JPH0519507B2 - - Google Patents

Info

Publication number
JPH0519507B2
JPH0519507B2 JP1081795A JP8179589A JPH0519507B2 JP H0519507 B2 JPH0519507 B2 JP H0519507B2 JP 1081795 A JP1081795 A JP 1081795A JP 8179589 A JP8179589 A JP 8179589A JP H0519507 B2 JPH0519507 B2 JP H0519507B2
Authority
JP
Japan
Prior art keywords
carbon
impregnated
treatment
molded product
primary molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1081795A
Other languages
Japanese (ja)
Other versions
JPH02258676A (en
Inventor
Takeshi Suemitsu
Toshinori Nakamura
Yoshiho Hayata
Taiji Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Kawasaki Motors Ltd
Original Assignee
Nippon Oil Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp, Kawasaki Jukogyo KK filed Critical Nippon Oil Corp
Priority to JP1081795A priority Critical patent/JPH02258676A/en
Publication of JPH02258676A publication Critical patent/JPH02258676A/en
Publication of JPH0519507B2 publication Critical patent/JPH0519507B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は炭素/炭素複合材料の製造法に係
り、特に炭素繊維強化プラスチツク(以下、
CFRPと言う)製の一次成形品に所定の処理を加
える炭素/炭素複合材料の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing carbon/carbon composite materials, particularly carbon fiber reinforced plastics (hereinafter referred to as
This relates to a method for manufacturing carbon/carbon composite materials in which a pre-formed product (called CFRP) is subjected to a specified treatment.

(従来の技術) 炭素/炭素複合材料は、1000℃以上の高温にお
いても高強度、高弾性率を維持し、且つ熱膨張率
が小さい等の特異な性質を有する材料であり、航
空宇宙機器の部品、ブレーキ、炉材等への利用が
期待されている。
(Prior art) Carbon/carbon composite materials are materials with unique properties such as maintaining high strength and high modulus of elasticity even at high temperatures of 1000°C or higher, and having a small coefficient of thermal expansion, and are used in aerospace equipment. It is expected to be used for parts, brakes, furnace materials, etc.

炭素質ピツチは、その炭化収率が高いことから
高密度炭素材料及び炭素/炭素複合材料のマトリ
ツクスの原料として利用されている。しかしなが
ら、炭化時にガス発生による気泡や亀裂等を生成
するという欠点があり、これを解決する方法とし
てHot Isostatic Pressing(熱間静水圧加圧;
HIP)が用いられている。この場合、炭化時に発
生するガスがヒーターや断熱材等の炉内部材を汚
染し、場合によつては装置破損をきたす恐れがあ
る。このため、炭素材料及び炭素/炭素複合材料
の製造を目的としたHIPでは、原料をガラスある
いはステンレス等の密閉型の容器(コンテナ)に
入れる、所謂キヤニングが行われる。
Carbonaceous pitch is used as a raw material for matrices of high-density carbon materials and carbon/carbon composite materials because of its high carbonization yield. However, there is a drawback that bubbles and cracks are generated due to gas generation during carbonization, and a method to solve this problem is Hot Isostatic Pressing (Hot Isostatic Pressing).
HIP) is used. In this case, the gas generated during carbonization may contaminate the furnace interior materials such as the heater and the heat insulating material, possibly causing damage to the equipment. Therefore, in HIP for the purpose of manufacturing carbon materials and carbon/carbon composite materials, so-called canning is performed in which raw materials are placed in a closed container made of glass or stainless steel.

しかしながら、密閉型の容器(コンテナ)を用
いる場合には、シール機能を付与するために、真
空封入等のキヤニング工程が必要となり、さらに
緻密化のための再含浸時にはコンテナ削除と再キ
ヤニングが必要となる。このため製造プロセスが
煩雑になるという問題があり、さらにコンテナ内
の発生ガスの内圧により、処理物にクラツクが入
つたり、コンテナの変形により炭素繊維の織物が
変形または損傷することがある。
However, when using a sealed container, a canning process such as vacuum sealing is required to provide a sealing function, and furthermore, when re-impregnating for densification, the container must be removed and re-canned. Become. This poses the problem of complicating the manufacturing process, and furthermore, the internal pressure of the gas generated within the container may cause cracks in the processed material, and the deformation of the container may deform or damage the carbon fiber fabric.

