JPH0549462B2 - - Google Patents

Info

Publication number
JPH0549462B2
JPH0549462B2 JP1009641A JP964189A JPH0549462B2 JP H0549462 B2 JPH0549462 B2 JP H0549462B2 JP 1009641 A JP1009641 A JP 1009641A JP 964189 A JP964189 A JP 964189A JP H0549462 B2 JPH0549462 B2 JP H0549462B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
melting point
net
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1009641A
Other languages
Japanese (ja)
Other versions
JPH02190327A (en
Inventor
Hirotoshi Ishikawa
Yasuhiro Yabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP1009641A priority Critical patent/JPH02190327A/en
Publication of JPH02190327A publication Critical patent/JPH02190327A/en
Publication of JPH0549462B2 publication Critical patent/JPH0549462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不織布とネツト状物とが熱圧着され
て成る建築用と結露防止材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an architectural and dew condensation prevention material made of a nonwoven fabric and a net-like material bonded together by thermocompression.

〔従来の技術〕[Conventional technology]

近年の建築物特に住宅は密閉性が高くなり、壁
に結露が生じカビが生えて不衛生であるばかりで
なく建物の耐用年数を短かくするので、結露の生
じにくい壁装材として通気性の結露防止材が提案
されている。特に最近では、室内側に結露防止材
層を、室外側にこの結露防止材層を通過してきた
室内の水蒸気を壁外に抜けさせる通気路を有する
構造の壁が施工されるようになつてきた。このよ
うな結露防止材には、水滴を通さず水蒸気のみを
優れて通過させる通気性が要求されている。この
要求を満足し且つ実用に供するには、孔径約
100μm以下の微孔性で且つ施工し易いシート状
のものである必要がある。
In recent years, buildings, especially houses, have become highly airtight, causing condensation on the walls and mold growth, which is not only unsanitary but also shortens the useful life of the building. Anti-condensation materials have been proposed. Particularly recently, walls have been constructed that have a layer of anti-condensation material on the indoor side and a ventilation path on the outside that allows indoor water vapor that has passed through the anti-condensation material layer to escape outside the wall. . Such dew condensation prevention materials are required to have excellent air permeability that allows only water vapor to pass through without allowing water droplets to pass through. In order to satisfy this requirement and to put it into practical use, the pore diameter must be approximately
It needs to be in the form of a sheet that has microporosity of 100 μm or less and is easy to install.

従来の結露防止材として、壁紙用基材の片面に
微粒子状塩化ビニルをコーテイングした後に加熱
して微粒子を溶着したもの(特開昭59−88998
号)、また発泡塩化ビニル不織布シートを積層し
たもの(特開昭59−134739号)等が知られてい
る。
As a conventional dew condensation prevention material, one side of a wallpaper base material is coated with finely divided vinyl chloride and then heated to weld the fine particles (Japanese Patent Laid-Open No. 59-88998).
(No.), and one in which foamed vinyl chloride nonwoven fabric sheets are laminated (Japanese Patent Application Laid-open No. 134739/1983) are known.

しかしながら、前者(特開昭59−88998号)に
おいては、微粒子状塩化ビニルを水、可塑剤等に
分散させた液をコーテイングするので、コーテイ
ング層に気泡が混入したり、加熱時にクラツキン
グが発生したりして細孔径が不均一となり易い。
また、後者(特開昭59−134739号)においては、
発泡剤を混合するので発泡時にセルが凝集して大
きなセルが発生するという欠点があつた。
However, in the former method (Japanese Unexamined Patent Publication No. 59-88998), since the coating is performed using a liquid in which finely divided vinyl chloride is dispersed in water, plasticizer, etc., air bubbles may be mixed into the coating layer and cracking may occur during heating. pore size tends to become non-uniform.
In addition, in the latter (Japanese Patent Application Laid-Open No. 59-134739),
Since a foaming agent is mixed, there is a drawback that cells aggregate during foaming, resulting in large cells.

また、不織布単独や不織布及びネツト状物から
成る積層布を使用した結露防止材又は補強不織布
として次のような従来技術があつた。すなわち、
前者としては繊度約1d/f以下のメルトブロー
法不織布単独からなる結露防止材が、また後者と
しては、熱接着性複合繊維からなるウエブに熱接
着性複合モノフイラメントからなるネツトを積層
しその両方を熱接着することにより補強した不織
布(特開昭62−215057)等があつた。
In addition, the following prior art has been used as a condensation prevention material or a reinforced nonwoven fabric using a nonwoven fabric alone or a laminated fabric consisting of a nonwoven fabric and a net-like material. That is,
The former is an anti-condensation material made solely of a melt-blown nonwoven fabric with a fineness of about 1 d/f or less, and the latter is a web made of heat-adhesive composite fibers laminated with a net made of heat-adhesive composite monofilament. Non-woven fabrics reinforced by thermal bonding (Japanese Patent Application Laid-Open No. 62-215057) were available.

