JP5851714B2 - Fiber reinforced resin molding material - Google Patents

Fiber reinforced resin molding material Download PDF

Info

Publication number
JP5851714B2
JP5851714B2 JP2011106269A JP2011106269A JP5851714B2 JP 5851714 B2 JP5851714 B2 JP 5851714B2 JP 2011106269 A JP2011106269 A JP 2011106269A JP 2011106269 A JP2011106269 A JP 2011106269A JP 5851714 B2 JP5851714 B2 JP 5851714B2
Authority
JP
Japan
Prior art keywords
fiber
resin
molding material
reinforcing fiber
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011106269A
Other languages
Japanese (ja)
Other versions
JP2012236897A (en
Inventor
敬乃 大澤
敬乃 大澤
武 大木
武 大木
克之 萩原
克之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011106269A priority Critical patent/JP5851714B2/en
Publication of JP2012236897A publication Critical patent/JP2012236897A/en
Application granted granted Critical
Publication of JP5851714B2 publication Critical patent/JP5851714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、強化繊維束を一方向に引き揃えた強化繊維を含む繊維強化樹脂成形用材料に関する。なかでも熱可塑性樹脂を含み、常温においても複雑形状への賦形が可能な繊維強化樹脂成形用材料に関する。   The present invention relates to a fiber-reinforced resin molding material including reinforcing fibers in which reinforcing fiber bundles are aligned in one direction. In particular, the present invention relates to a fiber-reinforced resin molding material that includes a thermoplastic resin and can be shaped into a complex shape even at room temperature.

近年、炭素繊維、ガラス繊維、アラミド繊維等の強化繊維材料は、各種のマトリックス樹脂と複合化され、得られる繊維強化プラスチックは種々の分野・用途に広く利用されるようになってきた。熱可塑性樹脂をマトリックスとした場合、複合材料の耐衝撃性が優れ、プリプレグの保存管理が容易で、かつ成形時間が短く、成形コスト低減の可能性もある為、いくつもの中間基材やプリプレグが提案されている。連続繊維強化熱可塑性樹脂成形材料を樹脂の含浸状態で分類するには、樹脂が一旦溶融し、完全に強化繊維間に含浸しているシート状の形態のいわゆる完全含浸タイプのものと樹脂が未溶融の状態で存在している形態のものとに大別できる。   In recent years, reinforcing fiber materials such as carbon fibers, glass fibers, and aramid fibers have been combined with various matrix resins, and the resulting fiber reinforced plastics have been widely used in various fields and applications. When thermoplastic resin is used as a matrix, the composite material has excellent impact resistance, easy prepreg storage management, short molding time, and possible reduction in molding cost. Proposed. In order to classify continuous fiber reinforced thermoplastic resin molding materials by resin impregnation, the resin is once melted and completely impregnated between reinforcing fibers, so-called completely impregnated type and resin not yet used. It can be broadly divided into forms that exist in the molten state.

完全含浸タイプの成形材料は、既に樹脂が繊維間に含浸しているため成形加工工程で樹脂を再含浸する必要性がないため、加熱処理と成形圧力を適正に行うことで比較的短時間に成形品が得られるため高速成形性に優れており、生産性を高めるためには、好都合の材料形態である。しかし、複雑な形状の成形品を得ようよする場合にドレープ性を有さない為に、賦形が困難であり、成形品の形状が比較的単純なものに限定されている傾向がある。一方、このような問題を解決するためにドレープ性を付与した成形材料が開発されている。   Completely impregnated molding materials do not need to be re-impregnated in the molding process because the resin is already impregnated between the fibers, so heat treatment and molding pressure can be performed in a relatively short time. Since a molded product is obtained, it is excellent in high-speed moldability, and is an advantageous material form in order to increase productivity. However, when trying to obtain a molded product having a complicated shape, since it does not have drape, it is difficult to form, and the shape of the molded product tends to be limited to a relatively simple shape. On the other hand, in order to solve such problems, molding materials imparted with drapeability have been developed.

特許文献1ではマトリックス樹脂を繊維化し、強化繊維と混繊した後バインダーで固定する方法が挙げられるが、このような方法では、ドレープ性を有するが、繊維に加工できない樹脂は、マトリックス樹脂として使えないという点で樹脂の種類が限定されるうえ、樹脂を繊維化する必要がある為コスト高を招くという問題点がある。   Patent Document 1 includes a method in which a matrix resin is made into fibers, mixed with reinforcing fibers and then fixed with a binder. In such a method, a resin that has drape properties but cannot be processed into fibers can be used as a matrix resin. In addition, there is a problem in that the type of resin is limited and the cost of the resin increases because it is necessary to fiberize the resin.

非特許文献1では熱可塑性樹脂粉末を付着した強化繊維集合体(繊維束)を加熱処理し、樹脂を半溶融させて強化繊維に付着する方法が挙げられる。このような方法では、ドレープ性を有するが、熱可塑性樹脂が単に半溶融して強化繊維束に付着しているのみであるため、外力による熱可塑性樹脂粉末の脱落を完全にカバーしきれず、樹脂と強化繊維の混合比が変化し、所望の機械特性を有する成形品を得ることは難しい。また、熱可塑性樹脂粉末が強化繊維束を拘束するものではないので、強化繊維束も外力により容易に開繊し、その成形材料の取扱い性に問題が生じる可能性があるという問題点がある。   Non-Patent Document 1 includes a method in which a reinforcing fiber aggregate (fiber bundle) to which a thermoplastic resin powder is adhered is heat-treated, and the resin is semi-melted to adhere to the reinforcing fibers. In such a method, although it has a draping property, since the thermoplastic resin is merely semi-melted and adhered to the reinforcing fiber bundle, it cannot completely cover the dropping of the thermoplastic resin powder due to external force, and the resin It is difficult to obtain a molded product having desired mechanical properties due to a change in the mixing ratio of the reinforcing fiber and the reinforcing fiber. In addition, since the thermoplastic resin powder does not restrain the reinforcing fiber bundle, the reinforcing fiber bundle is also easily opened by an external force, which may cause a problem in the handleability of the molding material.

また任意の切り込みを入れること等で複雑形状への追従性を解決する方法もあるが(特許文献2)、連続繊維を切ることは力学特性や基材製造工程の観点から好ましくない。
また不織布状態の熱可塑性樹脂を強化繊維シートに半含浸させてセミプレグ状態とする方法もあるが(特許文献3)、完全含浸タイプのものよりはドレープ性があるものの、複雑な3次元形状に連続繊維基材を賦形した場合には、形状表面を覆いきれない箇所で突っ張りが、基材が余った箇所でシワが発生するため、高品位な賦形が難しい。
Further, there is a method of solving followability to a complicated shape by making an arbitrary cut (Patent Document 2), but cutting continuous fibers is not preferable from the viewpoint of mechanical properties and substrate manufacturing process.
There is also a method of semi-impregnating a reinforcing fiber sheet with a non-woven thermoplastic resin to form a semi-preg state (Patent Document 3). However, although it is draped rather than a completely impregnated type, it continues in a complicated three-dimensional shape. In the case where the fiber base material is shaped, it is difficult to achieve high-quality shaping because it is stretched in places where the shape surface cannot be covered, but wrinkles are generated in places where the base material remains.

特開平6−322159号公報JP-A-6-322159 特開2010−23449号公報JP 2010-23449 A 特許第4324649号公報Japanese Patent No. 4324649

“VARIABLES AFFECTING THE PHYSICAL PROPERTIES OF CONSOLIDATED FLEXIBLE POWDER−COATED TOWPREGS” D.W.Holty et al. Submitted for publication at the 38th International SAMPE Symposium:May 10−13,1993“VARIABLES AFFECTING THE PHYSICAL PROPERITES OF CONSOLIDATED FLEXIBLE POWDER-COATED TOWPREGS” W. Holty et al. Submitted for publication at the 38th International SAMPE Symposium: May 10-13, 1993

本発明の目的は、複数本の強化繊維束を一方向に引き揃えた強化繊維を含む繊維強化基材でありながら、常温においても賦形性に優れる繊維強化樹脂成形用材料を提供することである。さらに本発明の目的は強化繊維熱可塑性プラスチックの積層体、繊維強化基熱可塑性プラスチックの製造方法を提供することである。   An object of the present invention is to provide a fiber-reinforced resin molding material that is excellent in formability even at room temperature while being a fiber-reinforced base material including reinforcing fibers in which a plurality of reinforcing fiber bundles are aligned in one direction. is there. A further object of the present invention is to provide a laminate of reinforced fiber thermoplastics and a method for producing fiber reinforced base thermoplastics.

本発明者らは強化繊維束を一方向に引き揃えた強化繊維シートの少なくとも一方に、熱可塑性樹脂からなる不織布を当接させ、熱可塑性樹脂のガラス転移温度(Tg)以上融点(Tm)未満の温度域で加圧することにより一体化することにより標記課題を解決できることを見出した。   The present inventors contact a nonwoven fabric made of a thermoplastic resin with at least one of the reinforcing fiber sheets in which the reinforcing fiber bundles are aligned in one direction, and the glass transition temperature (Tg) or higher of the thermoplastic resin is lower than the melting point (Tm). It has been found that the subject can be solved by integrating by pressurizing in the temperature range.

すなわち本発明は強化繊維束を一方向に引き揃えた強化繊維シートの少なくとも一方に、熱可塑性樹脂からなる不織布を当接させ、熱可塑性樹脂のガラス転移温度(Tg)以上融点(Tm)未満の温度域で加圧することにより一体化されたことを特徴とする繊維強化樹脂成形用材料である。   That is, in the present invention, a nonwoven fabric made of a thermoplastic resin is brought into contact with at least one of the reinforcing fiber sheets in which the reinforcing fiber bundles are aligned in one direction, and the glass transition temperature (Tg) or higher of the thermoplastic resin is lower than the melting point (Tm). It is a fiber reinforced resin molding material characterized by being integrated by pressurizing in a temperature range.

本発明により、常温においても複雑形状への賦形が可能であり、製造方法が簡易な一方向繊維強化熱可塑性プラスチック用材料を提供することができる。   According to the present invention, it is possible to provide a material for a unidirectional fiber reinforced thermoplastic plastic that can be shaped into a complex shape even at room temperature and has a simple manufacturing method.

