JPH054945B2 - - Google Patents

Info

Publication number
JPH054945B2
JPH054945B2 JP62330018A JP33001887A JPH054945B2 JP H054945 B2 JPH054945 B2 JP H054945B2 JP 62330018 A JP62330018 A JP 62330018A JP 33001887 A JP33001887 A JP 33001887A JP H054945 B2 JPH054945 B2 JP H054945B2
Authority
JP
Japan
Prior art keywords
carbon
pitch
container
pressure
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62330018A
Other languages
Japanese (ja)
Other versions
JPH01264966A (en
Inventor
Toshinori Nakamura
Takeshi Suemitsu
Yoshiho Hayata
Taiji Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Kawasaki Motors Ltd
Original Assignee
Nippon Oil Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp, Kawasaki Jukogyo KK filed Critical Nippon Oil Corp
Priority to JP62330018A priority Critical patent/JPH01264966A/en
Priority to EP88312352A priority patent/EP0323750B1/en
Priority to DE3855100T priority patent/DE3855100T2/en
Priority to US07/291,007 priority patent/US5114635A/en
Publication of JPH01264966A publication Critical patent/JPH01264966A/en
Publication of JPH054945B2 publication Critical patent/JPH054945B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素材料および炭素/炭素複合材料
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing carbon materials and carbon/carbon composite materials.

従来の技術および発明が解決しようとする問題点 炭素質ピツチは、その炭化収率が高いことから
高密度炭素材料の原料として利用されている。し
かしながら、炭化時にガス発生による気泡や亀裂
などを生成するという問題があり、これを解決す
る方法としてHot Isostatic Pressing(熱間静水
圧加圧、HIP)が用いられている。この場合、炭
化時に発生するガスがヒーターや断熱材などの炉
内部材を汚染し、場合によつては装置破損をきた
す恐れがある。このため、炭素材料の製造を億滴
としたHIPでは、原料をガラスあるいはステンレ
スなど密閉型の容器(コンテナ)に入れる、いわ
ゆるキヤニングが行われる。またこのコンテナ
は、熱処理中に被処理物の形状を維持するという
目的も兼ねている。一方、炭素/炭素複合材料
は、1000℃以上の高温においても高強度、高弾性
率を維持し、かつ熱膨張率が小さい等の特異な性
質を有する材料であり、航空宇宙機器の部品、ブ
レーキ、炉材等への利用が期待されている。炭素
質ピツチは、前記の特性から、炭素/炭素複合材
料のマトリツクス用プリカーサとしても使用され
ているが、この炭化過程においてもHIPが用いら
れており、この場合にも原料をガラスあるいはス
テンレス製のコンテナに入れる、いわゆるキヤニ
ングが行われる。
Prior Art and Problems to be Solved by the Invention Carbonaceous pitch is used as a raw material for high-density carbon materials because of its high carbonization yield. However, there is a problem that bubbles and cracks are generated due to gas generation during carbonization, and hot isostatic pressing (HIP) is used as a method to solve this problem. In this case, the gas generated during carbonization may contaminate internal materials such as the heater and the heat insulating material, possibly causing damage to the equipment. For this reason, in HIP, which aims to produce 100 million drops of carbon material, so-called canning is performed, in which the raw materials are placed in a sealed container such as glass or stainless steel. This container also serves the purpose of maintaining the shape of the object to be processed during heat treatment. On the other hand, carbon/carbon composite materials are materials that have unique properties such as maintaining high strength and high modulus of elasticity even at high temperatures of 1000°C or higher, and having a small coefficient of thermal expansion. It is expected to be used in furnace materials, etc. Because of the above characteristics, carbonaceous pitch is also used as a matrix precursor for carbon/carbon composite materials, but HIP is also used in this carbonization process, and in this case too, the raw material is made of glass or stainless steel. Putting it into a container, so-called canning, is performed.

しかしながら、密閉型の容器(コンテナ)を用
いる場合には、シール機能を付与するために、真
空封入などのキヤニング工程が必要となり、さら
に緻密化のための再含浸時にはコンテナ削除と再
キヤニングが必要となる。このため製造プロセス
が煩雑になるという問題があり、さらに発生ガス
の内圧により、処理物にクラツクが入つたり、コ
ンテナの圧力により炭素繊維の織物が変形するこ
とがある。
However, when using a sealed container, a canning process such as vacuum sealing is required to provide a sealing function, and furthermore, when re-impregnating for densification, the container must be removed and re-canned. Become. This poses the problem of complicating the manufacturing process, and furthermore, the internal pressure of the generated gas may cause cracks in the processed material, and the pressure of the container may deform the carbon fiber fabric.