上記メルトブロー法不織布単独から成る結露防
止材は微孔性ではあるが強度が低すぎる。また、
上記補強した不織布は不織布強度の改善は充分で
あり施工し易いが、約1.2d/f以上の大繊度繊維
をウエブとして使用しているので、微孔性ではな
くて透水性となるという欠点があつた。
Although the dew condensation prevention material made of the melt-blown nonwoven fabric alone is microporous, its strength is too low. Also,
The above-mentioned reinforced nonwoven fabric has sufficient improvement in nonwoven fabric strength and is easy to install, but since it uses large fibers with a fineness of about 1.2 d/f or more as the web, it has the disadvantage that it is not microporous but water permeable. It was hot.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来技術の欠点を解決し、微孔
性で且つ強度が大きくて施工し易く、熱成形可能
な結露防止材を構成することを課題とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to construct a dew condensation prevention material that is microporous, has high strength, is easy to construct, and can be thermoformed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、結露防止材を鋭意検討した結
果、本発明を完成したものである。
The inventors of the present invention completed the present invention as a result of intensive studies on dew condensation prevention materials.

即ち本発明は、単糸繊度0.002〜1.2デニールの
熱可塑性樹脂繊維から成る不織布(以下、マイク
ロフアイバー不織布と言うことがある)と、上記
熱可塑性樹脂繊維の融点よりも15℃以上に低い融
点を有する熱可塑性樹脂を熱接着性成分とする熱
接着性繊維を30重量%以上含有する糸から成るネ
ツト状物とが積層された状態で加熱圧着された積
層布であつて、且つ積層布の厚さが0.1mm〜2mm、
剛軟度が10cm以上、空隙率が50〜98%、破断強度
が6000g/5cm以上、透湿度500g/m2・24Hr以
上の各特性を有する結露防止材である。上記にお
いて積層構造は、ネツト状物の片面または両面に
マイクロフアイバー不織布が積層された場合の
他、それぞれ2以上の両者が交互に積層された場
合も含む。
That is, the present invention provides a nonwoven fabric made of thermoplastic resin fibers with a single filament fineness of 0.002 to 1.2 deniers (hereinafter sometimes referred to as microfiber nonwoven fabric), and a nonwoven fabric with a melting point that is 15° C. or more lower than the melting point of the thermoplastic resin fibers. The laminated cloth is a laminated cloth in which a net-like material consisting of yarn containing 30% by weight or more of heat-adhesive fibers having a thermoplastic resin as a heat-adhesive component is laminated and bonded under heat and pressure, and the thickness of the laminated cloth is The length is 0.1mm~2mm,
This anti-condensation material has properties such as bending resistance of 10 cm or more, porosity of 50 to 98%, breaking strength of 6000 g/5 cm or more, and moisture permeability of 500 g/m 2 24 hours or more. In the above, the laminated structure includes not only a case in which microfiber nonwoven fabrics are laminated on one or both sides of a net-like object, but also a case in which two or more microfiber nonwoven fabrics are laminated alternately.

本発明に使用されるマイクロフアイバー不織布
は特開昭50−46972号に記載のようなメルトブロ
ー紡糸方法で製造された単糸繊度0.002〜1.2デニ
ールの熱可塑性樹脂繊維から成つている。単糸繊
度が1.2デニールを超える場合には、不織布の空
隙率を50%以下の高密状態としても平均孔径が
100μm以上となつて微孔性に劣り、逆に0.002デ
ニール未満の場合には、不織布の空隙率を98%以
上の低密状態としても通気性に劣る。上記熱可塑
性樹脂繊維の樹脂の種類としては、ポリエステル
系、ポリアミド系、ポリオレフイン系等の樹脂が
示される。これらの熱可塑性樹脂繊維から成る繊
維は、それぞれ特有の融点を持つている。この融
点よりも低い温度ではその熱可塑性繊維は固状を
呈しており、従つてマイクロフアイバー不織布の
構造は安定している。
The microfiber nonwoven fabric used in the present invention is composed of thermoplastic resin fibers having a single filament fineness of 0.002 to 1.2 deniers and manufactured by a melt blow spinning method as described in JP-A-50-46972. When the single fiber fineness exceeds 1.2 denier, the average pore size will be
When the porosity is 100 μm or more, the microporosity is poor, and conversely, when the denier is less than 0.002 denier, the nonwoven fabric has poor air permeability even if the porosity of the nonwoven fabric is in a low density state of 98% or more. Examples of the type of resin for the thermoplastic resin fiber include polyester, polyamide, and polyolefin resins. Each fiber made of these thermoplastic resin fibers has a unique melting point. At temperatures below this melting point, the thermoplastic fibers are solid and the structure of the microfiber nonwoven fabric is therefore stable.

ネツト状物は、熱接着性繊維を30重量%以上含
有する糸(ネツト構成糸と言うことがある)を編
織することによりネツト状物にしたものである。
ネツト構成糸は種々の形態のもの、例えば、紡績
糸、マルチフイラメント、モノフイラメント、等
で良く、その繊度は約100〜2000デニールが適当
である。ネツト構成糸中の熱接着性繊維の含有率
が30重量%未満ではマイクロフアイバー不織布と
の熱接着力が不足するので、結露紡糸材の剛性、
強度等を高めてその取扱いや施工を容易なように
改善することが出来ない。
The net-like material is made into a net-like material by knitting and weaving threads containing 30% by weight or more of heat-adhesive fibers (sometimes referred to as "net constituent threads").
The yarns constituting the net may be in various forms, such as spun yarn, multifilament, monofilament, etc., and the appropriate fineness is about 100 to 2000 deniers. If the content of thermoadhesive fibers in the net constituent yarns is less than 30% by weight, the thermal adhesion to the microfiber nonwoven fabric will be insufficient, so the stiffness of the dew condensation spun material,
It is not possible to improve the handling and construction by increasing the strength etc.

ネツト構成糸に含有される熱接着性繊維には熱
接着性成分単独から成る均質繊維と、熱接着性成
分と他の成分とから成る複合繊維とがある。前者
としては、低融点ポリエステル、ポリオレフイン
等の熱可塑性樹脂の各単独又はその2以上の混合
物を主成分とする均質繊維が示される。また、後
者を更に説明すると、融点差が15℃以上の2成分
からなり熱接着性成分となる低融点成分が繊維表
面の少くとも一部を形成している鞘芯型または並
列型の複合繊維であり、上記2成分の組合わせと
しては、(ポリエステル/ポリオレフイン)、(ポ
リアミド/ポリオレフイン)、(ポリオレフイン/
ポリオレフイン)等が例示される。これらの熱接
着性繊維の熱接着性成分はそれぞれ特有の融点を
持つており、この融点以上に加熱されて他の物体
と熱接着が可能である。
The heat-adhesive fibers contained in the net constituent yarns include homogeneous fibers consisting of a heat-adhesive component alone and composite fibers consisting of a heat-adhesive component and other components. The former includes homogeneous fibers whose main component is a thermoplastic resin such as low melting point polyester or polyolefin, or a mixture of two or more thereof. To further explain the latter, a sheath-core type or parallel type composite fiber is composed of two components with a melting point difference of 15°C or more, and a low melting point component that is a thermal adhesive component forms at least a part of the fiber surface. The combinations of the above two components include (polyester/polyolefin), (polyamide/polyolefin), (polyolefin/
Polyolefin) etc. are exemplified. The heat-adhesive components of these heat-adhesive fibers each have a unique melting point, and can be heated above this melting point to thermally bond to other objects.

ここで注意すべきことは、マイクロフアイバー
不織布を構成する熱可塑性樹脂繊維とネツト構成
糸に含有される熱接着性繊維の熱接着性成分とは
後者の融点が前者の融点よりも15℃以上低いよう
に組み合わせる必要のあることである。その理由
は、本発明に係る結露防止材は、後記するよう
に、マイクロフアイバー不織布とネツト状物とを
積層した状態で加熱圧着し、そのときネツト構成
糸に含有されている熱接着性繊維の熱接着性成分
が溶融状態となつていて接着させることによつて
両者を一体化させたものであるが、この加熱圧着
後もマイクロフアイバー不織布が微孔性等の構造
を維持していることが不可欠であり、そのために
上記熱接着性成分の融点をマイクロフアイバー不
織布を構成している熱可塑性樹脂繊維の融点より
も15℃以上好ましくは20℃以上低いように選定す
るのである。
What should be noted here is that the melting point of the thermoplastic resin fibers constituting the microfiber nonwoven fabric and the thermoadhesive component of the thermoadhesive fibers contained in the net constituent yarns is 15°C or more lower than the melting point of the former. It is necessary to combine them in this way. The reason for this is that, as described later, the dew condensation prevention material of the present invention is produced by heat-pressing a microfiber nonwoven fabric and a net-like material in a laminated state, and at that time, the heat-adhesive fibers contained in the net constituent yarns are bonded together. The heat-adhesive component is in a molten state and the two are integrated by adhesion, but it is clear that the microfiber nonwoven fabric maintains its microporous structure even after heat-pressing. Therefore, the melting point of the thermoadhesive component is selected to be 15°C or more, preferably 20°C or more lower than the melting point of the thermoplastic resin fibers constituting the microfiber nonwoven fabric.

このような組合わせを熱可塑性樹脂名で例示す
ると、ポリエステルと低融点ポリエステルまたは
ポリアミドまたはポリオレフイン、ポリアミドと
低融点ポリアミドまたはポリエステル、ポリオレ
フインと15℃以上の低融点のポリオレフイン等が
挙げられる。
Examples of such combinations in terms of thermoplastic resin names include polyester and low melting point polyester, polyamide or polyolefin, polyamide and low melting point polyamide or polyester, polyolefin and polyolefin with a low melting point of 15° C. or higher.

上記のように熱可塑性樹脂を組み合わせ、加熱
圧着する温度を両者の融点間(低い方の融点を含
む)に採ることによつて、マイクロフアイバー不
織布の構造は維持されるが、それと共にネツト状
物にもその形態を維持させる必要があり、そのた
めには、熱接着性繊維が複合繊維である場合はネ
ツト構成糸を構成する繊維の全部(モノフイラメ
ントの場合はそれ自体)が熱接着性繊維であつて
も差し支えないが、熱接着性繊維が均質繊維の場
合はネツト構成糸中の含有率を多くとも80%と
し、残余は加熱圧着温度においても全く溶融しな
い他の繊維が混合されている。
As mentioned above, by combining thermoplastic resins and applying heat and pressure at a temperature between the melting points of the two (including the lower melting point), the structure of the microfiber nonwoven fabric is maintained, but at the same time, the structure of the microfiber nonwoven fabric is maintained. It is necessary to maintain its shape, and for this purpose, if the heat-adhesive fibers are composite fibers, all of the fibers that make up the net (or themselves in the case of monofilament) must be heat-adhesive fibers. If the thermobondable fiber is a homogeneous fiber, the content in the net constituent threads should be at most 80%, and the remainder is mixed with other fibers that do not melt at all even at the heat-pressing temperature.

本発明に係る結露防止材は、上述した如く、マ
イクロフアイバー不織布とネツト状物とを積層し
た状態でマイクロフアイバー不織布を構成する熱
可塑性樹脂繊維の融点よりも低くネツト構成糸に
含有されている熱接着性繊維の、熱接着性成分の
融点以上に加熱圧着することにより、ネツト構成
糸中の溶融状態となつた熱接着性成分が多数の個
所でマイクロフアイバー不織布中にその厚さ方向
に侵入してマイクロフアイバーを構成している熱
可塑性樹脂繊維に熱接着してマイクロフアイバー
不織布とネツト状物とが一体化した状態で得られ
るのである。
As mentioned above, the dew condensation prevention material according to the present invention, in a state in which the microfiber nonwoven fabric and the net-like material are laminated, has a temperature lower than the melting point of the thermoplastic resin fibers constituting the microfiber nonwoven fabric. By heat-pressing the adhesive fibers to a temperature higher than the melting point of the heat-adhesive component, the molten heat-adhesive component in the threads of the net penetrates into the microfiber nonwoven fabric in the thickness direction at many locations. The microfiber nonwoven fabric and the net-like material are obtained in an integrated state by thermally adhering them to the thermoplastic resin fibers constituting the microfibers.

ネツト状物とマイクロフアイバー不織布との熱
圧着の程度は、加熱温度、圧力等の加熱圧着条件
を上記範囲から選ぶことにより加減できる。加熱
圧着は既存の各種装置例えば熱カレンダロールや
熱プレスによつてよい。カレンダーロールによる
場合の一般的に好ましい熱圧着条件の例は、マイ
クロフアイバー不織布を構成する繊維がポリエス
テル繊維またはポリプロピレン繊維でネツト構成
糸に含有される熱接着性繊維がポリプロピレン/
ポリエチレン複合モノフイラメントの場合、ロー
ル温度が約120〜140℃、線圧が約2〜120Kg/cm
である。
The degree of thermocompression bonding between the net-like material and the microfiber nonwoven fabric can be adjusted by selecting thermocompression bonding conditions such as heating temperature and pressure from the above ranges. The thermocompression bonding may be performed using various existing devices such as a hot calender roll or a hot press. An example of generally preferable thermocompression bonding conditions when using a calendar roll is that the fibers constituting the microfiber nonwoven fabric are polyester fibers or polypropylene fibers, and the thermoadhesive fibers contained in the net constituent yarns are polypropylene/polypropylene fibers.
For polyethylene composite monofilament, the roll temperature is approximately 120-140℃ and the linear pressure is approximately 2-120Kg/cm.
It is.

マイクロフアインバー不織布とネツト状物とが
上記の如く一体に構成されたことにより、両者の
結合は非常に強固なものとなつて強度は増大し、
曲げによつても両者は分離はしないから熱成形し
易く、そして不織布としてメルトブロー紡糸方法
で製造される単糸デニール0.002〜1.2デニールの
熱可塑性樹脂繊維から成る優れた微孔性はそのま
ま維持されたものとなつた。更に数多くの試験に
より、取り扱い易く従つて施工もし易く強度も大
きなものとするには、結露防止材全体として厚さ
が0.1mm〜2mm、剛軟度が10cm以上、空隙率が50
〜98%、破断強度が6000g/5cm以上、透湿度が
500g/m2・24Hr以上の特性を有するものが最良
であることが判つたのである。特性が上記以外で
あると、破断強度が低すぎたり剛性が不足したり
透湿性が不足したりするので、本発明の課題が達
成されないのである。
By integrating the microfiber invar nonwoven fabric and the net-like material as described above, the bond between the two becomes extremely strong, increasing the strength.
Since the two do not separate even when bent, it is easy to thermoform, and the excellent microporosity of the nonwoven fabric, which is made of single-filament thermoplastic resin fibers with a denier of 0.002 to 1.2 denier, is maintained using the melt blow spinning method. It became a thing. Further, numerous tests have shown that in order to be easy to handle, easy to install, and have great strength, the overall thickness of the condensation prevention material must be 0.1 mm to 2 mm, the bending resistance must be 10 cm or more, and the porosity must be 50 mm.
~98%, breaking strength over 6000g/5cm, moisture permeability
It was found that the best material was one with a property of 500 g/m 2 ·24 Hr or more. If the properties are other than the above, the object of the present invention cannot be achieved because the breaking strength is too low, the rigidity is insufficient, or the moisture permeability is insufficient.

〔実施例〕〔Example〕

以下、実施例により本発明を更に具体的に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

物性値等の測定方法は以下の通りである。 The method for measuring physical property values, etc. is as follows.

剛軟度:JIS−L−1085(不織布しん地試験方法)
に記載の剛軟度の測定方法(A法)に準じた。
測定対象物の縦、横各方向に2cm×15cmの試験
片を5枚づつ採取しこれら5個の測定の平均値
を採つた(単位mm)。
Bending resistance: JIS-L-1085 (Nonwoven fabric stain test method)
The method for measuring bending resistance (Method A) described in .
Five test pieces of 2 cm x 15 cm were taken in each of the vertical and horizontal directions of the object to be measured, and the average value of these five measurements was taken (unit: mm).

強度:JIS−L−1085の引張強さ及び伸び率試験
方法に準じた。測定対象物の縦、横各方向に5
cm×15cmの試験片を5枚づつ採取し、自記型引
張試験機を用い、試長10cm、引張速度10cm/分
の条件、破断強度(Kg/5cm)及び破断伸度
(%)を測定し、各5枚の平均値を採つた。
Strength: According to JIS-L-1085 tensile strength and elongation test method. 5 in each direction, vertically and horizontally of the object to be measured.
Five cm x 15 cm test pieces were taken, and using a self-recording tensile tester, the breaking strength (Kg/5 cm) and breaking elongation (%) were measured using a test length of 10 cm and a tensile speed of 10 cm/min. , the average value of each 5 sheets was taken.

透湿度:JIS−Z−208に準じ、温度30℃、相対湿
度90%の条件で測定した。
Moisture permeability: Measured according to JIS-Z-208 at a temperature of 30°C and a relative humidity of 90%.

平均孔径:ASTM F316−70のメンブレンフイル
ターの孔径測定方法に準じた。
Average pore diameter: According to ASTM F316-70 membrane filter pore diameter measurement method.

空隙率:下記の式より求めた。Porosity: Calculated from the following formula.

空隙率=(V−W/ρ/V)×100(%) ここで、 Vは不織布1m2の体積(ml)、 Wは不織布の目付(g/m2)、 ρはマイクロフアイバー不織布の繊維密度、 をそれぞれ示す。 Porosity = (V-W/ρ/V) x 100 (%) Where, V is the volume of 1 m 2 of non-woven fabric (ml), W is the basis weight of non-woven fabric (g/m 2 ), and ρ is the fiber of microfiber non-woven fabric. The density and are respectively shown.

実施例 1 マイクロフアイバー不織布として、メルトブロ
ー法により製造した単糸繊度が0.03デニールのポ
リプロピレン繊維(融点168℃)を熱可塑性樹脂
繊維として成る不織布を用いた。この不織布は、
平均孔径が31μm、目付が25g/m2、厚さが0.23
mm、空隙率が88%、剛軟度の縦が28mmで横が26
mm、強度(縦)が1020g/5cm、伸度が32%であ
つた。ネツト状物として、、次記する複合モノフ
イラメントを用いて経、緯密度共17本/25mmで平
織に製織し、複合モノフイラメント同士の交差部
を熱接着した目付45.6g/m2のものを用いた。上
記複合モノフイラメントは、芯部がポリプロピレ
ン(融点169℃)、鞘部が熱接着性成分としての高
密度ポリエチレン(融点132℃)からそれぞれな
り、複合比(芯鞘の重量比)が1対1、繊度が
300デニール、強度が4.8g/d、伸度が28%の各
物性を有する鞘芯型複合モノフイラメントであつ
た。
Example 1 As a microfiber nonwoven fabric, a nonwoven fabric made of polypropylene fibers (melting point: 168° C.) with a single filament fineness of 0.03 denier manufactured by a melt blow method as thermoplastic resin fibers was used. This nonwoven fabric is
Average pore diameter is 31μm, area weight is 25g/m 2 , thickness is 0.23
mm, porosity is 88%, bending resistance length is 28 mm and width is 26
mm, strength (length) was 1020 g/5 cm, and elongation was 32%. The net-like material was made of the following composite monofilaments, woven into a plain weave with a warp and weft density of 17 threads/25 mm, and the intersections of the composite monofilaments were thermally bonded to have a basis weight of 45.6 g/ m2 . Using. The above composite monofilament has a core made of polypropylene (melting point 169°C) and a sheath made of high-density polyethylene (melting point 132°C) as a thermally adhesive component, with a composite ratio (core-sheath weight ratio) of 1:1. , fineness is
It was a sheath-core type composite monofilament having physical properties of 300 denier, strength of 4.8 g/d, and elongation of 28%.

このようにして得たネツト状物の両側に前記マ
イクロフアイバー不織布を配した3層構造の積層
物とし、これを熱カレンダロールを用いて温度
125℃、線圧44Kg/cm、速度5m/分の条件で加
熱圧着処理した。
A laminate with a three-layer structure in which the microfiber nonwoven fabric was placed on both sides of the net-like product obtained in this way was prepared, and this was heated using a thermal calender roll.
Heat and pressure bonding was carried out under the conditions of 125°C, linear pressure of 44 kg/cm, and speed of 5 m/min.

得られた積層布は、平均孔径が28μm、目付が
94.1g/m2、厚さが0.47mm、剛軟度が縦、横共に
13mm以上、空隙率が78%、強度の縦が36.4Kg/5
cmで横が26.9Kg/5cm、伸度の縦が23.9%で横が
26.9%、透湿度4260g/m2・24Hrであつた。
The obtained laminated fabric has an average pore diameter of 28 μm and a basis weight of
94.1g/m 2 , thickness 0.47mm, bending resistance both vertically and horizontally
13mm or more, porosity 78%, vertical strength 36.4Kg/5
In cm, the width is 26.9Kg/5cm, the elongation length is 23.9%, and the width is
The moisture permeability was 26.9% and the moisture permeability was 4260 g/m 2 for 24 hours.

この積層布は種々な形状に熱成形することが出
来て施工し易く強度も大で、しかも微孔性を保持
しているので結露防止材として優れたものであつ
た。
This laminated cloth can be thermoformed into various shapes, is easy to construct, has high strength, and maintains microporosity, making it an excellent material for preventing condensation.

実施例 2 ネツト状物として、複合モノフイラメントの代
わりに次記する紡績糸を用いた以外は実施例1と
同様に製織し交差部を熱接着した目付34g/m2
ネツト状物を用いた。上記紡績糸は、熱接着性繊
維として芯部がポリエステル(融点256℃)で鞘
部が熱接着性成分としての高密度ポリエチレン
(融点132℃)からなり、複合比が1対1、繊度が
3d/f(フイラメント当りデニール)、強度が4.5
g/d、伸度が32%の物性を有する鞘芯型複合繊
維のステープル繊維を70重量%と、繊度が2.5d/
f、強度が4.9g/d、伸度が26%のポリエステ
ルステープル繊維を30重量%とを混合し、これを
紡績して得た綿番手23番の糸であつた。
Example 2 A net-like article with a basis weight of 34 g/m 2 was used as a net-like article, which was woven in the same manner as in Example 1 except that the following spun yarn was used instead of the composite monofilament, and the intersections were thermally bonded. . The spun yarn has a core made of polyester (melting point 256°C) as a heat-adhesive fiber and a sheath made of high-density polyethylene (melting point 132°C) as a heat-adhesive component, with a composite ratio of 1:1 and fineness.
3d/f (denier per filament), strength 4.5
g/d, elongation of 32%, sheath-core type composite fiber staple fiber with 70% by weight and fineness of 2.5d/d/d.
f, a yarn of cotton count No. 23 obtained by mixing 30% by weight of polyester staple fibers with a strength of 4.9 g/d and an elongation of 26% and spinning the mixture.

このようにして得たネツト状物と実施例1で用
いたマイクロフアイバー不織布と同じものを使用
して実施例1と同様に3層構造の積層物とし、こ
れを温度130℃、線圧19Kg/cm、速度3m/分の
条件で熱カレンダロールにより加熱圧着処理し
た。
Using the net-like material obtained in this way and the same microfiber nonwoven fabric used in Example 1, a laminate with a three-layer structure was made in the same manner as in Example 1. cm and a speed of 3 m/min using a hot calender roll.

得られた積層布は、平均孔径が27μm、目付が
86g/m2、厚さが0.59mm、剛軟度が縦、横共に13
cm以上、空隙率が84%、強度の縦が28.4Kg/5cm
で横が25.5Kg/5cm、伸度の縦が35.2%で横が
25.5%、透湿度が4010g/m2・24Hrであつた。
The obtained laminated fabric has an average pore diameter of 27 μm and a basis weight of
86g/m 2 , thickness 0.59mm, bending resistance both vertically and horizontally 13
cm or more, porosity is 84%, strength length is 28.4Kg/5cm
The width is 25.5Kg/5cm, the elongation length is 35.2%, and the width is 25.5Kg/5cm.
The moisture permeability was 25.5% and the moisture permeability was 4010g/m 2 for 24 hours.

この積層布は実施例1と同様に優れた結露防止
材であつた。
Similar to Example 1, this laminated cloth was an excellent dew condensation prevention material.

実施例 3 マイクロフアイバー不織布として、メルトブロ
ー法により製造した単糸繊度が0.03デニールのポ
リプロピレン繊維(融点168℃)を熱可塑性樹脂
繊維として成る不織布を用いた。この不織布は平
均孔径が29μm、目付が40g/m2、厚さが0.3mm、
空隙率が85.3%、剛軟度の縦が44mmで横が48mm、
強度(縦)が1520g/5cm、伸度が43%であつ
た。
Example 3 As a microfiber nonwoven fabric, a nonwoven fabric made of polypropylene fibers (melting point 168° C.) with a single filament fineness of 0.03 denier manufactured by a melt blowing method as thermoplastic resin fibers was used. This nonwoven fabric has an average pore diameter of 29 μm, a basis weight of 40 g/m 2 , a thickness of 0.3 mm,
The porosity is 85.3%, the bending resistance is 44mm long and 48mm wide.
The strength (length) was 1520 g/5 cm, and the elongation was 43%.

ネツト状物として、次記する複合モノフイラメ
ントを用い平織組織に製織してモノフイラメント
の交差部を熱接着した目付21g/m2のものを用い
た。上記複合モノフイラメントは、芯部がポリプ
ロピレン(融点168℃)から、また鞘部が熱接着
性成分としての高密度ポリエチレン(融点132℃)
からそれぞれなり、複合比が1対1、繊度が
500d/f、強度が5.1g/d、伸度が22%の鞘芯
型複合モノフイラメントであつた。
The net-like material used was a composite monofilament described below woven into a plain weave structure and having a basis weight of 21 g/m 2 by thermally bonding the intersections of the monofilaments. The above composite monofilament has a core made of polypropylene (melting point 168°C) and a sheath made of high-density polyethylene (melting point 132°C) as a heat-adhesive component.
The composite ratio is 1:1 and the fineness is
It was a sheath-core type composite monofilament with a strength of 500 d/f, a strength of 5.1 g/d, and an elongation of 22%.

上記マイクロフアイバー不織布とネツト状物と
を交互に積層して前者が3層と後者が2層との計
5層構造の積層物とし、熱カレンダーにより温度
135℃、線圧52Kg/cm、速度3m/分の条件で加
熱圧着処理した。
The microfiber nonwoven fabric and the net-like material are alternately laminated to form a laminate with a total of 5 layers, 3 layers of the former and 2 layers of the latter.
Heat and pressure bonding was carried out under the conditions of 135°C, linear pressure of 52 kg/cm, and speed of 3 m/min.

得られた積層布は、平均孔径が26μm、目付が
160g/m2、厚さが1mm、剛軟度が縦、横共に13
cm以上、空隙率が82%、強度の縦が39.4Kg/5cm
で横が30.6Kg/5cm、伸度の縦が32.2%で横が
29.6%、透湿度が3640g/m2・24Hrであつた。
The obtained laminated fabric has an average pore diameter of 26 μm and a basis weight of
160g/m 2 , thickness 1mm, bending resistance both vertically and horizontally 13
cm or more, porosity is 82%, strength length is 39.4Kg/5cm
The width is 30.6Kg/5cm, the elongation length is 32.2%, and the width is 30.6Kg/5cm.
The moisture permeability was 29.6%, and the moisture permeability was 3640g/ m2・24Hr.

〔発明の効果〕〔Effect of the invention〕

本発明に係る結露防止材は、不織布と積層させ
るネツト状物に含まれる熱接着性成分の融点を不
織布を構成する熱可塑性樹脂繊維の融点より15℃
以上低く選んで特定の条件下で加熱圧着して成る
積層布であることにより、多数の個所でネツト状
物の熱接着性成分が接着していて且つ不織布全体
の微孔性は維持しているので、微孔性、透湿性、
施工性等に優れており、建物の結露防止材として
用いてカビの発生や建物の早期腐朽の防止に顕著
な効果を有する。
The dew condensation prevention material according to the present invention has a melting point of the thermoadhesive component contained in the net-like material to be laminated with the nonwoven fabric by 15°C below the melting point of the thermoplastic resin fibers constituting the nonwoven fabric.
The laminated fabric is made by heat-pressing under specific conditions with the above-mentioned low temperature selected, so that the heat-adhesive component of the net-like material adheres in many places, and the microporosity of the entire nonwoven fabric is maintained. So microporous, moisture permeable,
It has excellent workability and is used as a dew condensation prevention material in buildings, and has a remarkable effect on preventing the growth of mold and early decay of buildings.

Claims (1)

【特許請求の範囲】[Claims] 1 単糸繊度0.002〜1.2デニールの熱可塑性樹脂
繊維から成る不織布と、上記熱可塑性樹脂繊維の
融点よりも15℃以上に低い融点を有する熱可塑性
樹脂を熱接着性成分とする熱接着性繊維を30重量
%以上含有する糸から成るネツト状物とが積層さ
れた状態で加熱圧着された積層布であつて、且つ
積層布の厚さが0.1mm〜2mm、剛軟度が10cm以上、
空隙率が50〜98%、破断強度が6000g/5cm以
上、透湿度500g/m2・24Hr以上の各特性を有す
ることを特徴とする結露防止材。
1 A nonwoven fabric made of thermoplastic resin fibers with a single filament fineness of 0.002 to 1.2 deniers, and thermoadhesive fibers whose thermoadhesive component is a thermoplastic resin having a melting point lower than the melting point of the thermoplastic resin fibers by 15°C or more. A laminated cloth in which a net-like material consisting of yarn containing 30% by weight or more is laminated and bonded under heat, and the thickness of the laminated cloth is 0.1 mm to 2 mm, and the bending resistance is 10 cm or more,
An anti-condensation material characterized by having a porosity of 50 to 98%, a breaking strength of 6000 g/5 cm or more, and a moisture permeability of 500 g/m 2 ·24 Hr or more.
JP1009641A 1989-01-20 1989-01-20 Material preventing generation of dew drops Granted JPH02190327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009641A JPH02190327A (en) 1989-01-20 1989-01-20 Material preventing generation of dew drops

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009641A JPH02190327A (en) 1989-01-20 1989-01-20 Material preventing generation of dew drops

Publications (2)

Publication Number Publication Date
JPH02190327A JPH02190327A (en) 1990-07-26
JPH0549462B2 true JPH0549462B2 (en) 1993-07-26

Family

ID=11725849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009641A Granted JPH02190327A (en) 1989-01-20 1989-01-20 Material preventing generation of dew drops

Country Status (1)

Country Link
JP (1) JPH02190327A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185776A (en) * 1990-11-16 1992-07-02 Kanbou Plus Kk Moisture condensation-proof sheet and fuse-bonded moisture condensation-proof sheet
JPH06335985A (en) * 1993-05-28 1994-12-06 Nippon Petrochem Co Ltd Warp and weft nonwoven fabric laminate
KR100399151B1 (en) * 2001-04-24 2003-09-26 (주)텍스테크 Combined Fabric of Net Fabric and Non-woven Fabric for Net Lace
JP5851714B2 (en) * 2011-05-11 2016-02-03 帝人株式会社 Fiber reinforced resin molding material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027530A (en) * 1983-07-27 1985-02-12 旭化成株式会社 Air-permeable waterproof cloth
JPS6067142A (en) * 1983-09-22 1985-04-17 旭化成株式会社 Waterproof sheet for building
JPS60110440A (en) * 1983-11-21 1985-06-15 平岡織染株式会社 Non-air-permeable hygroscopic and moisture-dissipating waterproof sheet
JPS60255424A (en) * 1984-05-31 1985-12-17 東洋紡績株式会社 Composite sheet for molding
JPS62215057A (en) * 1986-03-04 1987-09-21 チッソ株式会社 Reinforced nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027530A (en) * 1983-07-27 1985-02-12 旭化成株式会社 Air-permeable waterproof cloth
JPS6067142A (en) * 1983-09-22 1985-04-17 旭化成株式会社 Waterproof sheet for building
JPS60110440A (en) * 1983-11-21 1985-06-15 平岡織染株式会社 Non-air-permeable hygroscopic and moisture-dissipating waterproof sheet
JPS60255424A (en) * 1984-05-31 1985-12-17 東洋紡績株式会社 Composite sheet for molding
JPS62215057A (en) * 1986-03-04 1987-09-21 チッソ株式会社 Reinforced nonwoven fabric

Also Published As

Publication number Publication date
JPH02190327A (en) 1990-07-26

Similar Documents

Publication Publication Date Title
KR101403302B1 (en) Tufted nonwoven and bonded nonwoven
JP3615549B2 (en) Calendered spin bonded / melt blow molded laminate with controlled porosity
US4622259A (en) Nonwoven medical fabric
US4302495A (en) Nonwoven fabric of netting and thermoplastic polymeric microfibers
US4318774A (en) Composite nonwoven web
US9840794B2 (en) Elastic nonwoven fibrous webs and methods of making and using
US4310594A (en) Composite sheet structure
US20150053606A1 (en) Nonwoven sheet, process for producing the same, and filter
CN101460304A (en) Building construction composite having one or more reinforcing scrim layers
MX2008013609A (en) Polymer fiber and nonwoven.
US20100290721A1 (en) Industrial bag having a fluid drainage layer
US20030129910A1 (en) Multiple-layered nonwoven constructs for improved barrier performance
KR0149674B1 (en) Thermally stable, melting-binder-strengthened nonwoven web method for making the same
US5336556A (en) Heat resistant nonwoven fabric and process for producing same
CA3014860A1 (en) Laminate
MXPA06011693A (en) Spun-bonded non-woven made of polymer fibers and use thereof.
JPH0549462B2 (en)
JP3795747B2 (en) Moisture permeable waterproof sheet and wall structure
RU2357028C2 (en) Nonwoven needled material
EP0505568B1 (en) Heat-resistant nonwoven fabric and method of manufacturing said fabric
JPH0976387A (en) Sound-absorbing fiber product
KR20110133179A (en) Polypropylene needle-punching non-woven fabric for an oil-absorber having excellent mechanical strength and manufacturing method thereof
JPH05220313A (en) Filter
JPH07157960A (en) Filament nonwoven fabric having excellent dimensional stability and water-proofing article made thereof
JP2001138425A (en) Waterproof/moisture permeable nonwoven fabric

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees