JPS6243921B2 - - Google Patents

Info

Publication number
JPS6243921B2
JPS6243921B2 JP56125838A JP12583881A JPS6243921B2 JP S6243921 B2 JPS6243921 B2 JP S6243921B2 JP 56125838 A JP56125838 A JP 56125838A JP 12583881 A JP12583881 A JP 12583881A JP S6243921 B2 JPS6243921 B2 JP S6243921B2
Authority
JP
Japan
Prior art keywords
catalyst
methanol
reaction
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125838A
Other languages
Japanese (ja)
Other versions
JPS5756302A (en
Inventor
Pii Shurumansu Jatsuku
Noikerumansu Heruman
Kuiberu Jatsuku
Deyuhon Reenu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARISUTSU ANDO CHEM YUUROPU SA
SHIMIKU DO RA GURANDO PAROWASU AZOTSUTO E PURODEYUI SHIMIKU SOC
Original Assignee
KYATARISUTSU ANDO CHEM YUUROPU SA
SHIMIKU DO RA GURANDO PAROWASU AZOTSUTO E PURODEYUI SHIMIKU SOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARISUTSU ANDO CHEM YUUROPU SA, SHIMIKU DO RA GURANDO PAROWASU AZOTSUTO E PURODEYUI SHIMIKU SOC filed Critical KYATARISUTSU ANDO CHEM YUUROPU SA
Publication of JPS5756302A publication Critical patent/JPS5756302A/en
Publication of JPS6243921B2 publication Critical patent/JPS6243921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタノールからガスを製造する方法に
関するものである。 水素製造の原料としてのメタノールの使用は、
文献および特許に詳細に記載されている方法であ
る。この方法は従来特に経済的観点から明らかに
不利であつたが、炭化水素類が入手困難となつて
来ていることと将来行われるであろう他原料のメ
タノールへの転化(石炭のガス化)がこの事態を
有利に変えようとしている。 本発明の目的は種々な組成のガスの製造のため
の出発原料炭化水素としてのメタノールを最適に
使用できるように、既存の技術を大巾に改善し、
適合させることにある。 クラツキングまたはスチームリホーミングの何
れの方法によつても、メタノール分解によつて組
成が広範囲に異なるガスが生成し、生成するガス
の組成は主として触媒および操業条件を適当に選
択することによつて決定される。 この序文では、水素製造のためには、導入する
水の一部分が水素に転換されるので、メタノール
のスチームリホーミングはクラツキングよりも好
ましいと記すに止めておく。低温度を用いようと
する場合には、メタネーシヨン反応に対する活性
を持たない触媒の使用が必要となることも明らか
である。 この反応系における諸反応は次のように記すこ
とができる。 メタノールのクラツキング反応 CH3OHCO+2H2 メタノールのスチームリホーミング反応 CH3OH+H2OCO2+3H2 (2) 一酸化炭素転化のための水性ガス反応 CO+H2OCO2+H2 一酸化炭素転化反応 CO+3H2CH4+H2O (4) CO2+4H2CH4+2H2O (5) これらの反応の平衡定数は次の通りである。
The present invention relates to a method for producing gas from methanol. The use of methanol as a raw material for hydrogen production is
The method is well described in the literature and patents. This method was clearly disadvantageous in the past, especially from an economic point of view, but it has become difficult to obtain hydrocarbons, and the conversion of other raw materials to methanol (coal gasification) will likely occur in the future. is trying to turn this situation to its advantage. The purpose of the present invention is to significantly improve the existing technology in order to optimally use methanol as a starting hydrocarbon for the production of gases of various compositions.
It's about adapting. Whether by cracking or steam reforming, methanol decomposition produces gases with widely varying compositions, the composition of which is determined primarily by the appropriate choice of catalyst and operating conditions. be done. In this preface, it is only noted that for hydrogen production, steam reforming of methanol is preferred over cracking, since a portion of the water introduced is converted to hydrogen. It is also clear that if low temperatures are to be used, it will be necessary to use catalysts that have no activity for methanation reactions. The various reactions in this reaction system can be described as follows. Cracking reaction of methanol CH 3 OHCO+2H 2 Steam reforming reaction of methanol CH 3 OH+H 2 OCO 2 +3H 2 (2) Water gas reaction for carbon monoxide conversion CO+H 2 OCO 2 +H 2 Carbon monoxide conversion reaction CO+3H 2 CH 4 +H 2 O (4) CO 2 +4H 2 CH 4 +2H 2 O (5) The equilibrium constants for these reactions are as follows.