本発明の繊維強化樹脂成形用材料の模式図Schematic diagram of the fiber-reinforced resin molding material of the present invention 実施例1で得られた繊維強化樹脂成形用材料から強化繊維シートを剥がした後の不織布の顕微鏡観察Microscopic observation of the nonwoven fabric after peeling the reinforcing fiber sheet from the fiber-reinforced resin molding material obtained in Example 1 実施例2で得られた繊維強化樹脂成形用材料から強化繊維シートを剥がした後の不織布の顕微鏡観察Microscopic observation of the nonwoven fabric after peeling the reinforcing fiber sheet from the fiber-reinforced resin molding material obtained in Example 2 比較例1で得られた繊維強化樹脂成形用材料から強化繊維シートを剥がした後の不織布の顕微鏡観察Microscopic observation of the nonwoven fabric after peeling the reinforcing fiber sheet from the fiber-reinforced resin molding material obtained in Comparative Example 1

以下に、本発明の実施の形態について順次説明する。
[繊維強化樹脂成形用材料]
本発明の繊維強化樹脂成形用材料は、強化繊維束を一方向に引き揃えた強化繊維シートの少なくとも一方に、熱可塑性樹脂からなる不織布を一体化させた積層体である。得ようとする繊維強化樹脂成形体に合わせて、不織布は強化繊維シートの両面に配しても片面に配しても良い。
繊維強化樹脂成形用材料の目付は、とくに限定はないが、複雑形状への賦形性の点で1〜1000g/m、より好ましくは20〜500g/mであることが好ましい。
Hereinafter, embodiments of the present invention will be sequentially described.
[Fiber-reinforced resin molding material]
The fiber-reinforced resin molding material of the present invention is a laminate in which a nonwoven fabric made of a thermoplastic resin is integrated with at least one of reinforcing fiber sheets in which reinforcing fiber bundles are aligned in one direction. The nonwoven fabric may be arranged on both sides or one side of the reinforcing fiber sheet according to the fiber reinforced resin molded product to be obtained.
Basis weight of the fiber-reinforced resin molding material, particularly but are not, it is preferable 1 to 1000 g / m 2 in terms of formability for complex shapes, and more preferably from 20 to 500 g / m 2.

本発明において強化繊維シートと不織布との一体化とは、接着剤を使用せず、かつマトリックスである熱可塑性樹脂の溶融による接着ではないことを特徴とする。本発明の繊維強化樹脂成形用材料は、熱可塑性樹脂のTg以上Tm未満、好ましくはTg+10度以上Tm−5度以下で強化繊維シートと不織布とを加圧して接着することにより好ましく得ることができる。接着温度は、接着する際の繊維強化樹脂成形用材料の温度であり、例えば加熱ローラーで加圧する場合、加熱ローラーの温度やローラーと繊維強化樹脂成形用材料との接触時間などで適宜制御することができる。   In the present invention, the integration of the reinforcing fiber sheet and the non-woven fabric is characterized in that no adhesive is used and adhesion is not caused by melting of a thermoplastic resin as a matrix. The fiber-reinforced resin molding material of the present invention can be preferably obtained by pressurizing and bonding a reinforcing fiber sheet and a nonwoven fabric at Tg or more and less than Tm, preferably Tg + 10 degrees or more and Tm-5 degrees or less of a thermoplastic resin. . Adhesion temperature is the temperature of the fiber reinforced resin molding material at the time of bonding. For example, when pressurizing with a heating roller, the temperature should be appropriately controlled by the temperature of the heating roller or the contact time between the roller and the fiber reinforced resin molding material. Can do.

加圧機構についてはとくに限定はないがプレスなどを用いてバッチ式で加圧する方法よりもダブルベルトプレスやロールなどを用いて連続的に加圧する方法をとることでより好適に生産できる。例えばカレンダーロールを用いて一体化する場合、ローラーの材質、ローラー温度、ローラーの加圧力、材料のライン速度等の条件をコントロールすることにより一体化が可能である。   Although there is no particular limitation on the pressurizing mechanism, the pressurization mechanism can be produced more suitably by taking a continuous pressurization method using a double belt press, a roll or the like rather than a batch pressurization method using a press or the like. For example, when integrating using a calendar roll, the integration is possible by controlling conditions such as the material of the roller, the roller temperature, the pressing force of the roller, and the line speed of the material.

強化繊維シートには熱可塑性樹脂からなる不織布が溶融含浸していない為、任意の荷重によって、引き剥がすことが可能である。繊維強化樹脂成形材料を繊維長手方向に長さ100mm、幅25mmに切出した試験片を0.1〜10N、より好ましくは0.5〜5Nの力で引き剥がすことが可能な接着状態が望ましい。   Since the nonwoven fabric made of a thermoplastic resin is not melt impregnated in the reinforcing fiber sheet, it can be peeled off by an arbitrary load. It is desirable that the test piece obtained by cutting the fiber reinforced resin molding material 100 mm long and 25 mm wide in the fiber longitudinal direction be peeled off with a force of 0.1 to 10 N, more preferably 0.5 to 5 N.

本発明の繊維強化樹脂成形用材料は、980.67Paの圧力下における透気度が50〜1000(ml/min/cm)であることが好ましい。このようにある程度の空孔率を有する材であることにより、本発明の目的である優れた常温においても複雑形状への賦形が可能となる。本発明の繊維強化樹脂成形用材料の透気度は好ましくは50〜500(ml/min/cm)である。透気度が50(ml/min/cm)未満であると複雑な形状の成形品を得ようよする場合の賦形性がやや劣ったものになる。透気度が1000(ml/min/cm)超であると、成形用材料としてのハンドリング性の点でやや問題となる場合がある。 The fiber-reinforced resin molding material of the present invention preferably has an air permeability of 50 to 1000 (ml / min / cm 2 ) under a pressure of 98.67 Pa. Thus, by using a material having a certain degree of porosity, it is possible to form a complex shape even at an excellent ordinary temperature, which is an object of the present invention. The air permeability of the fiber-reinforced resin molding material of the present invention is preferably 50 to 500 (ml / min / cm 2 ). When the air permeability is less than 50 (ml / min / cm 2 ), the formability in obtaining a molded product having a complicated shape is somewhat inferior. If the air permeability exceeds 1000 (ml / min / cm 2 ), there may be a slight problem in terms of handling properties as a molding material.

