heater H has DC power input terminals 1 to 1.
Current is supplied through the reheating resistor 21.

このような従来のDC−DCコンバータ電源は、陰極線
管駆動回路の1リヒ一ト時の電力の浪費を避けることが
でき、しかも構成が簡単であり、種々のヒータに対し対
応し易い長所を持っているが、一般的にヒータの定格電
圧が低くなると抵抗21による電力消費が大きくなって
効率が低下する欠点があり、特にヒータ電圧が2.8v
系のような低いものであれば、直流電圧十Bとして一般
に用いることが多い12V入力の場合に特に問題となる
Such a conventional DC-DC converter power supply can avoid wasting power during one reheating of the cathode ray tube drive circuit, has a simple configuration, and has the advantage of being easily compatible with various heaters. However, in general, when the rated voltage of the heater is lower, the power consumption by the resistor 21 increases and the efficiency decreases, especially when the heater voltage is 2.8V.
If the input power is low, such as a DC voltage of 12V, which is commonly used as a DC voltage of 10B, this becomes a problem.

し、たがって、この発明の目的は、プリヒート時の効率
が高く、かつ部品点数が少いDC−DCコンバータ電源
を提供することである。
Therefore, an object of the present invention is to provide a DC-DC converter power supply that has high efficiency during preheating and has a small number of parts.

この発明の一実施例を第2図および第3図に示す、すな
わち、このDC−DCコンバータ電源は、第2図に示す
ように、スイッチ20”j−切換えることにより、誤差
増幅器2の1作状at変化させ、それによりパルス制御
回路3の動作状11t−変化させ、プリヒート時のコン
バータトランスTの2次巻線6およびヒータ巻線12の
出力電圧を通常時の出力電圧よ゛り低減し、かつ、スイ
ッチ20′と連動するスイッチ22′を切換えることに
より、通常時はと−タ巻線12より整流ダイオード13
および平滑コンデンサ14を介してヒータHK給電する
とともに1リヒ一ト時社2次巻線6の中間タップよりダ
イオード9およびコンデンサ10を介してすなわち、端
子11よりヒータHK給電するようにし、プリヒート時
のコンバータトランスTの2次巻線6およびヒータ巻l
l112の出力電圧の通常時の出力電圧に対する低減割
合をコンバータト  −ランスTの1次巻線5の中間タ
ップのヒータ巻線12に対する巻数比に略等しくするこ
とにより、通常時およびプリヒート時ともにヒータHK
同程度の電圧を加入るようにしている。
An embodiment of the present invention is shown in FIGS. 2 and 3. In other words, this DC-DC converter power supply can be used for one operation of the error amplifier 2 by switching the switch 20"j- as shown in FIG. The state at is changed, thereby changing the operating state 11t of the pulse control circuit 3, and the output voltage of the secondary winding 6 and the heater winding 12 of the converter transformer T during preheating is reduced from the normal output voltage. , and by switching the switch 22' which is interlocked with the switch 20', the rectifier diode 13 is normally connected to the output winding 12.
The heater HK power is supplied through the smoothing capacitor 14, and the heater HK power is supplied from the intermediate tap of the secondary winding 6 through the diode 9 and the capacitor 10, that is, from the terminal 11, so that the heater HK power is supplied through the terminal 11 during preheating. Secondary winding 6 and heater winding l of converter transformer T
By making the reduction ratio of the output voltage of l112 with respect to the normal output voltage approximately equal to the turns ratio of the intermediate tap of the primary winding 5 of the converter transformer T to the heater winding 12, the heater H.K.
I try to apply the same voltage.