【表】 これらの数値を見て、この反応系の化学量論を考
察すると、次の諸点が判る。 反応(2)は反応(1)よりも水素の生産性が高いこ
と。 反応(3)は生成する水素の量の増加に使用でき、
実際に反応(2)は反応(1)と(3)を加えたものであるこ
と。 反応(4)と(5)は低温度では平衡上極めて有利であ
り反応が起り易いが、水の存在によつてメタンの
生成が抑制されること。 文献によれば、反応(2)を促進するのに使用され
る触媒は反応(3)に使用される触媒と屡々同一であ
る。この理由は、反応(3)が起る場合にはCOが消
失するので、反応(1)が促進されるからである。 本発明はメタノール蒸気と添加しないこともあ
る水蒸気と添加することもある二酸化炭素とを、
触媒の存在下で、130〜950℃の温度で、1〜100
気圧の圧力で反応させ、種々の濃度の水素および
一酸化炭素を含有し残余が二酸化炭素および存在
することもあるメタン、水蒸気およびメタノール
であるガスを製造する方法において、最初の操業
開始時に先ず極めて小量のメタノールを含有する
水蒸気を未還元触媒又は未先行還元触媒を収容し
ている反応器に通し、通常組成量に達するまでメ
タノール量を徐々に増加し、この操業を露点以上
400℃以下の温度で、1〜100気圧の圧力下で行な
うことによつて操業開始前の触媒の還元を不要と
することを特徴とするメタノールからガスを製造
する方法である。 メタノールのクラツキング反応及びスチームリ
ホーミング反応を促進する触媒としては、遷移金
属触媒、Cu触媒或いはZn、Ni又はFeのクロマイ
トより成る触媒などが知られているが、本発明の
方法に使用される触媒として特に望ましいもの
は、それらの触媒のうち、亜鉛とクロムを主成分
とする触媒およびニツケルとクロムを主成分とす
る触媒である。これらの触媒に対するPt、Pd、
Rh等の白金系貴金属、Cu、Co、Mn、Mg、Moな
どの添加は活性の向上等の効果をもたらすので望
ましいが、そのうちCuの添加は低温活性を著し
く改善するので特に望ましい。 水素又は水素と一酸化炭素を主成分とするガス
を製造する本発明の方法は前述した触媒の中の一
種以上の触媒を使用して実施する。なお、この実
施の結果得られたガスを、公知技術に従つて、既
知の触媒(単一でなく複数の触媒でもよい)を用
いて、異なる組成のガスに転化する反応を組合せ
て実施することは随意である。ここに異なる組成
と記したものは、単に水素と一酸化炭素の比率の
異なるガスのみならず、水素と一酸化炭素の反応
によつて生成した炭化水素類を含むガスをも包含
する。本発明の方法において二種以上の触媒及
び/又は既知触媒を組合せて使用する場合、それ
らの触媒は所要の製品ガスの組成に応じ又は熱バ
ランスに応じて順次に一基の反応器に収容しても
良く、また二基又はそれ以上の反応器に個別に収
容しても良い。 本発明を次に例につきさらに詳細に説明する。 例 1(参考例1) CUO 44重量% ZnO 45 〃 Al2O3 11 〃 の組成を持つ低温転化型の古典的な触媒を選び、
この触媒550cm2を内径5cmの筒型反応器に充填し
て、触媒床の高さを25cmとした。触媒充填部の前
には不活性物質を充填した高さ40cmの予熱圏を設
けた。この触媒を200℃で12時間N2中2%のH2
含有する混合ガスによつて還元した。次いで、こ
の触媒の平均温度を295℃に上げ、H2O対CH3OH
モル比5の液状混合物を常圧の予熱器に圧送し
た。触媒層に入るガス流の空間速度(VVH)は
900h-1とした。出口ガス組成は容積%で示して
CO0.45%、CO223.56%、H275.76%、
CH3OH0.02%、残り不活性物であつた。凝縮し
た液体は0.10重量%のCH3OHを含有していた。
これらの分析結果は70時間の操業に相当するもの
であつた。それにも拘らず、この良好な転化率は
温度を急速に上昇させなくては維持できなかつ
た。214時間後、反応器の平均温度は307℃であ
り、入口での組成および流量を変えていないのに
液は既に1.11%のCH3OHを含んでいた。最終的
には492時間後、平均温度350℃で、凝縮液は1.00
重量%のCH3OHを含有し、690時間後、平均温度
350℃で、凝縮液は5.65%のCH3OHを含んでい
た。 例 2(参考例2) 列1と同一の条件で、別の触媒を同様にして試
験した。 触媒組成は次の通りであつた。 ZnO 71重量% Cr2O3 22 〃 Al2O3 7 〃 この触媒の場合には例1と同一の転化率を得る
ためには、一だんと高い温度が必要であつた。例
えば96時間の操業後には凝縮液は0.07重量%の
CH3OHを含んでいたが、反応器中の触媒の平均
温度は334℃であつた。然し、この触媒は時間の
関数として例1の触媒よりも良好な定安性を示し
た。即ち、478時間操業後平均温度は349℃で、凝
縮液中のCH3OHは0.84%であり、831時間操業後
平均温度は350℃で、凝縮液中のCH3OHは0.53重
量%であつた。 例 3(参考例3) 例1の古典的組成の低温転化触媒は好適ではな
く、例2の亜鉛とクロムの元素はそれ自体触媒性
能を持ち長時間の操業に亘つて安定であるが、操
業温度が古典的組成の触媒より高い点を考慮し
て、次の組成を持つ別の触媒を製造した。 ZnO 57重量% Cr2O3 11 〃 CUO 21 〃 Al2O3 11 〃 この触媒を例1と例2と同様にして試験した。
144時間操業後、反応器中の触媒の平均温度は311
℃で、凝縮液中にCH3OHは検出されなかつた。
次いでこの触媒を一だんと苛酷な試験条件、すな
わち高圧、低H2O対CH3OHモル比で試験した。
すなわち圧力30.3気圧(30バール)、H2O対
CH3OHモル比1.5で、311時間操業後、反応器中
触媒平均温度332℃で、凝縮液中のCH3OHは僅か
0.25重量%であつた。最後に圧力24.3気圧(24バ
ール)H2O対CH3OHモル比2.5で、3444時間操業
後、反応器中触媒平均温度349℃で、凝縮液中の
CH3OHは僅か0.83重量%であつた。 例1〜3を検討したところ、触媒中の主要元素
は亜鉛、銅およびクロムであるが、銅を添加する
と一だんと低温度での運転が可能となることが判
明した。然し、H2OとCH3OHとの混合物を触媒
の還元相に通過させなければならない欠点が残つ
ていた。この還元相を得るためには、ガス流中の
水素を使用して還元するかまたは先行還元(操業
開始前に装置外で還元した(プレレデユース
ド))触媒の使用が必要であり、このことは取扱
いを一だんと困難とする。 本発明はこの欠点を解消する操業開始方法を有
するとともに、例3の触媒に一だんと低温活性を
付与する。 例 4(実施例1) 例3の触媒を例3と同じ反応器に充填し、温度
を200℃に固定した。触媒を還元することなく、
CH3OH1%水溶液流を常圧の予熱装置に圧送し
た。20時間後、圧送するCH3OH水溶液のCH3OH
含有量を2%に上げ、40時間後8%に上げた。こ
のようにしてこの系が例1、2および3の条件に
達する迄漸次CH3OH濃度を大とした。かくて、
24.3気圧(20バール)の圧力、H2O対CH3OHモ
ル比2.5で、192時間操業後、反応器中触媒平均温
度268℃で、凝縮液中のCH3OHは0.89重量%であ
つた。この良好な活性は1665時間操業後も保持さ
れ、24.3気圧(24バール)、H2O対CH3OHモル比
1.9で、反応器中触媒平均温度293℃で、凝縮液中
のCH3OHは僅か0.52重量%であつた。 例1〜4では、生成したガスは常に比較的一定
しており、反応(2)に相応してCO21部に対しH23部
を生成した。CO含有量とメタン含有量は低かつ
た。既知方法によりCO2を除去した後のガスは実
質上純粋な水素であつたが、他の触媒を選ぶと
か、例3または4の触媒であつても他の反応条件
または他の供給原料を選ぶことによつて、異なつ
た組成に到達することは可能であつた。かくして
得られるガス組成を変化させることが可能とな
る。 例 5(実施例2) 例3に記述した触媒を反応器に充填し、例4に
記述した本発明方法によつて操業した。この初期
段階の後、次の諸条件で操業し、次の第1表に示
す結果を得た。
[Table] Looking at these numbers and considering the stoichiometry of this reaction system, the following points can be found. Reaction (2) has higher hydrogen productivity than reaction (1). Reaction (3) can be used to increase the amount of hydrogen produced,
In fact, reaction (2) is the addition of reactions (1) and (3). Reactions (4) and (5) are extremely advantageous in terms of equilibrium at low temperatures and tend to occur, but the presence of water suppresses the production of methane. According to the literature, the catalyst used to promote reaction (2) is often the same as the catalyst used for reaction (3). The reason for this is that when reaction (3) occurs, CO disappears, so reaction (1) is promoted. The present invention uses methanol vapor, water vapor that may not be added, and carbon dioxide that may be added.
1-100 in the presence of a catalyst at a temperature of 130-950℃
In a process for producing gases which react at atmospheric pressure and contain varying concentrations of hydrogen and carbon monoxide, with the remainder being carbon dioxide and the presence of methane, water vapor and methanol, the Steam containing a small amount of methanol is passed through a reactor containing an unreduced or unreduced catalyst, the amount of methanol is gradually increased until a normal composition is reached, and the operation is carried out above the dew point.
This is a method for producing gas from methanol, which is characterized in that it is carried out at a temperature of 400° C. or lower and a pressure of 1 to 100 atmospheres, thereby eliminating the need for catalyst reduction before the start of operation. As catalysts for promoting methanol cracking reaction and steam reforming reaction, transition metal catalysts, Cu catalysts, and catalysts made of Zn, Ni or Fe chromite are known, but the catalyst used in the method of the present invention Of these catalysts, catalysts containing zinc and chromium as main components and catalysts containing nickel and chromium as main components are particularly desirable. Pt, Pd for these catalysts,
Addition of platinum-based noble metals such as Rh, Cu, Co, Mn, Mg, Mo, etc. is desirable because it brings about effects such as improvement of activity, and among these, addition of Cu is particularly desirable because it significantly improves low-temperature activity. The method of the present invention for producing hydrogen or a gas containing hydrogen and carbon monoxide as main components is carried out using one or more of the catalysts mentioned above. In addition, the gas obtained as a result of this implementation can be carried out in accordance with known techniques by combining reactions to convert it into gases of different compositions using a known catalyst (not a single catalyst but multiple catalysts may be used). is voluntary. Here, the term "different compositions" includes not only gases having different ratios of hydrogen and carbon monoxide, but also gases containing hydrocarbons produced by a reaction between hydrogen and carbon monoxide. If two or more catalysts and/or known catalysts are used in combination in the process of the invention, these catalysts may be accommodated in one reactor in sequence depending on the composition of the required product gas or depending on the thermal balance. Alternatively, the reactors may be individually housed in two or more reactors. The invention will now be explained in more detail by way of example. Example 1 (Reference Example 1) A classical low-temperature conversion catalyst with the composition CUO 44% by weight ZnO 45 〃 Al 2 O 3 11 〃 was selected,
A cylindrical reactor with an inner diameter of 5 cm was filled with 550 cm 2 of this catalyst, and the height of the catalyst bed was set to 25 cm. A preheating zone with a height of 40 cm filled with an inert material was provided in front of the catalyst filling section. The catalyst was reduced with a gas mixture containing 2% H 2 in N 2 at 200° C. for 12 hours. The average temperature of this catalyst was then raised to 295 °C and the H2O vs. CH3OH
The liquid mixture with a molar ratio of 5 was pumped into a preheater at normal pressure. The space velocity (VVH) of the gas flow entering the catalyst bed is
It was set to 900h -1 . Outlet gas composition is shown in volume %
CO0.45%, CO2 23.56%, H2 75.76%,
CH 3 OH 0.02%, remaining inert. The condensed liquid contained 0.10% by weight CH 3 OH.
These analytical results were equivalent to 70 hours of operation. Nevertheless, this good conversion could only be maintained by rapidly increasing the temperature. After 214 hours, the average temperature of the reactor was 307° C. and the liquor already contained 1.11% CH 3 OH without changing the composition and flow rate at the inlet. Finally, after 492 hours, with an average temperature of 350℃, the condensate is 1.00
Contains wt% CH 3 OH, average temperature after 690 hours
At 350 °C, the condensate contained 5.65% CH 3 OH. Example 2 (Reference Example 2) Another catalyst was similarly tested under the same conditions as in column 1. The catalyst composition was as follows. ZnO 71% by weight Cr 2 O 3 22 Al 2 O 3 7 In order to obtain the same conversion as in Example 1, higher temperatures were required for this catalyst. For example, after 96 hours of operation, the condensate is 0.07% by weight.