本発明の繊維強化樹脂成形用材料は、強化繊維束と直交する方向の引張試験において、下記式(1)で定義される賦形力評価値が、ひずみ10%において0.1〜12m/sの範囲となることが好ましい。より好ましくは賦形力評価値が、ひずみ10%において0.3〜6.5m/sである。
X=F/L/w (1)
(X=賦形力評価値(m/s)、F:引張荷重(N)、L:試料幅(m)、w:成形用材料目付(g/m))
Fiber-reinforced resin molding material of the present invention, in the tensile test in a direction perpendicular to the reinforcing fiber bundle, 0.1~12M shaping force evaluation value defined by the following formula (1) is, at 10% strain 2 / it is preferable that the range of s 2. More preferably, the forming force evaluation value is 0.3 to 6.5 m 2 / s 2 at a strain of 10%.
X = F / L / w (1)
(X = shaped force evaluation value (m 2 / s 2 ), F: tensile load (N), L: sample width (m), w: molding material basis weight (g / m 2 ))

本発明の繊維強化樹脂成形用材料は、繊維強化熱可塑性樹脂複合材料の前駆体として用いることができる。本発明の強化繊維基材は、得ようとする成形体の特性や形状に合わせて積層して用いることができる。この場合に、強化繊維束の引き揃え方向が同方向になるように積層しても、異なる方向になるように積層してもよい。積層方法としては特に限定はないが、本発明の目的を損なわない範囲で、必要に応じて部分的に融着や接着処理をして成型することができる。   The fiber-reinforced resin molding material of the present invention can be used as a precursor of a fiber-reinforced thermoplastic resin composite material. The reinforcing fiber substrate of the present invention can be used by being laminated according to the characteristics and shape of the molded product to be obtained. In this case, the reinforcing fiber bundles may be laminated so that the alignment direction is the same or different. Although there is no limitation in particular as a lamination | stacking method, in the range which does not impair the objective of this invention, it can shape | mold by carrying out a partial melt | fusion or adhesion | attachment processing as needed.

[強化繊維シート]
本発明の繊維強化樹脂成形用材料における強化繊維シートは、強化繊維束を一方向に引き揃えたものである。本発明の強化繊維シートを構成する強化繊維としては、とくに限定はなく、例えばガラス繊維、炭素繊維、スチール繊維(ステンレス繊維)、ボロン繊維、セラミック繊維、玄武岩繊維、炭化珪素繊維などの無機繊維、およびアラミド繊維、ポリエステル繊維、ナイロン繊維などが挙げられる。この中でも、汎用性や取扱い性からガラス繊維、炭素繊維、アラミド繊維が好ましい。
[Reinforced fiber sheet]
The reinforcing fiber sheet in the fiber-reinforced resin molding material of the present invention is obtained by aligning reinforcing fiber bundles in one direction. The reinforcing fiber constituting the reinforcing fiber sheet of the present invention is not particularly limited. For example, inorganic fibers such as glass fiber, carbon fiber, steel fiber (stainless fiber), boron fiber, ceramic fiber, basalt fiber, silicon carbide fiber, And aramid fiber, polyester fiber, nylon fiber and the like. Among these, glass fiber, carbon fiber, and aramid fiber are preferable from the viewpoint of versatility and handleability.

なかでも炭素繊維が好ましく挙げられ、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維も使用することができる。特に、PANを原料としたPAN系炭素繊維が、工業規模における生産性及び機械的特性に優れており好ましい。PAN系炭素繊維は、平均直径5〜10μmのものを使用できる。PAN系炭素繊維は、1000〜50000本の単繊維が繊維束となったものを使用できる。例えば炭素繊維の場合、単位面積あたり、2g以上500g以下、好ましくは、20g以上320g以下の強化繊維束が用いられる。   Of these, carbon fibers are preferred, and any carbon fiber such as polyacrylonitrile (PAN), petroleum / coal pitch, rayon, and lignin can be used. In particular, PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on an industrial scale. PAN-based carbon fibers having an average diameter of 5 to 10 μm can be used. As the PAN-based carbon fiber, a fiber bundle of 1000 to 50000 single fibers can be used. For example, in the case of carbon fiber, a reinforcing fiber bundle of 2 g or more and 500 g or less, preferably 20 g or more and 320 g or less is used per unit area.

強化繊維束を一方向に引き揃える方法は、とくに限定はないが、好ましくは櫛やガイド及び溝ローラー等を使用して、複数本の繊維を引き揃える方法が挙げられる。任意の目付を得られるように、強化繊維束を開繊させたり、オーバーラップさせても良い。強化繊維シートには熱可塑性樹脂を複合させてもよく、強化繊維シートと熱可塑性樹脂との合計重量に対する割合でいうと、強化繊維99.09〜80重量%に対し、熱可塑性樹脂0.01〜20重量%、より好ましくは0.01〜7重量%ある。強化繊維シートの目付は、とくに限定はないが、炭素繊維の場合、含浸性の点で10〜800g/m、より好ましくは10〜320g/mであることが好ましい。 A method for aligning the reinforcing fiber bundles in one direction is not particularly limited, but a method of aligning a plurality of fibers preferably using a comb, a guide, a groove roller, or the like can be given. The reinforcing fiber bundle may be opened or overlapped so as to obtain an arbitrary basis weight. The reinforcing fiber sheet may be combined with a thermoplastic resin, and the ratio of the reinforcing fiber sheet and the thermoplastic resin to the total weight of the reinforcing fiber sheet is 99.09 to 80% by weight of the thermoplastic resin 0.01. -20% by weight, more preferably 0.01-7% by weight. The basis weight of the reinforcing fiber sheet is not particularly limited, but in the case of carbon fiber, it is preferably 10 to 800 g / m 2 , more preferably 10 to 320 g / m 2 in terms of impregnation.