より詳しく説明すると、通常動作時は、ヒータ電圧出力
端子23AよりヒータHに電流が供給される。つぎに、
プリヒート時にはと−タ切換スイ9チ22′が電圧出力
端子11に切換わる。電圧出力端子11は、通常時の前
作では、ヒータ電圧より高い出力電圧レベルを出し、機
器の回路負荷25に電力を供給している必要端子である
。ヒータ切換スイッチ22′と連動するスイッチ20′
により同時にコンバータ出力を通常時の数分のIK抑え
るために、制御端子19’に制御電圧として直流電圧十
Bを印加し、パルス幅やデエーティ比や発振鴫波数等を
変化させ、それKよって各出力巻線を通して得られる出
力電圧を低下させる。制御端子19’は、誤差増幅器2
の動作を変化させる場合を例に示したが、誤差増幅器2
の無い単なるDC−DCコンバータの場合は、パルス制
御回路3の前作を変化させても可能であることは言うま
でもない、ヒータが交流印加の可能な場合には、巻線タ
ップを切り換えても同様の切り換え製作が実現で・きる
To explain in more detail, during normal operation, current is supplied to the heater H from the heater voltage output terminal 23A. next,
During preheating, the output switch 922' is switched to the voltage output terminal 11. In the previous work under normal conditions, the voltage output terminal 11 is a necessary terminal that outputs an output voltage level higher than the heater voltage and supplies power to the circuit load 25 of the device. Switch 20' interlocking with heater selection switch 22'
At the same time, in order to suppress the converter output by several times the normal IK, a DC voltage of 10 B is applied as a control voltage to the control terminal 19', and the pulse width, duty ratio, oscillation wave number, etc. Reduces the output voltage available through the output winding. The control terminal 19' is connected to the error amplifier 2.
The case where the operation of the error amplifier 2 is changed is shown as an example.
In the case of a simple DC-DC converter without a DC-DC converter, it goes without saying that it is possible to change the previous version of the pulse control circuit 3. If the heater is capable of applying alternating current, the same result can be achieved even if the winding taps are switched. Switching production is possible.

Wi3図は第2図の回路を具体化した回路を示している
。プリヒート時の動作を説明すると、スイッチ43が直
流電圧+BK接続されると、切換制御端子42は正にバ
イアスされ、トランジスタ羽は抵抗35と抵抗34によ
ってオンとなり、誤差増幅器2の基準入力電圧は、通常
の基準電圧■Rに比べ抵抗31と抵抗32の比によって
下げられる。
Figure Wi3 shows a circuit that embodies the circuit of Figure 2. To explain the operation during preheating, when the switch 43 is connected to DC voltage +BK, the switching control terminal 42 is positively biased, the transistor blades are turned on by the resistors 35 and 34, and the reference input voltage of the error amplifier 2 is: It is lowered by the ratio of resistor 31 and resistor 32 compared to the normal reference voltage ■R.

その結果、ric−DCコンバータ電源は、出力ダウン
、の動作となる。帰還抵抗15.16の中間の可変抵抗
44は通常動作時の電圧設定用である。切換制御端子4
2に印加された電圧により、トランジスタ39は、抵抗
36.37によりオンとなる。
As a result, the RIC-DC converter power supply operates to reduce the output. A variable resistor 44 located between the feedback resistors 15 and 16 is used for voltage setting during normal operation. Switching control terminal 4
The voltage applied to 2 turns on transistor 39 through resistor 36,37.

このトキ、トランジスタ33よりも遅れてトランジスタ
39t−オンにさせるために、コンデンサ38を追加し
ている。トランジスタ39のコレクタは、ヒータ切換用
のトランジスタ41のペースにつながり、トランジスタ
41のコレクタはと一−Hに、エイツタは電圧出力端子
11に接続される。抵抗40は、通常時にトランジスタ
41が完全にオフとなるように安定化のために挿入して
いる。以上のようくいコンバータ1作がダウンした後に
、ヒータ電圧出力端子23Aよりも高い電圧の発生する
電圧出力端子11からヒータHにヒータ電圧が印加され
、少い電力でプリヒート1993作が行われ、プIJ 
ヒート時は出力ダウンし&DC−DCコンバータから陰
極線管駆動回路へ与えられる電力は少し残っているが、
ヒータHK供給する電圧はほぼヒータ電圧に一致させる
ことが可能であるので、電圧ドロッ°プ用抵抗は不要で
それによる電力損失もなく、小型カメラの撮曹管の駆餠
回絡のように、と−一電力以外の回路の消費電力がもと
もと少い場合には、プリヒート時の全消費電力は非常に
少くなる。
In order to turn on the transistor 39t later than the transistor 33, a capacitor 38 is added. The collector of the transistor 39 is connected to the pace of a transistor 41 for switching the heater, the collector of the transistor 41 is connected to the -H terminal, and the output terminal of the transistor 41 is connected to the voltage output terminal 11. The resistor 40 is inserted for stabilization so that the transistor 41 is completely off during normal operation. After the first converter operation goes down as described above, the heater voltage is applied to the heater H from the voltage output terminal 11 which generates a voltage higher than the heater voltage output terminal 23A, and the preheat 1993 operation is performed with a small amount of power. I.J.
When it heats up, the output is reduced and there is still some power left from the DC-DC converter to the cathode ray tube drive circuit.
Since the voltage supplied to the heater HK can almost match the heater voltage, there is no need for a voltage drop resistor, and there is no power loss due to it. If the power consumption of the circuits other than the -1 power is originally low, the total power consumption during preheating will be extremely low.

以上述べ亀ように1簡単な構成で電圧調整用の発熱抵抗
体管なくしプリヒート時の消費電力t′低減することが
できるが、具体的な実用電圧で比較してみる。小型ビデ
オカメラの場合、撮侭管のヒータは、省電力化に向い、
−例として2.8vのヒータ電圧で110mA程度のも
のが最近用いられている。−力、回路に入力される直流
電圧十Bは、12Vが最も一般的であり、12V(2)
[流電圧を昇圧して各電極電圧や回路電圧を得ている。
As described above, it is possible to reduce the power consumption t' during preheating by eliminating the heating resistor tube for voltage adjustment with a simple configuration, but let's compare it with a specific practical voltage. For small video cameras, the camera tube heater is suitable for power saving.
- For example, a heater voltage of about 110 mA with a heater voltage of 2.8 V has been used recently. -The most common DC voltage input to the circuit is 12V, and 12V (2)
[Each electrode voltage and circuit voltage are obtained by boosting the current voltage.

カメラ機器の小型化に伴ない、負荷回路の電力はヒータ
を含め2W111後になりつつある。そして、DC−D
Cコンバータから出力する電力はlW#後と交り、9v
品力は、12Vから直列制御で敢り出す場合が多い。こ
のような場合の1リヒ一ト時の全電力を比較すると、従
来ではヒータに80鴫の電力団加會するとして、12V
X(110mAX0.8 )=1056mWが直流電圧
+Bの電源から消費される。この時はDC−DCコンバ
ータは停止させているので、コンバータ出力の消費電力
はOWとなろ。
As camera equipment becomes smaller, the power of the load circuit including the heater is becoming less than 2W111. And DC-D
The power output from the C converter intersects after lW# and is 9v
Quality is often achieved through serial control starting at 12V. Comparing the total power per hour in such cases, we can see that in the past, if 80 watts of power were added to the heater, it would be 12V.
X(110mAX0.8)=1056mW is consumed from the power supply of DC voltage +B. At this time, the DC-DC converter is stopped, so the power consumption of the converter output is OW.

一方、実施例の場合、たとえば電圧出力端子11が通常
時15Vの安定化出力端子とすれば、プリヒート時にコ
ンバータ出力電圧が約1になるように制御端子19によ
り切換えられる。その結果、ヒータには約2.8vの電
圧が印加されたとして、300mWが消費されることに
なる。また、その他の高い電圧ラインの負荷電圧は約1
になるので、1 ので、合計440mWとなる(iから蓼の関にな払以上
の比較でわかるようにプリヒート時のむだな電力消費量
が1以下になることがわかる。直流電圧十Bが12Vよ
り高い電圧たとえば24V電圧で4同様なことが実現で
き、適当なデエーティ比により出力をダウンさせること
が可能である。
On the other hand, in the case of the embodiment, for example, if the voltage output terminal 11 is a stabilized output terminal of 15 V during normal operation, the converter output voltage is switched by the control terminal 19 to about 1 during preheating. As a result, assuming that a voltage of approximately 2.8 V is applied to the heater, 300 mW will be consumed. In addition, the load voltage of other high voltage lines is approximately 1
Therefore, 1, so the total is 440 mW (from i, it can be seen from the comparison above that the wasted power consumption during preheating is less than 1. When the DC voltage is 12V The same effect as in 4 can be realized with a higher voltage, for example, 24V, and the output can be lowered by an appropriate duty ratio.

以上の効果は、機器の小型化、消電力比が進む程高く、
ヒータ電圧の低い程高いものである。
The above effects become more effective as equipment becomes smaller and its power consumption ratio increases.
The lower the heater voltage, the higher the voltage.