問題点を解決するための手段 本発明者らは、前記問題点を解決し、簡便かつ
高性能な炭素材料および炭素/炭素複合材料の製
造プロセスを開発すべく研究した結果、本発明の
完成に至つた。
Means for Solving the Problems As a result of research to solve the above problems and develop a simple and high-performance manufacturing process for carbon materials and carbon/carbon composite materials, the present inventors have completed the present invention. I've reached it.

本発明は(1) 軟化点100〜400℃を有する炭素質
ピツチを開放型処理物容器に入れ、熱間静水圧装
置を使用し、液体加圧媒体を介在させることなく
気体加圧媒体により50〜10000Kg/cm2に加圧し100
〜3000℃で熱処理し、必要に応じてさらに炭化あ
るいは黒鉛化することを特徴とする炭素材料の製
造法、および(2) 炭素繊維のトウに軟化点100〜
400℃を有する炭素質ピツチを含浸し、この含浸
物を開放型処理物容器に入れ、熱間静水圧装置を
使用し、液体加圧媒体を介在させることなく気体
加圧媒体により50〜10000Kg/cm2に加圧し100〜
3000℃で熱処理し、必要に応じてさらに炭化ある
いは黒鉛化することを特徴とする炭素/炭素複合
材料の製造法に関する。
The present invention consists of (1) placing a carbonaceous pitch having a softening point of 100 to 400°C in an open processing material container, using a hot isostatic pressure device, and heating it for 50°C with a gaseous pressurized medium without intervening a liquid pressurized medium; ~10000Kg/ cm2 pressurized
A method for producing a carbon material characterized by heat treatment at ~3000°C and further carbonization or graphitization as necessary, and (2) a carbon fiber tow with a softening point of 100 ~
A carbonaceous pitch having a temperature of 400℃ is impregnated, the impregnated material is placed in an open processing material container, and 50 to 10000 kg/kg is heated using a hot isostatic pressure device and a gas pressurized medium without the intervention of a liquid pressurized medium. Pressurize to cm2 and 100~
The present invention relates to a method for producing a carbon/carbon composite material, which is characterized by heat treatment at 3000°C and further carbonization or graphitization as required.

以下、本発明による炭素材料および炭素/炭素
複合材料の製造法について詳述する。
Hereinafter, the method for producing carbon materials and carbon/carbon composite materials according to the present invention will be described in detail.

本発明でいう炭素質ピツチとは、軟化点100〜
400℃、好ましくは150〜350℃を有する石炭系あ
るいは石油系のピツチである。炭素質ピツチは、
光学的に等方性のピツチあるいは異方性のピツチ
のいずれも使用できるが、光学的異方性相の含量
が60〜100%の光学的異方性ピツチが特に好まし
く用いられる。
In the present invention, carbonaceous pitch refers to a softening point of 100~
It is a coal-based or petroleum-based pitch having a temperature of 400°C, preferably 150 to 350°C. Carbonaceous pitch is
Either an optically isotropic pitch or an anisotropic pitch can be used, but an optically anisotropic pitch having an optically anisotropic phase content of 60 to 100% is particularly preferably used.

開放型処理物容器とは、シール機能のない容器
である。材質としては、軟鋼、ステンレスなどの
金属、ガラス、黒鉛あるいはセラミツクスなどが
使用温度あるいは使用目的などによつて適宜選択
できる。本発明者らの検討結果によれば、前記炭
素質ピツチを熱間静水圧加圧により熱処理する場
合には、密閉型容器を使用せずとも、被処理物の
形状が維持でき、しかも開放型容器を使用する場
合には、発生ガスの内圧により、処理物にクラツ
クが入るのを防止できることが判明した。なお、
この開放型容器内に生成物を物理的あるいは化学
的に捕獲するもの、例えばカーボンフエルト、耐
火物フエルト、鉄粉などを充填することもでき
る。
An open-type processed material container is a container without a sealing function. The material may be appropriately selected from metals such as mild steel and stainless steel, glass, graphite, and ceramics depending on the operating temperature and purpose of use. According to the study results of the present inventors, when heat-treating the carbonaceous pitch by hot isostatic pressing, the shape of the object to be treated can be maintained without using a closed container; It has been found that when a container is used, the internal pressure of the generated gas can prevent cracks from entering the processed material. In addition,
This open container may be filled with something that physically or chemically captures the product, such as carbon felt, refractory felt, iron powder, or the like.