[熱可塑性樹脂からなる不織布]
本発明の繊維強化樹脂成形用材料のマトリックスは熱可塑性樹脂からなる不織布である。不織布は、980.67Paの圧力下における透気度が10〜100000(ml/min/cm)であることが好ましい。より好ましくは透気度が500〜50000(ml/min/cm)である。このような透気度を有する多孔質材料をマトリクスとすることで、常温において複雑形状への賦形が可能な繊維強化樹脂成形用材料となっている。
[Nonwoven fabric made of thermoplastic resin]
The matrix of the fiber-reinforced resin molding material of the present invention is a nonwoven fabric made of a thermoplastic resin. The nonwoven fabric preferably has an air permeability of 10-100,000 (ml / min / cm 2 ) under a pressure of 98.67 Pa. More preferably, the air permeability is 500 to 50000 (ml / min / cm 2 ). By using a porous material having such air permeability as a matrix, it is a fiber reinforced resin molding material that can be shaped into a complex shape at room temperature.

本発明の繊維強化樹脂成形用材料を構成する熱可塑性樹脂からなる不織布を得る方法は、特に限定はないが、乾式法、湿式法、スパンボンド法、スパンレース法、メルトブロー法、エアレイド法、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、水流交絡法、エレクトロスピニング法、フラッシュ紡糸法、トウ開繊法によりなるものなどが挙げられ、以下の特性を持っていれば、特に限定はない。   The method for obtaining the nonwoven fabric made of the thermoplastic resin constituting the fiber reinforced resin molding material of the present invention is not particularly limited, but is a dry method, a wet method, a spunbond method, a spunlace method, a melt blow method, an airlaid method, a chemical method. Examples include a bond method, a thermal bond method, a needle punch method, a hydroentanglement method, an electrospinning method, a flash spinning method, a tow opening method, and the like, and are not particularly limited as long as they have the following characteristics.

不織布の目付は、とくに限定はないが、成型物の繊維含有率及びハンドリングの点で10〜150g/mであることが好ましい。強化繊維シートの目付と不織布の目付比は特に限定はないが、例えば強化繊維が炭素繊維の場合、100に対して10〜1000であることが好ましい。 Although the fabric weight of a nonwoven fabric is not specifically limited, It is preferable that it is 10-150 g / m < 2 > from the point of the fiber content rate of a molding, and handling. The basis weight ratio of the reinforcing fiber sheet to the nonwoven fabric is not particularly limited. For example, when the reinforcing fiber is carbon fiber, the basis weight is preferably 10 to 1000.

不織布の引張破断伸度は複雑形状への追従性の点で1〜200%であることが好ましい。より好ましくは、3〜100%不織布の引張強さは、賦形及びハンドリングの点でひずみ10%までの範囲は50N/mm以下であることが好ましい。不織布を構成する繊維の平均繊維径はとくに限定はないが、好ましくは0.001〜300μm、より好ましくは1〜100μmである。不織布を構成する繊維の平均繊維長ははとくに限定はないが、好ましくは10〜1000mm、より好ましくは30〜500mm、あるいは連続長である。不織布を構成する熱可塑性樹脂としては、とくに限定はないが、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトンポリエーテル等の単量体、共重合体、及びそれら2種以上の混合体が好ましく挙げられる。この中でも、ポリプロピレン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルエーテルケトン樹脂などが望ましい。   The tensile breaking elongation of the nonwoven fabric is preferably 1 to 200% in terms of followability to complex shapes. More preferably, the tensile strength of the 3 to 100% nonwoven fabric is preferably 50 N / mm or less in the range of up to 10% strain in terms of shaping and handling. Although the average fiber diameter of the fiber which comprises a nonwoven fabric does not have limitation in particular, Preferably it is 0.001-300 micrometers, More preferably, it is 1-100 micrometers. The average fiber length of the fibers constituting the nonwoven fabric is not particularly limited, but is preferably 10 to 1000 mm, more preferably 30 to 500 mm, or a continuous length. The thermoplastic resin constituting the nonwoven fabric is not particularly limited, but is vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin. (ABS resin), acrylic resin, methacrylic resin, polystyrene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin , Polyethylene naphthalate resin, polybutylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfate Down resins, polyethersulfone resins, polyimide resins, polyetherimide resins, monomers such as polyether ether ketone polyether, copolymers, and their two or more mixture may be preferably mentioned. Among these, polypropylene resin, polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyether ether ketone resin, and the like are desirable.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
[参考例1]
ディーエスエムジャパンエンジニアリングプラスチックス株式会社製ノバミッド(登録商標)1010C2(Tg47度、Tm225度)を原料とし、メルトブロー法によりPA6不織布を得た。本発明で用いるメルトブロー法は、複数個配列されたオリフィスダイから溶融ポリマーを吐出し、オリフィスダイに隣接して設備した噴射ガス口から高速ガスを噴射せしめて、吐出された溶融ポリマーを細繊維化し、次いで繊維流をコレクタであるコンベヤネット上に捕集して不織布を製造する方法である。得られた不織布は、平均繊維径5μm、平均繊維長:連続繊維、目付け35g/mであった。
Examples are shown below, but the present invention is not limited thereto.
[Reference Example 1]
PA6 non-woven fabric was obtained by a melt blow method using Novamid (registered trademark) 1010C2 (Tg 47 degrees, Tm 225 degrees) manufactured by DM Japan Engineering Plastics. In the melt blow method used in the present invention, molten polymer is discharged from a plurality of arranged orifice dies, high-speed gas is injected from an injection gas port provided adjacent to the orifice die, and the discharged molten polymer is made into fine fibers. Then, the nonwoven fabric is produced by collecting the fiber stream on a conveyor net as a collector. The obtained nonwoven fabric had an average fiber diameter of 5 μm, an average fiber length: continuous fiber, and a basis weight of 35 g / m 2 .

[参考例2]
プライムポリマー株式会社製プライムポリプロ(登録商標)J108M(Tg−20度、Tm170度)を原料とし、参考例1と同様にメルトブロー法によりポリプロピレン不織布を得た。得られた不織布は、平均繊維径:4μm、平均繊維長:連続繊維、目付け35g/mであった。透気度を細孔径分布測定器(パームポロメーター PMI社製)を用いて測定した結果、980.67Paの圧力下で20534(ml/min/cm)であった。
[Reference Example 2]
Prime Polypropylene (registered trademark) J108M (Tg-20 °, Tm 170 °) was used as a raw material, and a polypropylene nonwoven fabric was obtained by the melt blow method in the same manner as in Reference Example 1. The obtained nonwoven fabric had an average fiber diameter: 4 μm, an average fiber length: continuous fiber, and a basis weight of 35 g / m 2 . As a result of measuring the air permeability using a pore size distribution measuring instrument (manufactured by Palm Porometer PMI), it was 20534 (ml / min / cm 2 ) under a pressure of 98.67 Pa.

[実施例1]
引張強度4000MPa、引張弾性率240GPaの炭素繊維糸条(tenax(登録商標)STS40 F13 24K 1600tex、東邦テナックス(株)製)を幅3cmに開繊し、この炭素繊維糸条が略均一に密接して目付53g/mのシート状をなすところの炭素繊維糸条を一方向に引き揃えてなるシート状物にした後、その片面に参考例1で得られたPA6不織布を重ね合わせた(図1参照)。次いで、この積層体を25℃の弾性ローラーと210℃の金属ローラー間に50μmのクリアランスを有するカレンダーロール機を用いて、ライン速度1m/min、接着温度約190℃にて一体化し、目付88g/mの繊維強化樹脂成形用材料(以下基材という)を得た。得られた基材の透気度を細孔径分布測定器(パームポロメーター PMI社製)を用いて測定した結果、980.67Paの圧力下で364(ml/min/cm)であった。次いで、繊維長手方向に、長さ100mm、幅25mmに切出した基材の強化繊維を引き剥がしたところ、1.67Nの力を要した。引き剥がした後の不織布のみを顕微鏡観察した結果を図2に示す。縦筋(3)が多数観察されるが、これは強化繊維シートにおける一方向に引き揃えた繊維の痕跡である。不織布の繊維構造は維持されており、フィルムのように一体化されていなかった。また、得られた基材を強化繊維束と直交する方向に切り出し、JIS−K7127に従って引張試験を実施したところ、歪10%の時の荷重は4.6Nであり、下記式(1)で求めた賦形力評価値は2.09m/sであった。
X=F/L/w (1)
(X=賦形力評価値(m/s)、F:引張荷重(N)、L:試料幅(m)、w:成形用材料目付(g/m))
[Example 1]
A carbon fiber yarn having a tensile strength of 4000 MPa and a tensile elastic modulus of 240 GPa (tenax (registered trademark) STS40 F13 24K 1600 tex, manufactured by Toho Tenax Co., Ltd.) was opened to a width of 3 cm, and the carbon fiber yarn was in close contact with the carbon fiber yarn. Then, the carbon fiber yarns having a basis weight of 53 g / m 2 were formed into a sheet-like product that was aligned in one direction, and the PA6 nonwoven fabric obtained in Reference Example 1 was superimposed on one side (see FIG. 1). Next, this laminate was integrated at a line speed of 1 m / min and an adhesion temperature of about 190 ° C. using a calender roll machine having a clearance of 50 μm between an elastic roller of 25 ° C. and a metal roller of 210 ° C. An m 2 fiber-reinforced resin molding material (hereinafter referred to as a base material) was obtained. As a result of measuring the air permeability of the obtained base material using a pore diameter distribution measuring device (manufactured by Palm Porometer PMI), it was 364 ( ml / min / cm 2 ) under a pressure of 98.67 Pa. Subsequently, when the reinforcing fiber of the base material cut out to a length of 100 mm and a width of 25 mm was peeled off in the fiber longitudinal direction, a force of 1.67 N was required. The result of microscopic observation of only the non-woven fabric after peeling is shown in FIG. Many vertical stripes (3) are observed, which are traces of fibers aligned in one direction in the reinforcing fiber sheet. The fiber structure of the nonwoven fabric was maintained and was not integrated like a film. Moreover, when the obtained base material was cut out in the direction orthogonal to the reinforcing fiber bundle and subjected to a tensile test according to JIS-K7127, the load when the strain was 10% was 4.6 N, which was obtained by the following formula (1). The shaping force evaluation value was 2.09 m 2 / s 2 .
X = F / L / w (1)
(X = shaped force evaluation value (m 2 / s 2 ), F: tensile load (N), L: sample width (m), w: molding material basis weight (g / m 2 ))