Although containing CH 3 OH, the average temperature of the catalyst in the reactor was 334°C. However, this catalyst showed better stability as a function of time than the catalyst of Example 1. That is, after 478 hours of operation, the average temperature was 349°C, and the CH 3 OH in the condensate was 0.84%, and after 831 hours of operation, the average temperature was 350°C, and the CH 3 OH in the condensate was 0.53% by weight. Ta. Example 3 (Reference Example 3) The low-temperature conversion catalyst with the classical composition of Example 1 is not suitable, and the elements of zinc and chromium in Example 2 have catalytic properties themselves and are stable over long periods of operation. Considering that the temperature is higher than that of the classical catalyst, another catalyst was prepared with the following composition: ZnO 57% by weight Cr 2 O 3 11 CUO 21 Al 2 O 3 11 This catalyst was tested as in Examples 1 and 2.
After 144 hours of operation, the average temperature of the catalyst in the reactor is 311
℃, no CH 3 OH was detected in the condensate.
This catalyst was then tested under increasingly severe test conditions: high pressure, low H 2 O to CH 3 OH molar ratio.
i.e. pressure 30.3 atmospheres (30 bar) vs. H 2 O
After operating for 311 hours at a CH 3 OH molar ratio of 1.5, the average catalyst temperature in the reactor was 332°C, and there was very little CH 3 OH in the condensate.
It was 0.25% by weight. Finally, after 3444 hours of operation at a pressure of 24.3 atm (24 bar) and a H 2 O to CH 3 OH molar ratio of 2.5, with an average catalyst temperature in the reactor of 349 °C,
CH 3 OH was only 0.83% by weight. After examining Examples 1 to 3, it was found that the main elements in the catalyst were zinc, copper and chromium, and that addition of copper enabled operation at much lower temperatures. However, the drawback remained that the mixture of H 2 O and CH 3 OH had to be passed through the reduction phase of the catalyst. Obtaining this reduced phase requires reduction using hydrogen in the gas stream or the use of a pre-reduced catalyst (reduced outside the unit before commissioning (pre-reused)), which is discussed in the manual. becomes even more difficult. The present invention has a start-up method that overcomes this drawback and also provides the catalyst of Example 3 with increased low temperature activity. Example 4 (Example 1) The catalyst of Example 3 was charged into the same reactor as Example 3 and the temperature was fixed at 200°C. without reducing the catalyst.
The CH 3 OH 1% aqueous solution stream was pumped into a preheater at atmospheric pressure. After 20 hours, pump CH3OH aqueous solution CH3OH
The content was increased to 2% and after 40 hours to 8%. In this way, the CH 3 OH concentration was gradually increased until the system reached the conditions of Examples 1, 2 and 3. Thus,
After 192 hours of operation at a pressure of 24.3 atmospheres (20 bar) and a molar ratio of H 2 O to CH 3 OH of 2.5, with an average catalyst temperature in the reactor of 268° C., CH 3 OH in the condensate was 0.89% by weight. . This good activity was maintained after 1665 hours of operation, at 24.3 atmospheres (24 bar), H2O to CH3OH molar ratio
1.9, the average catalyst temperature in the reactor was 293° C., and the CH 3 OH in the condensate was only 0.52% by weight. In Examples 1 to 4, the gas produced was always relatively constant, corresponding to reaction (2), producing 3 parts H 2 for every 1 part CO 2 . CO content and methane content were low. Although the gas after removal of the CO 2 by known methods was essentially pure hydrogen, it is possible to choose other catalysts, or choose other reaction conditions or other feedstocks even with the catalysts of Examples 3 or 4. In particular, it was possible to arrive at different compositions. It becomes possible to change the gas composition thus obtained. Example 5 (Example 2) A reactor was charged with the catalyst described in Example 3 and operated according to the process of the invention described in Example 4. After this initial stage, the following conditions were operated and the results shown in Table 1 below were obtained.

【表】【table】

【表】 例 6(実施例3) 次の組成の触媒を反応器に充填した。 NiO 14重量% Al2O3 86 〃 例4に記述したと同様にして操業しメタノール
のスチームリホーミング反応とクラツキング反応
を、反応器出口温度約800℃、反応圏に入る混合
物の温度400℃で行なつた。平衡をCOの生成に有
利な方向に移動させるため、CO2を入口ガスに添
加した。試験の結果を次の第2表に示した。
[Table] Example 6 (Example 3) A reactor was charged with a catalyst having the following composition. NiO 14% by weight Al 2 O 3 86 〃 Operated as described in Example 4, steam reforming and cracking reactions of methanol were carried out at a reactor outlet temperature of approximately 800°C and a temperature of the mixture entering the reaction zone of 400°C. I did it. CO 2 was added to the inlet gas to shift the equilibrium in favor of CO production. The results of the test are shown in Table 2 below.

【表】 本発明に記した工程はモレキユラーシープを用
いる精製工程との組合せによつて特に有利とな
る。既に良く知られているこの精製工程はメタノ
ールのスチームリホーミングと組合せると極めて
純度の高い水素を製造できるのみならず、この精
製工程からの排気ガスを直接このスチームリホー
ミング工程に必要な全熱量の供給に利用できるの
で、有利である。従つて本発明の一見地において
は、水素の製造工程装置中にメタノールリホーミ
ング工程及びモレキユラーシーブによる精製工程
を組合せて設けることにより、スチームリホーミ
ング工程の熱を自給する。 例 7(実施例4) メタノールスチームリホーミング反応を第1図
に示した装置で実施した。物質収支および熱収支
によつて、この反応系の熱が自給自足されている
ことが判つた。 選定した操業条件は、H2O対CH3OHモル比
2、出口温度300℃、圧力25.3気圧(25バール)
であつた。 この装置は250Nm3/時の精製した純水素を製
造するように設計した。モレキユラーシーブを用
いる精製工程に通常の値である水素回収率72%の
数値を用いると、この量の純水素を製造するため
には反応器出口で347Nm3/時のH2を必要とし
た。 例5で得た反応器出口ガス分析値を用い、例5
と同一操業条件を用いると、物質収支計算からし
てこの装置の入口1ではメタノールを172Kg/時
の装入速度で、入口2のH2Oを193Kg/時の装入
速度で、25℃の温度で装入する必要があつた。反
応器にはCO2を添加しなかつた。 出口10で反応器を去る300℃、25.3気圧(25
バール)のガスは、湿潤ガスの容積組成が
CO1.33%、CO218.55%、H258.14%、CH40.078
%、CH3OH0.157%及びH2O21.753%であり、流
量597Nm3/時であつた。 供給原料混合物をその沸騰点203℃に加熱する
ためには、55600KCal/時の熱量を供給する必要
があり、蒸発のためにはさらに111400Kcal/時
の熱量を供給する必要があり、300℃まで過熱す
るためにはまたさらに15200Kcal/時の熱量を供
給する必要があり、総計182200Kcal/時の熱量
を反応器5の入口から出口10に到るまでに供給
する必要があつた。 この流体質量の流れで特定転化率を得るのに供
給しなければならない反応熱は79300Kcal/時で
あつた。従つて供給しなければならない全熱量は
261500Kcal/時であつた。 反応器5を出る湿潤ガスは凝縮により
61800Kcal/時の熱量を熱交換器3に供給した
が、これによつて液状供給原料の加熱および部分
的蒸発が達成され液状供給原料の温度は25℃から
203℃に昇温した。湿潤ガス生成物は熱交換器3
に300℃で入り132℃で出た後、凝縮器6中で35℃
に冷却した後精製工程11に入れた。 凝縮器6からさらに51200Kcal/時の熱量を除
去したが、第1図に示した工程ではこの熱量を排
出管12から37℃で排出される冷却水によつて利
用した例のみを単に示した。 熱交換器を出た反応混合物は反応条件に到達さ
せるために、さらに120400Kcal/時、反応その
もののために79300Kcal/時、従つて総計
1997000Kcal/時の熱量を供給しなければならな
かつた。この余分の熱量は精製工程11からの排
気ガスを管路13を経て貯蔵ドラム7を通つて燃
焼炉8に入れ、この中で燃焼することにより供給
した。排気ガスはH244.5%、CO3.6%、CH4
CH3OH0.5%、CO250.8%、H2O0.5%の組成を有
し、熱焼によつて285400Kcal/時の熱量を供給
可能であつた。煙道9の出口ガス温度を300℃と
仮定すると、この熱伝達流体によつて回収できた
熱量は233500Kcal/時であり、最終的には過剰
の熱量33800Kcal/時が残つた。この熱伝達流体
は蒸発器4および反応器5中の反応混合物に所要
の熱量を供給した。従つてこの工程装置は熱収支
上13%の余剰熱量を有していた。 例 8(実施例5) 例6と同様にして次の組成の触媒を用いて試験
を行なつた。 NiO 12% Cr2O3 8% Al2O3 80% 例6と同様に、供給ガスを400℃で反応圏に入
れた。COの生成を増加させる目的でCO2を添加
した。結果は次の第3表に示す通りであつた。
[Table] The process described in the present invention is particularly advantageous in combination with a purification process using molecular sheep. This well-known purification process, when combined with methanol steam reforming, not only produces extremely pure hydrogen, but also allows the exhaust gas from this purification process to be used directly to generate the total heat required for the steam reforming process. This is advantageous because it can be used to supply Therefore, in one aspect of the present invention, the heat for the steam reforming process is self-sufficient by providing a combination of a methanol reforming process and a refining process using a molecular sieve in a hydrogen production process apparatus. Example 7 (Example 4) A methanol steam reforming reaction was carried out in the apparatus shown in FIG. The mass balance and heat balance showed that the reaction system was self-sufficient in heat. The selected operating conditions were: H 2 O to CH 3 OH molar ratio of 2, outlet temperature of 300°C, and pressure of 25.3 atm (25 bar).
It was hot. The device was designed to produce 250 Nm 3 /h of purified pure hydrogen. Using a hydrogen recovery rate of 72%, which is a typical value for a purification process using molecular sieves, 347 Nm 3 /h of H 2 would be required at the reactor outlet to produce this amount of pure hydrogen. did. Using the reactor outlet gas analysis value obtained in Example 5, Example 5
Using the same operating conditions as above, the material balance calculation shows that methanol is charged at inlet 1 of this equipment at a charging rate of 172 kg/hour, H 2 O at inlet 2 is charged at a rate of 193 kg/hour, and a temperature of 25°C is calculated. It was necessary to charge at a certain temperature. No CO2 was added to the reactor. Leaving the reactor at outlet 10 at 300°C and 25.3 atm (25
The volumetric composition of the wet gas is
CO1.33%, CO2 18.55%, H2 58.14%, CH4 0.078
%, CH 3 OH 0.157% and H 2 O2 1.753%, and the flow rate was 597 Nm 3 /h. To heat the feed mixture to its boiling point of 203°C, it is necessary to supply 55,600 Kcal/h, and for evaporation it is necessary to supply a further 111,400 Kcal/h to superheat it to 300°C. In order to do this, it was necessary to supply an additional 15,200 Kcal/hour of heat, and a total of 182,200 Kcal/hour of heat needed to be supplied from the inlet of the reactor 5 to the outlet 10. The heat of reaction that had to be supplied to obtain a specific conversion with this flow of fluid mass was 79,300 Kcal/hr. Therefore, the total amount of heat that must be supplied is
It was 261,500Kcal/hour. The wet gas leaving reactor 5 is condensed
A quantity of heat of 61800 Kcal/hour was supplied to heat exchanger 3, which achieved heating and partial evaporation of the liquid feedstock and the temperature of the liquid feedstock increased from 25°C.
The temperature was raised to 203℃. The wet gas product is transferred to heat exchanger 3
After entering at 300℃ and exiting at 132℃, it is heated to 35℃ in condenser 6.
After being cooled to , it entered purification step 11. Although an additional 51,200 Kcal/hour of heat was removed from the condenser 6, the process shown in FIG. 1 merely shows an example in which this heat is utilized by cooling water discharged from the discharge pipe 12 at 37°C. The reaction mixture leaving the heat exchanger has an additional 120,400 Kcal/hr to reach the reaction conditions and 79,300 Kcal/hr for the reaction itself, thus total
It was necessary to supply 1,997,000 Kcal/hour of heat. This extra heat was provided by passing the exhaust gas from the refining process 11 via line 13 through storage drum 7 into combustion furnace 8, where it was combusted. Exhaust gas is H 2 44.5%, CO 3.6%, CH 4 +
It had a composition of 0.5% CH 3 OH, 50.8% CO 2 , and 0.5% H 2 O, and was able to supply 285,400 Kcal/hour by heating. Assuming that the gas temperature at the exit of the flue 9 is 300° C., the amount of heat recovered by this heat transfer fluid was 233,500 Kcal/hour, and ultimately an excess amount of heat of 33,800 Kcal/hour remained. This heat transfer fluid supplied the required amount of heat to the reaction mixture in evaporator 4 and reactor 5. Therefore, this process equipment had a surplus heat amount of 13% in terms of heat balance. Example 8 (Example 5) A test was conducted in the same manner as in Example 6 using a catalyst having the following composition. NiO 12% Cr 2 O 3 8% Al 2 O 3 80% As in Example 6, the feed gas was introduced into the reaction zone at 400°C. CO2 was added to increase CO production. The results were as shown in Table 3 below.

【表】 以上本発明を特定の例および数値につき説明し
たが、本発明がこれのみに限定されるものでな
く、本発明の広汎な精神と視野を逸脱することな
く種々の修整と変更が可能なこと勿論である。
[Table] Although the present invention has been described above with reference to specific examples and numerical values, the present invention is not limited thereto, and various modifications and changes can be made without departing from the broad spirit and scope of the present invention. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる装置装置の
一例を示す工程系統図である。 1……メタノール送入口、2……H2O送入口、
3……熱交換器、4……蒸発器、5……反応器、
6……凝縮器、7……貯蔵ドラム、8……燃焼
炉、9……煙道、10……生成ガス出口、11…
…精製工程、12……凝縮器6の排出管、13…
…排気ガスの管路。
FIG. 1 is a process flow diagram showing an example of the equipment used to carry out the method of the present invention. 1...methanol inlet, 2... H2O inlet,
3... Heat exchanger, 4... Evaporator, 5... Reactor,
6... Condenser, 7... Storage drum, 8... Combustion furnace, 9... Flue, 10... Produced gas outlet, 11...
...Refining process, 12... Discharge pipe of condenser 6, 13...
...Exhaust gas pipe.

Claims (1)

【特許請求の範囲】 1 メタノール蒸気と添加しないこともある水蒸
気と添加することもある二酸化炭素とを、触媒の
存在下で、130〜950℃の温度で、1〜100気圧の
圧力で反応させ、種々の濃度の水素および一酸化
炭素を含有し残余が二酸化炭素および存在するこ
ともあるメタン、水蒸気およびメタノールである
ガスを製造する方法において、最初の操業開始時
に先ず極めて小量のメタノールを含有する水蒸気
を未還元触媒又は未先行還元触媒を収容している
反応器に通し、通常組成量に達するまでメタノー
ル量を徐々に増加し、この操業を露点以上400℃
以下の温度で、1〜100気圧の圧力下で行なうこ
とによつて操業開始前の触媒の還元を不要とする
ことを特徴とするメタノールからガスを製造する
方法。 2 触媒として亜鉛又は亜鉛およびクロムを主成
分とし、Cu、Co、Pt、Pd、Rh、Ni、Mn、Mgお
よびMoの何れか一種以上をも含有することがあ
る触媒を用いる特許請求の範囲1記載の方法。 3 触媒としてニツケル又はニツケルおよびクロ
ムを主成分とし、Cu、Co、Pt、Pd、Rh、Zn、
Mn、MgおよびMoの何れか一種以上をも含有す
ることがある触媒を用いる特許請求の範囲1記載
の方法。 4 メタノールのクラツキング反応又はスチーム
リホーミング反応に必要な熱の全量を反応生成ガ
スの一部分及び/又は反応生成ガスの精製工程か
らの排出ガスの直接燃焼によつて供給するか又は
該燃焼によつて加熱された伝熱媒体によつて供給
する特許請求の範囲1記載の方法。 5 反応精製ガスの精製が純粋水素を得る目的で
行なわれるモレキユラシーブを用いた精製である
特許請求の範囲4記載の方法。 6 水蒸気対メタノールのモル比が10以下である
特許請求の範囲1記載の方法。 7 二酸化炭素とメタノールのモル比が10以下で
ある特許請求の範囲1又は6記載の方法。
[Claims] 1. Reaction of methanol vapor, water vapor that may not be added, and carbon dioxide that may be added at a temperature of 130 to 950°C and a pressure of 1 to 100 atmospheres in the presence of a catalyst. , a process for producing gases containing hydrogen and carbon monoxide in varying concentrations, with the balance being carbon dioxide and possibly methane, water vapor and methanol, which initially contain very small amounts of methanol at the time of initial operation. The steam is passed through a reactor containing an unreduced catalyst or an unprepared reduced catalyst, the amount of methanol is gradually increased until a normal composition is reached, and the operation is carried out at temperatures above the dew point of 400°C.
A method for producing gas from methanol, characterized in that reducing the catalyst before the start of operation is not necessary by carrying out the process at the following temperature and under a pressure of 1 to 100 atmospheres. 2. Claim 1 using a catalyst that is mainly composed of zinc or zinc and chromium, and may also contain one or more of Cu, Co, Pt, Pd, Rh, Ni, Mn, Mg, and Mo. Method described. 3 The main components are nickel or nickel and chromium as a catalyst, Cu, Co, Pt, Pd, Rh, Zn,
The method according to claim 1, using a catalyst which may also contain one or more of Mn, Mg and Mo. 4. The entire amount of heat required for the methanol cracking reaction or steam reforming reaction is supplied by direct combustion of a portion of the reaction product gas and/or the exhaust gas from the purification process of the reaction product gas, or by such combustion. A method as claimed in claim 1, characterized in that it is supplied by a heated heat transfer medium. 5. The method according to claim 4, wherein the reaction purification gas is purified using a molecular sieve for the purpose of obtaining pure hydrogen. 6. The method according to claim 1, wherein the molar ratio of steam to methanol is 10 or less. 7. The method according to claim 1 or 6, wherein the molar ratio of carbon dioxide and methanol is 10 or less.
JP56125838A 1980-08-11 1981-08-11 Metal reforming method and device Granted JPS5756302A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE0/201707A BE884720A (en) 1980-08-11 1980-08-11 METHANOL REFORMING PROCESS AND DEVICE IMPLEMENTED

Publications (2)

Publication Number Publication Date
JPS5756302A JPS5756302A (en) 1982-04-03
JPS6243921B2 true JPS6243921B2 (en) 1987-09-17

Family

ID=3843353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125838A Granted JPS5756302A (en) 1980-08-11 1981-08-11 Metal reforming method and device

Country Status (3)

Country Link
JP (1) JPS5756302A (en)
BE (1) BE884720A (en)
FR (1) FR2490615B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141404A (en) * 1983-02-02 1984-08-14 Mitsubishi Heavy Ind Ltd Production of liquid hydrogen
JPS59141405A (en) * 1983-02-02 1984-08-14 Mitsubishi Heavy Ind Ltd Production of liquid hydrogen
JPS59152205A (en) * 1983-02-14 1984-08-30 Mitsubishi Gas Chem Co Inc Steam reforming of methanol
JPS59184706A (en) * 1983-04-05 1984-10-20 Marutani Kakoki Kk Production of hydrogen from methanol
DE3314932A1 (en) * 1983-04-25 1984-10-25 Conoco Inc., Stamford, Conn. Methanol cracking, using a copper-chromium-manganese catalyst
JPH07177B2 (en) * 1984-10-05 1995-01-11 川崎重工業株式会社 Method for producing catalyst for methanol steam reforming
FR2572380B2 (en) * 1984-10-30 1990-05-04 Catalysts Chemical Europ METHANOL REFORMING PROCESS AND IMPLEMENTING DEVICE
JPS61197401A (en) * 1985-02-21 1986-09-01 Mitsubishi Kakoki Kaisha Ltd Catalytic decomposition of methanol
DE3528858C2 (en) * 1985-08-12 1997-01-23 Caloric Anlagenbau Gmbh Process and plant for the production of synthesis gas by splitting hydrocarbons
GB8521953D0 (en) * 1985-09-04 1985-10-09 Johnson Matthey Plc Catalytic hydrogen generator
FR2622563B1 (en) * 1987-10-29 1990-02-16 Azote & Prod Chim PROCESS FOR REFORMING IMPURE METHANOL AND IMPLEMENTING DEVICE
JPH07116517A (en) * 1993-10-29 1995-05-09 Takeshi Masumoto Methanol reforming catalyst, its production and methanol reforming method
US6583084B2 (en) 2000-07-18 2003-06-24 Mitsui Chemicals, Inc. Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JP2002079101A (en) * 2000-09-08 2002-03-19 Hiroshima Industrial Technology Organization Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP4199593B2 (en) * 2003-05-26 2008-12-17 本田技研工業株式会社 Pure hydrogen production equipment
CN101346302B (en) * 2005-12-21 2013-07-10 维仁特公司 Catalysts and methods for reforming oxygenated compounds
UA102056C2 (en) * 2006-03-24 2013-06-10 Висконсин Алумни Рисерч Фаундейшн Process for biofuel production integrating heat from carbon-carbon bond-forming reaction for initialization of biomass gasification reaction
CN100420517C (en) * 2006-05-26 2008-09-24 西南化工研究设计院 Reduction method for copper-radic catalyst for reforming methanol vapour to produce hydrogen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS52156194A (en) * 1976-06-22 1977-12-26 Nippon Soken Catalysts for reforming methyl alchol
JPS54124003A (en) * 1978-03-04 1979-09-26 Metallgesellschaft Ag Production of fuel gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179500A (en) * 1961-04-24 1965-04-20 Thompson Ramo Wooldridge Inc Hydrogen generation and purification system
DE1667721A1 (en) * 1967-12-15 1971-06-24 Siemens Ag Process for the production of hydrogen
US3469944A (en) * 1968-05-13 1969-09-30 Joseph P Bocard Process and apparatus for the manufacture of hydrogen for fuel cells
DE2220617A1 (en) * 1972-04-27 1973-11-15 Metallgesellschaft Ag METHOD FOR PRODUCTION OF HYDROGEN
AT372669B (en) * 1976-09-13 1983-11-10 Metallgesellschaft Ag METHOD FOR GENERATING A METHANE-CONCERNING GAS
DE2641113C2 (en) * 1976-09-13 1982-07-22 Metallgesellschaft Ag, 6000 Frankfurt Process for generating a methane-containing heating gas through the catalytic conversion of methanol with water vapor
DE2711991B2 (en) * 1977-03-18 1980-10-23 Caloric Gesellschaft Fuer Apparatebau Mbh, 8032 Graefelfing Process for the direct production of a gas mixture consisting of hydrogen and carbon monoxide
EP0021736B1 (en) * 1979-06-27 1985-12-04 Imperial Chemical Industries Plc Catalytic process involving carbon monoxide and hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS52156194A (en) * 1976-06-22 1977-12-26 Nippon Soken Catalysts for reforming methyl alchol
JPS54124003A (en) * 1978-03-04 1979-09-26 Metallgesellschaft Ag Production of fuel gas

Also Published As

Publication number Publication date
FR2490615A1 (en) 1982-03-26
BE884720A (en) 1981-02-11
FR2490615B1 (en) 1985-10-11
JPS5756302A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
JPS6243921B2 (en)
US4110359A (en) Production of cleaned and purified synthesis gas and carbon monoxide
US4081253A (en) Production of purified synthesis gas and carbon monoxide
AU742314B2 (en) Steam reforming
US4367206A (en) Method for producing methanol and ammonia
JP5677659B2 (en) Integrated gas purifier
JP5253443B2 (en) Method for converting LPG and CH4 to syngas and high value products
US6875411B2 (en) Process for the production of hydrogen
EP0049967A1 (en) Ammonia production process
JP2001507017A (en) Methanol production method and plant
GB2215345A (en) Production of heavier hydrocarbons from gaseous hydrocarbons
JPS5953245B2 (en) Methane gas
JPS5813482B2 (en) I'm going to have a good time with this.
JP2001510140A (en) Method for producing methanol and hydrogen
EA006869B1 (en) Production of hydrocarbons
EP2462088A1 (en) Process for the production of methane
RU2404117C2 (en) Method of preparing mixture of carbon monoxide and hydrogen
CN107223114A (en) The method for manufacturing ammonia
JPH0322856B2 (en)
CA2004218A1 (en) Production of methanol from hydrocarbonaceous feedstock
JPS63162502A (en) Manufacture of hydrogen by steam catalytic reforming of methanol
US5712313A (en) Process for carrying out chemical equilibrium reactions
NO159442B (en) PROCEDURE FOR THE PREPARATION OF METHANOL OUT OF A COMPLEMENTARY GAS FLOW CONSISTING OF A HYDROGEN AND CARBON MONOXIDE MIXTURE.
US4129523A (en) Catalysts containing active metallic copper
GB1572071A (en) Production of purified synthesis gas and carbon monoxide