本発明において、開放型容器を用いることによ
り、前記した目的は十分達成できるが、必要に応
じ、例えば多量の処理物を熱処理する場合には、
排気機構付HIP装置を用いることが好ましい。排
気機構付HIPとは、HIP中に被処理物から発生す
るガス成分を連続制御して排出できる機構を有す
る装置であり、具体的には、発生するガスの除去
量をその生成量および/または拡散速度に応じて
調節できる排出機構をそなえた装置である。この
ガス排出機構は、炉内圧媒ガスとの熱交換器およ
び炉外での冷却器、減圧装置、流量調節弁などよ
りなる。この排気機構付HIP装置の詳細は本発明
者による特開平1−95286に記載されている。
In the present invention, by using an open type container, the above-mentioned purpose can be fully achieved, but if necessary, for example, when heat treating a large amount of processed material,
It is preferable to use a HIP device with an exhaust mechanism. HIP with an exhaust mechanism is a device that has a mechanism that can continuously control and exhaust gas components generated from the processed material during HIP. This device is equipped with a discharge mechanism that can be adjusted according to the diffusion rate. This gas discharge mechanism includes a heat exchanger with the pressure medium gas inside the furnace, a cooler outside the furnace, a pressure reducing device, a flow rate control valve, and the like. Details of this HIP device with an exhaust mechanism are described in Japanese Patent Application Laid-Open No. 1-95286 by the present inventor.

HIP装置における加圧熱処理の条件は、不活性
ガスにより50〜10000Kg/cm2、好ましくは200〜
2000Kg/cm2に加圧し、100〜3000℃、好ましくは
400〜2000℃において実施することが出来る。圧
媒ガスとしては、アルゴン、窒素ヘリウムなどの
不活性ガスが使用出来る。加圧炭化に続くの炭化
あるいは黒鉛化は、常圧下、不活性ガス雰囲気
下、あるいは減圧下400〜3000℃において実施す
ることが出来る。さらに、排気機構付HIP装置を
用いる場合には、熱処理時に生成するガスを分析
しながら操作を行うことが出来るのも大きな特徴
であり、本発明者らの検討によれば、C2以上の
ガスが実質上生成しなくなるまで熱処理を行うの
が望ましい。ここでいう実質上生成しなくなるこ
とは排気ガス中の濃度が10ppm以下、好ましくは
5ppm以下になることをいう。
The conditions for pressurized heat treatment in the HIP device are 50 to 10,000 Kg/cm 2 , preferably 200 to 10,000 Kg/cm 2 using inert gas.
Pressurized to 2000Kg/ cm2 , 100~3000℃, preferably
It can be carried out at 400-2000°C. As the pressure medium gas, inert gas such as argon, nitrogen helium, etc. can be used. Carbonization or graphitization subsequent to pressure carbonization can be carried out at normal pressure, in an inert gas atmosphere, or at a temperature of 400 to 3000°C under reduced pressure. Furthermore, when using a HIP device with an exhaust mechanism, a major feature is that it can be operated while analyzing the gas generated during heat treatment.According to the study by the present inventors, It is desirable to carry out the heat treatment until substantially no more is produced. Here, "substantially no generation" means that the concentration in exhaust gas is 10 ppm or less, preferably
This means that it will be 5ppm or less.

HIP装置において加圧熱処理した処理物は、必
要に応じてさらに炭化あるいは黒鉛化処理を行
う。炭化処理は不活性ガス中あるいは減圧下で
800〜2000℃、黒鉛化処理は不活性ガス中で2000
〜3000℃において行う。
The processed material subjected to pressure heat treatment in the HIP apparatus is further subjected to carbonization or graphitization treatment as necessary. Carbonization treatment is carried out in inert gas or under reduced pressure.
800~2000℃, graphitization treatment at 2000℃ in inert gas
Perform at ~3000°C.

本発明の方法により炭素/炭素複合材料を製造
する場合には、炭素繊維のトウに前記炭素質ピツ
チを含浸し、この含浸物を排気機構付HIP装置に
て加圧熱処理し、必要に応じてさらに炭化あるい
は黒鉛化する。炭素繊維としてはピツチ系、ポリ
アクリロニトリル系あるいはレーヨン系のいずれ
も使用できるが、ピツチ系炭素繊維が好ましい。
また炭素繊維のトウとは、直径5〜100μmの炭素
繊維の500〜100000本の繊維束を一方向積層物、
2次元織物あるいはその積層物、3次元織物、マ
ツト状成形物、フエルト状成形物など2次元ある
いは3次元に成型したものをいう。
When producing a carbon/carbon composite material by the method of the present invention, carbon fiber tow is impregnated with the carbonaceous pitch, and this impregnated material is subjected to pressure heat treatment in a HIP device equipped with an exhaust mechanism, and if necessary, It is further carbonized or graphitized. As the carbon fiber, any of pitch type, polyacrylonitrile type or rayon type carbon fiber can be used, but pitch type carbon fiber is preferable.
Carbon fiber tow is a unidirectional laminate of 500 to 100,000 fiber bundles of carbon fibers with a diameter of 5 to 100 μm.
It refers to two-dimensional or three-dimensional fabrics such as two-dimensional fabrics or their laminates, three-dimensional fabrics, mat-like molded products, felt-like molded products, etc.

ここでいうピツチ系炭素繊維とは、炭素質ピツ
チを溶融紡糸し、これを不融化、炭化および必要
に応じて黒鉛化することにより得られる繊維であ
る。ピツチ系炭素繊維の原料となる炭素質ピツチ
としては、軟化点100〜400℃、好ましくは150〜
350℃を有する石炭系あるいは石油系のピツチが
用いられる。炭素質ピツチは、光学的に等方性の
ピツチあるいは異方性のピツチのいずれも使用で
きるが、光学的異方性相の含量が60〜100%の光
学的異方性ピツチが特に好ましく用いられる。
The pitch-based carbon fibers referred to herein are fibers obtained by melt-spinning carbonaceous pitch, making it infusible, carbonizing it, and graphitizing it if necessary. The carbonaceous pitch, which is the raw material for the pitch carbon fiber, has a softening point of 100 to 400°C, preferably 150 to 400°C.
A coal-based or petroleum-based pitch with a temperature of 350°C is used. As the carbonaceous pitch, either an optically isotropic pitch or an anisotropic pitch can be used, but an optically anisotropic pitch with an optically anisotropic phase content of 60 to 100% is particularly preferably used. It will be done.

炭素質ピツチは、次いで公知の方法で溶融紡糸
してピツチ繊維としたのち、酸化性ガス雰囲気
下、50〜400℃、好ましくは100〜350℃で不融化
処理を行う。
The carbonaceous pitch is then melt-spun into pitch fibers by a known method, and then subjected to infusibility treatment at 50 to 400°C, preferably 100 to 350°C, in an oxidizing gas atmosphere.

酸化性ガスとしては、空気、酸素、窒素酸化
物、硫黄酸化物、ハロゲン、あるいはこれらの混
合物が使用できる。次いで不活性ガス雰囲気下
800〜2000℃で炭化処理、あるいはさらに2000〜
3000℃で黒鉛化処理を行い炭素繊維とする。
As the oxidizing gas, air, oxygen, nitrogen oxides, sulfur oxides, halogens, or mixtures thereof can be used. Then under an inert gas atmosphere
Carbonization treatment at 800~2000℃ or further at 2000~
Graphitize it at 3000℃ to make carbon fiber.

本発明において、このようにして得られた炭素
繊維のトウに炭素質ピツチを含浸し、この含浸物
を加圧熱処理する。含浸は、炭素質ピツチを加
熱、溶融することにより達成されるが、含浸時の
粘度を下げるために、溶剤でカツト・バツクする
こともできる。溶剤としては、芳香族炭化水素、
ピリジン、キノリンなどが使用できる。また緻密
化のため、含浸とHIP処理とのサイクルを必要回
数行うことが出来る。
In the present invention, the carbon fiber tow thus obtained is impregnated with carbonaceous pitch, and the impregnated product is subjected to pressure heat treatment. Impregnation is achieved by heating and melting the carbonaceous pitch, but it can also be cut back with a solvent to reduce the viscosity during impregnation. As a solvent, aromatic hydrocarbons,
Pyridine, quinoline, etc. can be used. Further, for densification, cycles of impregnation and HIP treatment can be performed as many times as necessary.

複合材料における炭素繊維の体積含有率は、目
的によつて任意に決定されるが、通常は5〜70%
である。
The volume content of carbon fiber in composite materials is arbitrarily determined depending on the purpose, but is usually 5 to 70%.
It is.

実施例 以下に実施例をあげ、本発明を具体的に説明す
るが、本発明はこれらに限定されるものではな
い。
EXAMPLES The present invention will be specifically explained with reference to Examples below, but the present invention is not limited thereto.

実施例 1 軟化点280℃の光学的異方性ピツチを石英製開
放型容器に入れ、その上部にセラミツクフアイバ
ーのフエルトを充填して、HIP装置においてアル
ゴンガスにより1000Kg/cm2に加圧し、800℃にお
いて加圧炭化処理した。得られた炭化物は、密閉
型容器中でHIP処理したものと比べなんら遜色な
かつた。
Example 1 An optically anisotropic pitch with a softening point of 280°C was placed in an open quartz container, the top of which was filled with ceramic fiber felt, pressurized to 1000 kg/cm 2 with argon gas in a HIP device, and heated to 800° C. Pressure carbonization treatment was carried out at ℃. The obtained carbide was comparable to that obtained by HIP treatment in a closed container.

実施例 2 軟化点280℃の光学的異方性ピツチをステンレ
ス製フオイルで包含し、排気機構付HIP装置にお
いてアルゴンガスにより1000Kg/cm2に加圧し、
800℃において加圧炭化処理した。得られた炭化
物は、亀裂が非常に少なかつた。
Example 2 An optically anisotropic pitch with a softening point of 280°C was wrapped in a stainless steel foil and pressurized to 1000 kg/cm 2 with argon gas in a HIP device with an exhaust mechanism.
Pressure carbonization treatment was performed at 800℃. The obtained carbide had very few cracks.

比較例 1 実施例2と同じピツチをステンレス製コンテナ
に真空封入し、HIP装置において、アルゴンガス
により1000Kg/cm2に加圧し、1000℃において加圧
炭化処理したところ、得られた炭化物には亀裂が
多く見られた。
Comparative Example 1 The same pitch as in Example 2 was vacuum-sealed in a stainless steel container, pressurized to 1000 Kg/cm 2 with argon gas in a HIP device, and subjected to pressure carbonization treatment at 1000°C. were seen frequently.

実施例 3 直径10μmのピツチ系炭素繊維の3000本束の2
次元織物(平織)を積層し、これに軟化点280℃
の光学的異方性ピツチを含浸した。含浸物をアル
ミニウム製フオイルで包含し、HIP装置において
窒素ガスにより1000Kg/cm2に加圧し、1000Nm3
hrで排気しながら、550℃において加圧炭化処理
した。加圧炭化に続き、常圧下、不活性ガス雰囲
気下で2500℃において黒鉛化処理した。得られた
炭素/炭素複合材料を走査型電子顕微鏡、および
偏光顕微鏡で観察したところ、繊維束内および繊
維束間にもマトリツクスがよく充填されており、
炭素繊維の織物の変形も見られなかつた。
Example 3 Two bundles of 3,000 pitch carbon fibers with a diameter of 10 μm
Laminated dimensional fabric (plain weave) with a softening point of 280℃
impregnated with an optically anisotropic pitch. The impregnated material was wrapped in an aluminum foil, pressurized to 1000Kg/cm 2 with nitrogen gas in a HIP device, and heated to 1000Nm 3 /
Pressure carbonization treatment was carried out at 550°C while evacuation at hr. Following pressure carbonization, graphitization treatment was performed at 2500°C under normal pressure and an inert gas atmosphere. When the obtained carbon/carbon composite material was observed using a scanning electron microscope and a polarizing microscope, it was found that the matrix was well filled both within and between the fiber bundles.
No deformation of the carbon fiber fabric was observed.

比較例 2 実施例3と同じ含浸物をステンレス製コンテナ
に真空封入し、HIP装置において実施例3と同じ
条件で処理した。得られたものは、コンテナの圧
力により炭素繊維の織物が変形していた。
Comparative Example 2 The same impregnated material as in Example 3 was vacuum sealed in a stainless steel container and treated in a HIP apparatus under the same conditions as in Example 3. The resulting carbon fiber fabric was deformed by the pressure of the container.

実施例 4 直径10μmのピツチ系炭素繊維の3000本束の3次
元直交織物に軟化点280℃の光学的異方性ピツチ
を含浸した。含浸物をステンレス製フオイルで包
含し、排気機構付HIP装置において窒素ガスによ
り1000Kg/cm2に加圧し、800℃において加圧炭化
処理した。加圧炭化に続き、常圧下、不活性ガス
雰囲気下で2500℃において黒鉛化処理した。得ら
れた炭素/炭素複合材料を走査型電子顕微鏡、お
よび偏光顕微鏡で観察したところ、繊維束内およ
び繊維束間にもマトリツクスがよく充填されてお
り、炭素繊維の織物の変形も見られなかつた。
Example 4 Optically anisotropic pitch having a softening point of 280° C. was impregnated into a three-dimensional orthogonal fabric consisting of 3,000 bundles of pitch-based carbon fibers having a diameter of 10 μm. The impregnated material was wrapped in a stainless steel foil, pressurized to 1000 Kg/cm 2 with nitrogen gas in a HIP device equipped with an exhaust mechanism, and subjected to pressure carbonization treatment at 800°C. Following pressure carbonization, graphitization treatment was performed at 2500°C under normal pressure and an inert gas atmosphere. When the obtained carbon/carbon composite material was observed using a scanning electron microscope and a polarizing microscope, it was found that the matrix was well filled within and between the fiber bundles, and no deformation of the carbon fiber fabric was observed. .

比較例 3 実施例4と同じ含浸物をステンレス製コンテナ
に真空封入し、HIP装置において実施例4と同じ
条件で処理した。得られたものは、コンテナの圧
力により炭素繊維の織物が変形していた。
Comparative Example 3 The same impregnated material as in Example 4 was vacuum sealed in a stainless steel container and treated in a HIP apparatus under the same conditions as in Example 4. The resulting carbon fiber fabric was deformed by the pressure of the container.

実施例 5 直径10μmのピツチ系炭素繊維の2000本束の3
次元織物に軟化点280℃の光学的異方性ピツチを
含浸した。含浸物を排気機構付HIP装置において
窒素ガスにより1000Kg/cm2に加圧し、550℃にお
いて加圧炭化処理した。加圧炭化に続き、常圧
下、不活性ガス雰囲気下で1700℃において炭化処
理した。これに再び軟化点280℃の光学的異方性
ピツチを含浸し、排気機構付HIP装置において前
記条件で加圧炭化処理した。このサイクルを5回
繰り返した。得られた炭素/炭素複合材料は、か
つ密度1.74、曲げ強度は35Kg/m2であつた。
Example 5 3 of a bundle of 2000 pitch carbon fibers with a diameter of 10 μm
The dimensional fabric was impregnated with optically anisotropic pitch having a softening point of 280℃. The impregnated material was pressurized to 1000 Kg/cm 2 using nitrogen gas in a HIP device equipped with an exhaust mechanism, and subjected to pressure carbonization treatment at 550°C. Following pressure carbonization, carbonization treatment was carried out at 1700°C under normal pressure and inert gas atmosphere. This was again impregnated with optically anisotropic pitch having a softening point of 280°C, and subjected to pressure carbonization under the above conditions in a HIP device with an exhaust mechanism. This cycle was repeated 5 times. The obtained carbon/carbon composite material had a density of 1.74 and a bending strength of 35 Kg/m 2 .

Claims (1)

【特許請求の範囲】 1 軟化点100〜400℃を有する炭素質ピツチを開
放型処理物容器に入れ、熱間静水圧装置を使用
し、液体加圧媒体を介在させることなく気体加圧
媒体により50〜10000Kg/cm2に加圧し100〜3000℃
で熱処理し、必要に応じてさらに炭化あるいは黒
鉛化することを特徴とする炭素材料の製造法。 2 炭素繊維のトウに軟化点100〜400℃を有する
炭素質ピツチを含浸し、この含浸物を開放型処理
物容器に入れ、熱間静水圧装置を使用し、液体加
圧媒体を介在させることなく気体加圧媒体により
50〜10000Kg/cm2に加圧し100〜3000℃で熱処理
し、必要に応じてさらに炭化あるいは黒鉛化する
ことを特徴とする炭素/炭素複合材量の製造法。
[Scope of Claims] 1. A carbonaceous pitch having a softening point of 100 to 400°C is placed in an open processing material container, and is heated by a gas pressurized medium without intervening a liquid pressurized medium using a hot isostatic pressure device. Pressurized to 50-10000Kg/ cm2 and heated to 100-3000℃
A method for producing carbon materials characterized by heat treatment and further carbonization or graphitization as necessary. 2. Impregnating carbon fiber tow with carbonaceous pitch having a softening point of 100 to 400°C, placing the impregnated product in an open treated container, using a hot isostatic pressure device, and intervening a liquid pressurizing medium. by gas pressurized medium instead of
A method for producing a carbon/carbon composite material, which comprises pressurizing to 50 to 10,000 Kg/cm 2 and heat-treating at 100 to 3,000°C, and further carbonizing or graphitizing if necessary.
JP62330018A 1987-12-28 1987-12-28 Production of carbon material and carbon/carbon composite material Granted JPH01264966A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62330018A JPH01264966A (en) 1987-12-28 1987-12-28 Production of carbon material and carbon/carbon composite material
EP88312352A EP0323750B1 (en) 1987-12-28 1988-12-28 Process for producing carbon material and carbon/carbon composites
DE3855100T DE3855100T2 (en) 1987-12-28 1988-12-28 Process for the production of carbon material and carbon-carbon composites
US07/291,007 US5114635A (en) 1987-12-28 1988-12-28 Process for producing carbon material and carbon/carbon composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330018A JPH01264966A (en) 1987-12-28 1987-12-28 Production of carbon material and carbon/carbon composite material

Publications (2)

Publication Number Publication Date
JPH01264966A JPH01264966A (en) 1989-10-23
JPH054945B2 true JPH054945B2 (en) 1993-01-21

Family

ID=18227851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330018A Granted JPH01264966A (en) 1987-12-28 1987-12-28 Production of carbon material and carbon/carbon composite material

Country Status (1)

Country Link
JP (1) JPH01264966A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075367B2 (en) * 1988-03-18 1995-01-25 川崎重工業株式会社 Method for producing carbon material and carbon / carbon composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252371A (en) * 1986-04-24 1987-11-04 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252371A (en) * 1986-04-24 1987-11-04 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Also Published As

Publication number Publication date
JPH01264966A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US5114635A (en) Process for producing carbon material and carbon/carbon composites
US4226900A (en) Manufacture of high density, high strength isotropic graphite
JPH01252577A (en) Production of carbon/carbon composite material
JP3151580B2 (en) Manufacturing method of carbon material
US20090230582A1 (en) Densification of carbon fiber preforms with pitches for aircraft brakes
JPH08226054A (en) Production of carbon primary molding and carbon/carbon composite material
US5587203A (en) Method for preparing a carbon/carbon composite material
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPH054945B2 (en)
US4776995A (en) Method of making a structure
US4777093A (en) High carbon composite
JPH01239064A (en) Production of carbon material and carbon/carbon composite material
US4776994A (en) Method of making a structure from carbonaceous fibers
JPH0513904B2 (en)
JPH0519507B2 (en)
JP2541852B2 (en) Manufacturing method of fiber-reinforced ceramic composite materials
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP2676211B2 (en) Method for manufacturing carbon / carbon composite material
JPS62138361A (en) Manufacture of high density formed body from carbon material
JP3138937B2 (en) Manufacturing method of carbon / carbon composite material
US20080277824A1 (en) Pitch infiltration of carbon fiber preforms under high pressure
JPH0458428B2 (en)
JPH0569060B2 (en)
JPH07196378A (en) Method for producing carbon/carbon composite material
JPH07100630B2 (en) Method for manufacturing carbon / carbon composite material