[実施例2]
引張り強度4000MPa、引張弾性率240Gpaの炭素繊維糸条(tenax(登録商標)STS40 F13 24K 1600tex、東邦テナックス(株)製)を幅3cmに開繊し、この炭素繊維糸条が略均一に密接して目付53g/mのシート状をなすところの繊維糸条を一方向に引き揃えてなるシート状物にした後、その片面に参考例2で得られたポリプロピレン不織布を重ね合わせた(図1参照)。次いで、この積層体を25℃の弾性ローラーと150度の金属ローラー間に50μmのクリアランスを有するカレンダーロール機にてライン速度5m/min、接着温度約130℃にて一体化し、目付88g/mの基材を得た。得られた基材の透気度を細孔径分布測定器(パームポロメーター PMI社製)を用いて測定した結果、980.67Paの圧力下で165[ml/min/cm]であった。次いで、繊維長手方向に、長さ100mm、幅25mmに切出した基材の強化繊維を引き剥がしたところ、0.74Nの力を要した。引き剥がした後の不織布のみを顕微鏡観察した(図3参照)。縦筋(3)が多数観察されるが、これは一方向に引き揃えた強化繊維シートの痕跡である。不織布の繊維構造は維持されており、フィルムのように一体化されていなかった。また、得られた基材を強化繊維束と直交する方向に切り出し、JIS−K7127に準じて引張試験を実施したところ、歪10%の時の荷重は9.8Nであり、上記式(1)で求めた賦形力評価値は4.45m/sであった。
[Example 2]
A carbon fiber yarn having a tensile strength of 4000 MPa and a tensile elastic modulus of 240 Gpa (tenax (registered trademark) STS40 F13 24K 1600 tex, manufactured by Toho Tenax Co., Ltd.) was opened to a width of 3 cm, and the carbon fiber yarn was intimately and closely contacted. After forming a sheet-like material in which the fiber yarns having a basis weight of 53 g / m 2 are aligned in one direction, the polypropylene nonwoven fabric obtained in Reference Example 2 was superposed on one side (FIG. 1). reference). Next, this laminate was integrated at a line speed of 5 m / min and a bonding temperature of about 130 ° C. with a calender roll machine having a clearance of 50 μm between an elastic roller of 25 ° C. and a metal roller of 150 ° C., and a basis weight of 88 g / m 2. A base material was obtained. It was 165 [ ml / min / cm < 2 >] under the pressure of 980.67 Pa as a result of measuring the air permeability of the obtained base material using the pore diameter distribution measuring device (made by Palm Porometer PMI). Subsequently, when the reinforcing fiber of the base material cut into a length of 100 mm and a width of 25 mm was peeled off in the fiber longitudinal direction, a force of 0.74 N was required. Only the nonwoven fabric after peeling was observed with a microscope (see FIG. 3). Many vertical stripes (3) are observed, which are traces of the reinforcing fiber sheet aligned in one direction. The fiber structure of the nonwoven fabric was maintained and was not integrated like a film. Moreover, when the obtained base material was cut out in the direction orthogonal to the reinforcing fiber bundle and subjected to a tensile test according to JIS-K7127, the load when the strain was 10% was 9.8 N, and the above formula (1) The shaping force evaluation value obtained in step 4 was 4.45 m 2 / s 2 .

[比較例1]
260℃の弾性ローラーと260℃の金属ローラーを用いて圧着し、接着温度約250℃とした以外は実施例1と同様に目付88g/mの基材を得た。次いで、繊維長手方向に、長さ100mm、幅25mmに切出した基材の強化繊維を引き剥がそうとしたところ、PA6不織布が溶融含浸しており、引き剥がすことはできなかった。得られた基材の透気度を細孔径分布測定器(パームポロメーター PMI社製)を用いて測定した結果、980.67Paの圧力下で8.1(ml/min/cm)であった。次いで、得られた基材を顕微鏡観察した。強化繊維間に樹脂は完全には含浸しておらず、未含浸の部分が確認された(図4参照)。また、得られた基材を強化繊維束と直交する方向に切り出し、JIS−K7127に従って引張試験を実施したところ、歪%1で基材が破断した。この時の荷重は3.3Nであった。破断時の荷重を用いて上記式(1)より賦形力評価値を計算すると、1.5m/sであった。
[Comparative Example 1]
A base material having a weight per unit area of 88 g / m 2 was obtained in the same manner as in Example 1 except that pressure bonding was performed using a 260 ° C. elastic roller and a 260 ° C. metal roller, and the adhesion temperature was about 250 ° C. Next, when trying to peel off the reinforcing fibers of the base material cut to a length of 100 mm and a width of 25 mm in the fiber longitudinal direction, the PA6 nonwoven fabric was melt impregnated and could not be peeled off. As a result of measuring the air permeability of the obtained base material using a pore size distribution measuring instrument (manufactured by Palm Porometer PMI), it was 8.1 (ml / min / cm 2 ) under a pressure of 980.67 Pa. It was. Next, the obtained base material was observed with a microscope. The resin was not completely impregnated between the reinforcing fibers, and an unimpregnated portion was confirmed (see FIG. 4). Moreover, when the obtained base material was cut out in the direction orthogonal to the reinforcing fiber bundle and subjected to a tensile test according to JIS-K7127, the base material was broken at a strain of 1. The load at this time was 3.3N. Calculating the shaping force evaluation value from the equation (1) using a load at break was 1.5m 2 / s 2.

1 強化繊維シート
2 熱可塑性樹脂からなる不織布
3 強化繊維シートを剥がした跡
DESCRIPTION OF SYMBOLS 1 Reinforcing fiber sheet 2 Non-woven fabric made of thermoplastic resin 3 Trace of peeling off the reinforcing fiber sheet

Claims (3)

強化繊維束を一方向に引き揃えた強化繊維シートの少なくとも一方に、熱可塑性樹脂からなる不織布を当接させ、熱可塑性樹脂のガラス転移温度(Tg)以上融点(Tm)未満の温度域で加圧することにより一体化されたことを特徴とする繊維強化樹脂成形用材料。   A nonwoven fabric made of a thermoplastic resin is brought into contact with at least one of the reinforcing fiber sheets in which the reinforcing fiber bundles are aligned in one direction, and is applied in a temperature range from the glass transition temperature (Tg) to the melting point (Tm) of the thermoplastic resin. A fiber-reinforced resin molding material characterized by being integrated by pressing. 980.67Paの圧力下における透気度が50〜1000(ml/min/cm)である請求項1記載の繊維強化樹脂成形用材料。 The fiber-reinforced resin molding material according to claim 1, wherein the air permeability under a pressure of 980.67 Pa is 50 to 1000 (ml / min / cm 2 ). 強化繊維束と直交する方向の引張試験において、式(1)で定義される賦形力評価値が、ひずみ10%において0.3〜6.5m/sの範囲となる請求項1または2の繊維強化樹脂成形用材料。
X=F/L/w (1)
(X=賦形力評価値(m/s)、F:引張荷重(N)、L:試料幅(m)、w:成形用材料目付(g/m))
In the tensile test in the direction orthogonal to the reinforcing fiber bundle, the shaping force evaluation value defined by the formula (1) is in the range of 0.3 to 6.5 m 2 / s 2 at a strain of 10%. 2. Fiber-reinforced resin molding material.
X = F / L / w (1)
(X = shaped force evaluation value (m 2 / s 2 ), F: tensile load (N), L: sample width (m), w: molding material basis weight (g / m 2 ))
JP2011106269A 2011-05-11 2011-05-11 Fiber reinforced resin molding material Expired - Fee Related JP5851714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106269A JP5851714B2 (en) 2011-05-11 2011-05-11 Fiber reinforced resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106269A JP5851714B2 (en) 2011-05-11 2011-05-11 Fiber reinforced resin molding material

Publications (2)

Publication Number Publication Date
JP2012236897A JP2012236897A (en) 2012-12-06
JP5851714B2 true JP5851714B2 (en) 2016-02-03

Family

ID=47460097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106269A Expired - Fee Related JP5851714B2 (en) 2011-05-11 2011-05-11 Fiber reinforced resin molding material

Country Status (1)

Country Link
JP (1) JP5851714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140710A1 (en) 2018-08-09 2023-03-01 Toray Industries, Inc. Reinforced fiber tape material and production method therefor, fiber reinforced resin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994060B2 (en) * 2013-11-15 2016-09-21 八田経編株式会社 Thermoplastic resin reinforced sheet material and method for producing the same
CN105579211B (en) 2014-02-14 2018-01-23 帝人株式会社 Fibre reinforced moulding material and molded article
JP6461490B2 (en) * 2014-06-02 2019-01-30 株式会社Aikiリオテック Apparatus for producing a prepreg containing a thermoplastic resin
JP7300698B2 (en) * 2018-09-21 2023-06-30 丸八株式会社 Prepreg manufacturing method and manufacturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190327A (en) * 1989-01-20 1990-07-26 Chisso Corp Material preventing generation of dew drops
JP4324649B2 (en) * 2001-11-28 2009-09-02 福井県 Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
BRPI0716399A2 (en) * 2006-11-22 2013-09-17 Fukui Prefectural Government thermoplastic resin-reinforced sheet material, process for its production, and molded thermoplastic resin composite material forming method
JP5223130B2 (en) * 2007-02-15 2013-06-26 福井県 Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140710A1 (en) 2018-08-09 2023-03-01 Toray Industries, Inc. Reinforced fiber tape material and production method therefor, fiber reinforced resin

Also Published As

Publication number Publication date
JP2012236897A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
KR101931826B1 (en) Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
JP5851714B2 (en) Fiber reinforced resin molding material
CN107250223B (en) Resin supply material, preform, and method for producing fiber-reinforced resin
TW201343407A (en) Sheet for fiber-reinforced plastic molded body, and molded body thereof
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
JP6087545B2 (en) Fiber reinforced plastic molding substrate
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP2014040088A (en) Random mat and fiber-reinforced composite material
JPWO2019031286A1 (en) Melt blown non-woven fabric, laminate using it, manufacturing method of melt blown non-woven fabric and melt blow device
JP2013204187A (en) Base material for molding fiber reinforced plastic
JP5932576B2 (en) Fiber reinforced plastic molding substrate
JP5812439B2 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP3675380B2 (en) Glass fiber composite mat for glass fiber reinforced stampable sheet and method for producing the same, glass fiber reinforced stampable sheet, method for producing the same and molded product
JP2014062336A (en) Method for producing semifinished product for fiber-reinforced plastic
WO2013181309A2 (en) Nonwoven composite fabric and panel made therefrom
JP2014069403A (en) Method for producing press-molded article by using stampable sheet-like product
JP2013049751A (en) Fiber reinforcement substrate
JP4980099B2 (en) Laminated body and method for producing the same
US9981447B2 (en) Fiber-reinforced resin joined body having caulked part and manufacturing method thereof
JP6046425B2 (en) Fiber reinforced plastic molding substrate and impact resistant fiber reinforced plastic
JP2015196933A (en) Sound absorbing material structure
CN111164133B (en) Liquid permeable member
JP2012158847A (en) Random mat
JP2014051554A (en) Fiber reinforced plastic molding substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees