JPH0549601B2 - - Google Patents

Info

Publication number
JPH0549601B2
JPH0549601B2 JP58063831A JP6383183A JPH0549601B2 JP H0549601 B2 JPH0549601 B2 JP H0549601B2 JP 58063831 A JP58063831 A JP 58063831A JP 6383183 A JP6383183 A JP 6383183A JP H0549601 B2 JPH0549601 B2 JP H0549601B2
Authority
JP
Japan
Prior art keywords
methanol
fuel
dissociation
internal combustion
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58063831A
Other languages
Japanese (ja)
Other versions
JPS59190201A (en
Inventor
Yuun Hiiyangu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
Conoco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conoco Inc filed Critical Conoco Inc
Priority to JP58063831A priority Critical patent/JPS59190201A/en
Publication of JPS59190201A publication Critical patent/JPS59190201A/en
Publication of JPH0549601B2 publication Critical patent/JPH0549601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はメタノールの吸熱反応、 CH3OH→CO+2H2 …… によるメタノールの解離に関する。 メタノールの解離に関し従来、種々の提案がな
されている。たとえば米国特許No.4086877には触
媒反応により燃料ガスの改質が開示されている。
このメタノールの分解により生成した一酸化炭素
および水素は内燃エンジンおよび改質ガス発生器
に用いられることが開示されている。米国特許No.
4091086には酸化亜鉛、酸化銅、酸化トリウムお
よび酸化アルミニウムを含む混合物を用いてスチ
ーム改質により水素を生成させることが開示され
ている。米国特許No.4175115にはシリカにロジウ
ムおよび銅混合物を担持させメタノールから合成
ガスの製造をおこなう方法を開示している。米国
特許No.4110256にはγ−Al2O3担体にCu−Ni−Cr
の混合物を担持させたものを用いてメタノールか
ら水素を触媒的に改質させる方法を開示してい
る。米国特許No.4088450には酸化亜鉛−酸化銅触
媒を用いてメタノールから水素を発生させる方法
が開示されている。文献“United Catalyst”
1980第8、13頁にはCu/Cr/Mn触媒で官能基の
水素添加をおこなう方法が開示されている。 この発明は蒸気相中でメタノール触媒と、温度
250°〜900〓(121〜482℃)、絶対圧0.1〜50気圧
で0.1〜100秒間接触させ、水素と一酸化炭素を生
成させる方法であつて、上記触媒としてマンガ
ン、銅、クロムを用いる方法を提供するものであ
る。 上記反応式()で生成した水素および一酸化
炭素混合物は空気と混合したのち内燃エンジンに
燃料として供給される。文献11th IECEC1976年
にはこのメタノールからの水素を内燃エンジン燃
料として用いる利点について説明がなされてい
る。 実際の操作において、燃料タンクから運ばれた
液体メタノールは最初に気化され、ついで空気と
混合される前に解離され、最後に内燃エンジン内
にて燃焼される。 このメタノールの解離はCu/Cr/Mの触媒を
用いることにより向上する。このメタノール解離
および気化は吸熱的であるため、解離されたガス
は液体メタノールより発熱量は高い。この発熱量
の増大は燃料システムの全体的熱効率を増大させ
る。この解離ガスのすぐれた炎特性は燃焼システ
ムの熱効率を向上させる。100%解離したとする
と、理論的に通常のガソリンエンジンシステムに
比較して熱効率が約50%向上することになる。 下記表には公知のCu/Zu触媒(実施例1)
の平均解離率と本発明におけるCu/Cr/Mn触媒
(実施例2)の平均解離率の比較を表示の条件で
おこなつた結果が示されている。 この実施例1、2において、液体メタノールを
所定の流速で、250〓(121℃)に保持した気化器
内に供給したものである。このメタノール蒸気は
ついで特定の触媒を配設した管状等熱反応器中に
供給された。この反応器からの生成物は凝縮器に
供給された。この凝縮物は2時間に亘り集められ
測定、分析された。この凝縮器からのガス容量流
速を測り、そのガスの分析がおこなわれた。 実施例1の方法の前にCu/Zn触媒がCuO/
ZnOから還元された。この酸化物の還元は410〓
(210℃)、1.5気圧で、2%H2および98%N2の還
元雰囲気中で8時間に亘りおこなわれた。同様
に、実施例2の前に、Cu/Cr/Mn触媒をCuO/
Cr2O3/MnOから還元した。この還元は温度410
〓(210℃)、1.5気圧で2%H2、98%H2の還元雰
囲気下で8時間に亘りおこなわれた。 表の実施例において、メタノール蒸気供給速
度は時間当りで示されている。これは1気圧、25
〓(−3.9℃)で1立方センチの触媒一時間当り
の供給メタノール蒸気量の立方センチを表わして
いる。 実施例1において使われた触媒はUnited
Catalyst G−66B(タブレツト型)で33%のCuO
と65%のZnOを含む。 実施例2で使われた触媒はUnited Catalyst
G−89(タブレツト型)で39%の銅、37%のクロ
ム、3%のマンガンを含むものであつた。
This invention relates to the endothermic reaction of methanol, the dissociation of methanol by CH 3 OH→CO+2H 2 . Various proposals have been made regarding the dissociation of methanol. For example, US Pat. No. 4,086,877 discloses reforming fuel gas by catalytic reaction.
It is disclosed that carbon monoxide and hydrogen produced by the decomposition of methanol are used in internal combustion engines and reformed gas generators. US Patent No.
4091086 discloses the production of hydrogen by steam reforming using a mixture containing zinc oxide, copper oxide, thorium oxide and aluminum oxide. US Pat. No. 4,175,115 discloses a method for producing synthesis gas from methanol by supporting a mixture of rhodium and copper on silica. U.S. Patent No. 4110256 describes Cu-Ni-Cr on γ-Al 2 O 3 support.
Discloses a method for catalytically reforming hydrogen from methanol using a supported mixture of the following. US Pat. No. 4,088,450 discloses a method for generating hydrogen from methanol using a zinc oxide-copper oxide catalyst. Literature “United Catalyst”
1980, pp. 8, 13, discloses a method for hydrogenating functional groups using a Cu/Cr/Mn catalyst. This invention uses a methanol catalyst in the vapor phase and a temperature
A method in which hydrogen and carbon monoxide are produced by contacting at 250° to 900° (121 to 482°C) and an absolute pressure of 0.1 to 50 atmospheres for 0.1 to 100 seconds, using manganese, copper, and chromium as the catalysts. It provides: The hydrogen and carbon monoxide mixture produced in the above reaction equation () is mixed with air and then supplied to the internal combustion engine as fuel. Document 11th IECEC 1976 describes the advantages of using hydrogen from methanol as an internal combustion engine fuel. In actual operation, liquid methanol delivered from the fuel tank is first vaporized, then dissociated before being mixed with air, and finally combusted within the internal combustion engine. This dissociation of methanol is improved by using a Cu/Cr/M catalyst. This methanol dissociation and vaporization is endothermic, so the dissociated gas has a higher calorific value than liquid methanol. This increased heat output increases the overall thermal efficiency of the fuel system. The superior flame properties of this dissociated gas improve the thermal efficiency of the combustion system. Assuming 100% dissociation, thermal efficiency would theoretically increase by about 50% compared to a normal gasoline engine system. The table below lists known Cu/Zu catalysts (Example 1).
The results of a comparison between the average dissociation rate of the Cu/Cr/Mn catalyst of the present invention (Example 2) under the indicated conditions are shown. In Examples 1 and 2, liquid methanol was supplied at a predetermined flow rate into a vaporizer maintained at 250°C (121°C). This methanol vapor was then fed into a tubular isothermal reactor equipped with a specific catalyst. The product from this reactor was fed to a condenser. This condensate was collected, measured and analyzed over a period of 2 hours. The gas volume flow rate from this condenser was measured and the gas analyzed. Before the method of Example 1, the Cu/Zn catalyst was
Reduced from ZnO. The reduction of this oxide is 410〓
(210° C.), 1.5 atm, and a reducing atmosphere of 2% H 2 and 98% N 2 for 8 hours. Similarly, before Example 2, the Cu/Cr/Mn catalyst was
Reduced from Cr 2 O 3 /MnO. This reduction is at a temperature of 410
(210°C), 1.5 atm, and a reducing atmosphere of 2% H 2 and 98% H 2 for 8 hours. In the table examples, the methanol vapor feed rate is given per hour. This is 1 atm, 25
〓 represents the amount of methanol vapor supplied per cubic centimeter of catalyst per hour at (-3.9°C). The catalyst used in Example 1 was United
33% CuO in Catalyst G-66B (tablet type)
and 65% ZnO. The catalyst used in Example 2 was United Catalyst.
G-89 (tablet type) contained 39% copper, 37% chromium, and 3% manganese.

【表】 表にはCu/Zn触媒のものと比較してCu/
Cr/Mn触媒のものは各反応温度において、メタ
ノールの解離が50%以上多いことを示している。 本発明において、メタノール解離は温度300〜
600〓(149〜316℃)、絶対圧0.1〜5気圧でおこ
なうことが好ましく、最も好ましくは温度400〜
550〓(204〜260℃)、絶対圧力約2気圧でおこな
うものとする。 又、解離触媒はアルミナ又はシリカに担持させ
ることが好ましく、又、クロムおよび銅の酸化物
が触媒中に存在していてもよい。好ましくは
Cu/Cr/Mn触媒は70%銅、2〜70%クロム、
0.1〜30%マンガンからなるものを選ぶ。この
Cu/Cr/Mn触媒は極めて安定であり、450〓
(232℃)で150時間使用してもその活性は5%以
下失われるにすぎない。 本発明の触媒はCu/Zz触媒の場合と比較して
メチルホルメートの形成をより少なくする選択性
を有する。このメチルホルメートの形成は発熱的
であり、したがつて燃料として使用するためのメ
タノールの解離(吸熱反応)の熱効率を下げるの
で好ましくない。
[Table] The table shows Cu/Zn catalysts compared to Cu/Zn catalysts.
The Cr/Mn catalyst shows more than 50% more methanol dissociation at each reaction temperature. In the present invention, methanol dissociation is performed at a temperature of 300~
600〓 (149~316℃), absolute pressure 0.1~5 atm, most preferably temperature 400~
550㎓ (204 to 260℃) and an absolute pressure of about 2 atmospheres. Further, the dissociation catalyst is preferably supported on alumina or silica, and chromium and copper oxides may be present in the catalyst. Preferably
Cu/Cr/Mn catalyst is 70% copper, 2-70% chromium,
Choose one consisting of 0.1-30% manganese. this
The Cu/Cr/Mn catalyst is extremely stable, with 450%
Even after 150 hours of use at (232°C), less than 5% of its activity is lost. The catalysts of the invention have selectivity that leads to less methyl formate formation compared to Cu/Zz catalysts. This formation of methyl formate is undesirable because it is exothermic and therefore reduces the thermal efficiency of the dissociation (endothermic reaction) of methanol for use as fuel.

Claims (1)

【特許請求の範囲】 1 メタノールを吸熱的に水素に解離し、これを
含む気体混合物を内燃エンジンに導入し、該内燃
エンジン内で燃焼させる方法において、 (a) 水を実質上含まず、酸素分子を極微量含む実
質上メタノールである液体燃料を供給する工程
と、 (b) 前記液体燃料を気化させることによつて、蒸
気燃料を生成する工程と、 (c) 前記蒸気燃料をマンガン、銅、およびクロム
を必須成分として含む触媒を備えた触媒反応器
に供給する工程と、 (d) 前記触媒反応器中において、前記蒸気燃料中
のメタノールを解離させ、水素量の多い気体燃
料を生成する工程と、 (e) 前記水素量の多い気体燃料を空気と混合し、
水素および酸素を含む気体燃焼混合物を生成す
る工程と、 (f) 前記気体燃焼混合物を、内燃エンジンに供給
する工程と、 (g) 前記内燃エンジン内において、前記気体燃焼
混合物を燃焼させる工程とを具備し、 メタノールの解離によつて水素を得て、これを
前記内燃エンジンにおいて燃焼させる方法。 2 触媒がアルミナ又はシリカに担持されている
特許請求の範囲第1項記載の方法。 3 メタノール解離の温度を300〜600〓(149〜
316℃)とする特許請求の範囲第1項記載の方法。 4 触媒がマンガン、銅、クロムの酸化物を含む
特許請求の範囲第1項記載の方法。 5 メタノール解離の絶対圧が0.1〜5気圧であ
る特許請求の範囲第1項記載の方法。 6 触媒は、銅が5〜70%、クロムが2〜70%、
マンガンが0.1〜30%である特許請求の範囲第1
項記載の方法。 7 メタノール解離の温度が400〜500〓(204〜
206℃)、絶対圧が0.1〜5気圧である特許請求の
範囲第1項記載の方法。
[Claims] 1. A method of endothermically dissociating methanol into hydrogen, introducing a gaseous mixture containing hydrogen into an internal combustion engine, and combusting it within the internal combustion engine, comprising: (a) substantially free of water and containing no oxygen; (b) producing a vapor fuel by vaporizing the liquid fuel; (c) supplying a liquid fuel that is essentially methanol containing trace amounts of molecules; (c) producing a vapor fuel by vaporizing the liquid fuel; and (d) dissociating methanol in the vapor fuel in the catalytic reactor to produce a gaseous fuel with a high hydrogen content. (e) mixing the hydrogen-rich gaseous fuel with air;
(f) supplying the gaseous combustion mixture to an internal combustion engine; and (g) combusting the gaseous combustion mixture in the internal combustion engine. A method comprising: obtaining hydrogen by dissociation of methanol and combusting it in the internal combustion engine. 2. The method according to claim 1, wherein the catalyst is supported on alumina or silica. 3 Adjust the temperature of methanol dissociation to 300~600〓(149~
316°C). 4. The method according to claim 1, wherein the catalyst contains oxides of manganese, copper, and chromium. 5. The method according to claim 1, wherein the absolute pressure for methanol dissociation is 0.1 to 5 atm. 6 The catalyst contains 5-70% copper, 2-70% chromium,
Claim 1 in which manganese is 0.1 to 30%
The method described in section. 7 The temperature of methanol dissociation is 400~500〓(204~
206°C) and an absolute pressure of 0.1 to 5 atm.
JP58063831A 1983-04-13 1983-04-13 Manufacture of hydrogen and carbon monoxide by dissociation of methanol Granted JPS59190201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063831A JPS59190201A (en) 1983-04-13 1983-04-13 Manufacture of hydrogen and carbon monoxide by dissociation of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063831A JPS59190201A (en) 1983-04-13 1983-04-13 Manufacture of hydrogen and carbon monoxide by dissociation of methanol

Publications (2)

Publication Number Publication Date
JPS59190201A JPS59190201A (en) 1984-10-29
JPH0549601B2 true JPH0549601B2 (en) 1993-07-26

Family

ID=13240686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063831A Granted JPS59190201A (en) 1983-04-13 1983-04-13 Manufacture of hydrogen and carbon monoxide by dissociation of methanol

Country Status (1)

Country Link
JP (1) JPS59190201A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270021A (en) * 1987-04-28 1988-11-08 Olympus Optical Co Ltd Flexible tube for endoscope
JP2014100613A (en) * 2011-03-09 2014-06-05 Kuraray Co Ltd Method of manufacturing mixed gas of hydrogen and carbon monoxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648252A (en) * 1979-09-28 1981-05-01 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648252A (en) * 1979-09-28 1981-05-01 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst

Also Published As

Publication number Publication date
JPS59190201A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
Vaidya et al. Insight into steam reforming of ethanol to produce hydrogen for fuel cells
Fierro et al. Ethanol oxidative steam reforming over Ni-based catalysts
US5516967A (en) Direct conversion of methane to hythane
CA2306938C (en) A process for the preparation of hydrogen and carbon monoxide
Vaidya et al. Glycerol reforming for hydrogen production: a review
US6964758B2 (en) Low-temperature hydrogen production from oxygenated hydrocarbons
Ledjeff-Hey et al. Compact hydrogen production systems for solid polymer fuel cells
US4407238A (en) Methanol dissociation using a copper-chromium-manganese catalyst
Thattarathody et al. Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst
JP3124035B2 (en) Method for producing hydrogen and carbon oxides from dimethyl ether
US7998456B2 (en) Process for the production of hydrogen
JP2003503295A (en) Ethanol reforming catalyst, reforming method, and fuel cell system using them
JPS6243921B2 (en)
WO2008047321A1 (en) Hydrogen production method by direct decomposition of natural gas and lpg
US4129523A (en) Catalysts containing active metallic copper
JPS6045939B2 (en) Methanol decomposition catalyst for hydrogen and carbon monoxide production
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
JPH0549601B2 (en)
US20060168887A1 (en) Method for producing a fuel gas containing hydrogen for electrochemical cells and associated device
JPH05270803A (en) Production of synthetic gas from methane and carbon dioxide as source material
JP4594011B2 (en) Ethanol reforming method
EP0805780B1 (en) Direct conversion of methane to hythane
JPS61286203A (en) Reforming method for methanol
GB1561635A (en) Catalyst and chemicalprocesses such as carbon monoxide shift
KR100499860B1 (en) Process for high performance synthetic gas generation using the catalysts