以上のように、この発明のDC−DCコンバータ電源は
、1次巻線と2次巻線とこの2次巻線より巻数の少いヒ
ータ巻線とt有するコンバータトランスと、このコンバ
ータトランスの1 次巻11kKK列11続したスイッ
チ素子と、このスイッチ素子をオンオフさせるパルス制
御回路と、 1IiTEフンバータトランスの2次巻線
の出力を整流事情して陰極線部#回絡に#給する整流平
滑回路と、プリヒート時の前記コンバータトランスの2
次巻線およびヒータ巻線の出力電圧を通常時の出力電圧
よ〕低減するように前記パルス制御回路の動作を変化さ
せる第1のスイッチと、通常時KI[I配コンバータト
ランスのヒータ巻線より陰極線管のと−タに給電すると
ともにプリヒート時に前6コンバータトランスの2次巻
線より前記陰極線管のと一タに給電するように1ItI
記第1のスイッチと連釦して切換わる第2のスイッチと
を備え、プリヒート時前記コンバータトランスの2次巻
線およびヒータ巻線の出力電圧の通常時の出力電圧に対
する低減割合t#1tI妃コンバータトランスのヒータ
巻線の2次巻線に対する巻数比に略等しくしたので、プ
リヒート時の効率が高く、かつ部品点数を少くして回路
構成を簡略化できるという効果がある。
As described above, the DC-DC converter power supply of the present invention includes a converter transformer having a primary winding, a secondary winding, a heater winding with a smaller number of turns than the secondary winding, and a Next volume 11kKK rows of 11 switching elements, a pulse control circuit that turns these switching elements on and off, and a rectifying and smoothing circuit that rectifies the output of the secondary winding of the 1IiTE humbverter transformer and supplies it to the cathode line circuit. and 2 of the converter transformer during preheating.
a first switch that changes the operation of the pulse control circuit so as to reduce the output voltage of the next winding and the heater winding from the normal output voltage; 1ItI so as to supply power to the cathode ray tube's terminal and also to supply power to the cathode ray tube's terminal from the secondary winding of the front six converter transformers during preheating.
a second switch that is switched in conjunction with the first switch; and a reduction ratio t#1tI of the output voltage of the secondary winding and the heater winding of the converter transformer with respect to the normal output voltage during preheating. Since the turn ratio is made approximately equal to the turn ratio of the heater winding of the converter transformer to the secondary winding, the efficiency during preheating is high and the number of parts can be reduced to simplify the circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のDC−DCコンバータ電源の回路図、v
II!12図はこの発明の−Ij!施例の回路図、第3
図はその具体回路図である。 T・・・コンバータトランス、2・・・誤差増118.
3・・・バA’X制御回K、4・・・スイッチングトラ
ンジスタ、5・・・1次巻線、6・・・2次巻線、7.
9・・・ダイオード、8.10・・・コンデンサ、20
′・・・スイッチ、22′・・・ヒータ切換スイッチ、
24・・・陰1ift%H・・・ヒータ
Figure 1 is a circuit diagram of a conventional DC-DC converter power supply, v
II! Figure 12 shows -Ij! of this invention. Example circuit diagram, 3rd
The figure is a specific circuit diagram. T...Converter transformer, 2...Error increase 118.
3... Bar A'X control circuit K, 4... Switching transistor, 5... Primary winding, 6... Secondary winding, 7.
9...Diode, 8.10...Capacitor, 20
'...Switch, 22'...Heater selection switch,
24...Shade 1if%H...Heater

Claims (1)

【特許請求の範囲】[Claims] 1次巻線と2次巻線とこの2次巻線より巻数の少イヒ−
p 巻線とを有するコンバータトランスと、このコンバ
ータトランスの1次巻線に直列接続したスイッチ素子と
、このスイッチ素子をオンオフさせるパルス制御回路と
、前記コンバータトランスの2次巻線の出力を整流平滑
して陰極線部前回路に供給する整流平滑回路と、1リヒ
一ト時の前記コンバータトランスの2次巻線およびヒー
タ巻線の出力電EEを通常時のa力電圧より低減するよ
うに前記パルス制御回路の動作を変化させる第1(Dス
4ッfと、71に常RK前起コンバータトランスのヒー
タ巻線よプ陰極線管のヒータに給電するとともにプリヒ
ート時K11lll配コンバータトランスの2次巻線よ
り前記陰極線管のヒータに給電するように前記第1のス
イッチと連動して切換わる第2のスイッチとを備え、プ
リヒート時前6コンパータトランスの2次巻線およびヒ
ータ巻線の出力電圧の通常時の出力電圧に対する低減割
合tU配コンバータトランスのヒータ巻線の2次巻線に
対する巻数比に略等しくしたDC−DCコンバータ電源
The primary winding, the secondary winding, and the number of turns smaller than the secondary winding.
a converter transformer having a P winding; a switch element connected in series to the primary winding of the converter transformer; a pulse control circuit for turning on and off the switch element; and a pulse control circuit for rectifying and smoothing the output of the secondary winding of the converter transformer. and a rectifying and smoothing circuit that supplies the output voltage to the cathode wire section front circuit, and the pulse voltage so as to reduce the output voltage EE of the secondary winding and heater winding of the converter transformer at one time from the normal a power voltage. The first (D switch 4f) that changes the operation of the control circuit, and 71 normally supply power to the heater winding of the RK pre-heat converter transformer and the heater of the cathode ray tube, and also the secondary winding of the K11ll converter transformer during preheating. a second switch that is switched in conjunction with the first switch so as to supply power to the heater of the cathode ray tube; A DC-DC converter power supply whose reduction ratio tU relative to the normal output voltage is approximately equal to the turns ratio of the heater winding of the converter transformer to the secondary winding.
JP10008581A 1981-06-27 1981-06-27 Power supply for dc-dc converter Pending JPS583382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10008581A JPS583382A (en) 1981-06-27 1981-06-27 Power supply for dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10008581A JPS583382A (en) 1981-06-27 1981-06-27 Power supply for dc-dc converter

Publications (1)

Publication Number Publication Date
JPS583382A true JPS583382A (en) 1983-01-10

Family

ID=14264589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10008581A Pending JPS583382A (en) 1981-06-27 1981-06-27 Power supply for dc-dc converter

Country Status (1)

Country Link
JP (1) JPS583382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207907A (en) * 1983-05-13 1984-11-26 Mitsui Toatsu Chem Inc Ethylene-propylene random copolymer for films
JPS61190961A (en) * 1985-02-19 1986-08-25 Nitto Electric Ind Co Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207907A (en) * 1983-05-13 1984-11-26 Mitsui Toatsu Chem Inc Ethylene-propylene random copolymer for films
JPH0549691B2 (en) * 1983-05-13 1993-07-27 Mitsui Toatsu Chemicals
JPS61190961A (en) * 1985-02-19 1986-08-25 Nitto Electric Ind Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
TWI414142B (en) Power supply control method and system therefor
US6246596B1 (en) Switching power supply
JP2008507950A (en) Converter that provides multiple output voltages
US5343378A (en) Power circuit
US6285569B1 (en) Switched mode power supply controller circuit and method thereof
JPH02294277A (en) Initial power-up equipment for switching power supply equipment
US5953219A (en) Control circuit power supply circuit and power supply circuit including same
JPS583382A (en) Power supply for dc-dc converter
JP4278208B2 (en) Switch mode power supply for electrical equipment
JP2979453B2 (en) One-stone forward type multi-output converter
JPH08126314A (en) Multi-output controlled power supply
JPH067743B2 (en) Power supply
JP3155715B2 (en) Self-excited switching power supply circuit
JP3571959B2 (en) Switching power supply
JPH0340757A (en) Switching power source device
JP3490321B2 (en) Switching power supply
JP2906569B2 (en) Output voltage detection circuit of switching power supply
JPH07245947A (en) Switching power supply device and electronic equipment with switching power supply device
JP2005229737A (en) Direct-current power supply device
JPH0556576A (en) Battery backup power supply circuit
JP2003037977A (en) Switching power device
JPH02114859A (en) Control system for dc-dc converter load current limiting characteristics
JPS58108870A (en) Electric power controller for electromagnetic focusing type image pickup tube
JPS60213267A (en) Power source circuit
JPH07135768A (en) Switching regulator