そこで、本出願人は開放型の容器を使用した炭
素/炭素複合材料の製造法を開発し、既に特願昭
62−330018号(特開平1−264966)で出願済みで
ある。この製造法によると上記の欠点が解消され
た炭素/炭素複合材料が得られる。
Therefore, the present applicant has developed a method for producing carbon/carbon composite materials using an open container, and has already filed a patent application for this method.
No. 62-330018 (Japanese Unexamined Patent Publication No. 1-264966) has been filed. According to this manufacturing method, a carbon/carbon composite material that eliminates the above-mentioned drawbacks can be obtained.

なお、本発明に関連する先行技術としては、特
願昭63−63172号(特開平1239064)、特願昭63−
282387号(特開平2−129069)、特開昭62−59509
号である。
In addition, as prior art related to the present invention, Japanese Patent Application No. 63-63172 (Japanese Unexamined Patent Publication No. 1239064),
No. 282387 (Unexamined Japanese Patent Publication No. 2-129069), Unexamined Japanese Patent Publication No. 62-59509
This is the number.

(発明が解決しようとする課題) しかしながら、上記特許に示されているCFRP
から出発しないHIPによる製法だけでは強度特性
を向上するには限界があり、さらに複雑な形状の
部品に成形するための成形性の面でも改善の余地
がある。
(Problem to be solved by the invention) However, the CFRP shown in the above patent
There is a limit to improving strength properties using only HIP manufacturing methods that do not start from scratch, and there is also room for improvement in terms of formability for forming parts into complex shapes.

そこで、この発明は上記従来の欠点を解消する
ためになされたものであつて、その目的は、一層
強度特性が優れ、且つ複雑な形状の部品を成形す
ることができる炭素/炭素複合材料の製造法を提
供することにある。
Therefore, the present invention was made to eliminate the above-mentioned conventional drawbacks, and its purpose is to produce a carbon/carbon composite material that has even better strength characteristics and can be molded into parts with complex shapes. It is about providing law.

(課題を解決するための手段) そこでこの発明の第1請求項による炭素/炭素
複合材料の製造法では、CFRP製の一次成形品を
炭化処理及び黒鉛化処理のいずれか一方又は双方
を施した後に、上記一次成形品に炭素質ピツチを
含浸し、この含浸物を開放型処理容器に入れ、熱
間静水圧下で熱処理し、必要に応じてさらに炭化
処理及び黒鉛化処理のいずれか一方又は双方を施
している。
(Means for Solving the Problems) Therefore, in the method for manufacturing a carbon/carbon composite material according to the first claim of the present invention, a primary molded product made of CFRP is subjected to carbonization treatment, graphitization treatment, or both. Afterwards, the above-mentioned primary molded product is impregnated with carbonaceous pitch, this impregnated product is placed in an open processing container, heat-treated under hot isostatic pressure, and further subjected to one or more of carbonization treatment and graphitization treatment as necessary. It does both.

上記第1請求項の製造法においては、CFRP一
次成形品を使用することにより、強度特性が従来
より向上し、複雑形状への対応が容易になる。
In the manufacturing method according to the first aspect, by using a CFRP primary molded product, the strength characteristics are improved compared to the conventional product, and it becomes easier to handle complex shapes.

次に第2請求項では更に上記一次成形品とし
て、炭素繊維のトウに熱硬化性樹脂、例えばフエ
ノール樹脂またはフラン樹脂などを含浸し、この
含浸物を加圧下で熱処理して製造している。
Next, in the second aspect, the primary molded product is manufactured by impregnating a carbon fiber tow with a thermosetting resin, such as a phenolic resin or a furan resin, and heat-treating the impregnated product under pressure.

上記第2請求項においては、良質な一次成形品
を製造することが可能になる。
In the second aspect of the invention, it is possible to produce a high quality primary molded product.

第3請求項では、更に上記加圧熱処理を排気機
構付HIPにて行つている。
In the third claim, the pressurized heat treatment is further performed in a HIP equipped with an exhaust mechanism.

この第3請求項においては、多量の処理物から
発生するガスを排気しながら熱処理を行うため
に、開放型処理容器を用いてもHIP装置の汚染、
破損が起こることなく多量のHIP処理を施すこと
が可能となる。
In this third claim, in order to perform heat treatment while exhausting gas generated from a large amount of processed materials, even if an open type processing container is used, contamination of the HIP equipment is avoided.
It becomes possible to perform a large amount of HIP processing without causing damage.

以下、この発明による炭素/炭素複合材料の製
造法について詳述する。
Hereinafter, the method for producing a carbon/carbon composite material according to the present invention will be described in detail.

この発明の方法により炭素/炭素複合材料を製
造する場合には、HIP装置による熱処理工程の前
に、CFRP製の一次成形品を製造する。一次成形
品は炭素繊維のトウに熱硬化性樹脂を含浸し、必
要に応じて室温〜百数十℃で乾燥する。この含浸
物をキユアー工程で加圧下において熱処理して
CFRPを製造する。キユアー工程では、加圧用の
一軸プレス又はオートクレープを用いて数Kg/cm2
〜数百Kg/cm2の圧力下で百数十℃に加熱する。さ
らに必要ならば50℃〜数百℃でポストキユアーを
施す。
When producing a carbon/carbon composite material by the method of the present invention, a primary molded article made of CFRP is produced before the heat treatment step using a HIP device. The primary molded product is made by impregnating carbon fiber tow with a thermosetting resin and drying it at room temperature to 100-odd degrees Celsius, if necessary. This impregnated material is heat treated under pressure in the curing process.
Manufacture CFRP. In the curing process, a uniaxial press or autoclave is used to compress several kg/ cm2.
Heating to several tens of degrees Celsius under a pressure of ~ several hundred kg/ cm2 . Furthermore, if necessary, post-cure is performed at 50°C to several hundred degrees Celsius.

上記熱硬化性樹脂とは、フエノール樹脂あるい
はフラン樹脂単独あるいはそれらの混合樹脂ある
いはエポキシ樹脂など他の樹脂と混合した熱硬化
性樹脂を言う。含浸の際には粘度を下げるため
に、溶剤でカツトバツクしたり、加熱することも
できる。溶剤としては、メチルエチルケトン、メ
タノール、キシレン等が使用できる。
The above-mentioned thermosetting resin refers to a phenolic resin or a furan resin alone, a mixed resin thereof, or a thermosetting resin mixed with another resin such as an epoxy resin. In order to lower the viscosity during impregnation, it may be cut back with a solvent or heated. As the solvent, methyl ethyl ketone, methanol, xylene, etc. can be used.

上記一次成形品用の炭素繊維としてはピツチ
系、ポリアクリロニトリル系あるいはレーヨン系
のいずれも使用できるが、ピツチ系炭素繊維が好
ましい。また炭素繊維は、通常直径5〜100μmの
炭素繊維の500〜100000本の繊維束(トウ)とし
て用いられ、通常一方向積層物、2次元織物ある
いはその積層物、3次元織物、マツト状成形物、
フエルト状成形物等のように2次元あるいは3次
元に成形して用いる。
As the carbon fiber for the above-mentioned primary molded product, any of pitch type, polyacrylonitrile type or rayon type carbon fibers can be used, but pitch type carbon fiber is preferable. Carbon fiber is usually used as a fiber bundle (tow) of 500 to 100,000 carbon fibers with a diameter of 5 to 100 μm, and is usually used in unidirectional laminates, two-dimensional fabrics or their laminates, three-dimensional fabrics, and mat-like molded products. ,
It is used by molding into two or three dimensions, such as felt-like moldings.

次にこの発明の製造法によると、上記一次成形
品に炭化処理及び黒鉛化処理の何れか一方又は双
方を順次に施す。この熱処理工程の炭化処理は
600〜2000℃で行い、黒鉛化処理は2000〜3000℃
で行う。以上の熱処理工程の後に炭素質ピツチ含
浸工程へ進み、上記一次成形品に炭素質ピツチを
含浸する。次の工程で当該含浸物は開放型容器に
入れられて、HIP装置でHIP処理される。
Next, according to the manufacturing method of the present invention, the primary molded product is sequentially subjected to one or both of carbonization treatment and graphitization treatment. The carbonization process in this heat treatment process is
Performed at 600-2000℃, graphitization treatment at 2000-3000℃
Do it with After the above heat treatment step, the process proceeds to a carbonaceous pitch impregnation step, in which the primary molded product is impregnated with carbonaceous pitch. In the next step, the impregnated material is placed in an open container and subjected to HIP treatment in a HIP device.

この発明でいう炭素質ピツチとは、軟化点100
〜400℃、好ましくは150〜350℃の範囲の石炭系
あるいは石油系のピツチである。炭素質ピツチ
は、光学的に等方性のピツチあるいは異方性のピ
ツチのいずれも使用できるが、光学的異方性相の
含量が60〜100%の光学的異方性ピツチが特に好
ましく用いられる。
The carbonaceous pitch referred to in this invention means a softening point of 100
It is a coal-based or petroleum-based pitch in the range of ~400°C, preferably 150-350°C. As the carbonaceous pitch, either an optically isotropic pitch or an anisotropic pitch can be used, but an optically anisotropic pitch with an optically anisotropic phase content of 60 to 100% is particularly preferably used. It will be done.

炭素質ピツチの含浸は炭素質ピツチを加熱、溶
融することにより達成されるが、含浸時の粘度を
下げるために、溶剤でカツト・バツクすることも
できる。溶剤としては、芳香族炭化水素、ピリジ
ン、キノリン等が使用できる。
Impregnation of the carbonaceous pitch is achieved by heating and melting the carbonaceous pitch, but it can also be cut back with a solvent to lower the viscosity during impregnation. As the solvent, aromatic hydrocarbons, pyridine, quinoline, etc. can be used.

開放型処理物容器とは、シール機能のない容器
である。材質としては、軟鋼、ステンレス等の金
属、ガラス、黒鉛あるいはセラミツクス等が使用
温度あるいは使用目的等によつて適宜選択でき
る。本発明者らの検討結果によれば、上記炭素質
ピツチを熱間静水圧加圧により熱処理する場合に
は、密閉型容器を使用せずとも、被処理物の形状
が維持でき、しかも開放型容器を使用する場合に
は、発生ガスの内圧により、処理物にクラツクが
入るのを防止できることが判明した。なお、この
開放型容器内に処理品からの発生ガスを物理的あ
るいは化学的に捕獲するもの、例えばカーボンフ
エルト、耐火物フエルト、鉄粉等を充填すること
もできる。
An open-type processed material container is a container without a sealing function. The material may be appropriately selected from metals such as mild steel and stainless steel, glass, graphite, ceramics, etc. depending on the operating temperature, purpose of use, etc. According to the study results of the present inventors, when heat-treating the above-mentioned carbonaceous pitch by hot isostatic pressing, the shape of the object to be treated can be maintained without using a closed container; It has been found that when a container is used, the internal pressure of the generated gas can prevent cracks from entering the processed material. Note that this open container may be filled with something that physically or chemically captures the gas generated from the processed product, such as carbon felt, refractory felt, iron powder, etc.

この発明において、開放型容器を用いることに
より、十分な効果を達成できるが、必要に応じ、
例えば多量の処理物を熱処理する場合には、排気
機構付HIP装置を用いることが好ましい。排気機
構付HIPとは、HIP中に被処理物から発生するガ
ス成分を連続制御して排出できる機構を有する装
置であり、具体的には発生するガスの除去量をそ
の生成量や拡散速度に応じて調節できる排出機構
を備えた装置である。このガス排出機構は、炉内
圧媒ガスとの熱交換器及び炉外での冷却器、減圧
装置、流量調節弁等より成る。この排気機構付
HIP装置の詳細は本発明者による特願昭62−
25317号に詳しく記載されている。
In this invention, sufficient effects can be achieved by using an open container, but if necessary,
For example, when heat treating a large amount of processed materials, it is preferable to use a HIP device with an exhaust mechanism. HIP with an exhaust mechanism is a device that has a mechanism that can continuously control and exhaust the gas components generated from the processed material during HIP. The device is equipped with a discharge mechanism that can be adjusted accordingly. This gas discharge mechanism consists of a heat exchanger with the pressure medium gas inside the furnace, a cooler outside the furnace, a pressure reduction device, a flow rate control valve, etc. With this exhaust mechanism
For details of the HIP device, please refer to the patent application filed in 1983 by the inventor of the present invention.
Details are given in issue 25317.

このHIP装置における加圧熱処理の条件は、不
活性ガスにより50〜10000Kg/cm2、好ましくは200
〜2000Kg/cm2に加圧し、100〜3000℃、好ましく
は400〜2000℃において実施することができる。
圧媒ガスとしてはアルゴン、窒素ヘリウム等の不
活性ガスが使用できる。さらに、排気機構付HIP
装置を用いる場合には、熱処理時に生成するガス
を分析しながら操作を行うことができるのも大き
な特徴であり、本発明者らの検討によれば、C2
以上のガスが実質上生成しなくなるまで熱処理を
行うのが望ましい。ここでいう実質上生成しなく
なるとは、排気ガス中の濃度が10ppm以下、好ま
しくは5ppm以下になることをいう。
The conditions for pressurized heat treatment in this HIP device are 50 to 10,000 Kg/cm 2 , preferably 200 Kg/cm 2 using an inert gas.
It can be carried out at a temperature of 100 to 3000°C, preferably 400 to 2000°C, under a pressure of ~2000 Kg/cm 2 .
Inert gas such as argon, nitrogen helium, etc. can be used as the pressure medium gas. In addition, HIP with exhaust mechanism
When using the device, a major feature is that it can be operated while analyzing the gas generated during heat treatment, and according to the inventors' study, C 2
It is desirable to carry out the heat treatment until the above gases are substantially no longer produced. Here, "substantially no generation" means that the concentration in the exhaust gas is 10 ppm or less, preferably 5 ppm or less.

HIP装置において加圧熱処理した処理物は、必
要に応じてさらに炭化処理及び黒鉛化処理のいず
れか一方又は双方を行う。炭化処理は不活性ガス
中で600〜2000℃、黒鉛化処理は不活性ガス中で
2000〜3000℃において行う。
The processed material subjected to pressure heat treatment in the HIP apparatus is further subjected to one or both of carbonization treatment and graphitization treatment, as necessary. Carbonization treatment is carried out at 600 to 2000℃ in an inert gas, and graphitization treatment is carried out in an inert gas.
Carry out at 2000-3000°C.

以上の炭素質ピツチ含浸工程から黒鉛化処理工
程までの工程は必要に応じて数回繰り返して行つ
て、強度特性に優れ、且つ複雑形状の炭素/炭素
複合材料を製造する。
The above steps from the carbonaceous pitch impregnation step to the graphitization step are repeated several times as necessary to produce a carbon/carbon composite material with excellent strength properties and a complex shape.

複合材料における炭素繊維の体積含有率は、目
的によつて任意に決定されるが、通常は5〜70%
である。
The volume content of carbon fiber in composite materials is arbitrarily determined depending on the purpose, but is usually 5 to 70%.
It is.

(発明の効果) この発明の第1請求項による炭素/炭素複合材
料の製造法においては、CFRP製の一次成形品を
使用するので、強度特性を従来より向上でき、複
雑形状の部品をも容易に製造できる。
(Effects of the Invention) In the method for producing a carbon/carbon composite material according to the first claim of the present invention, a primary molded product made of CFRP is used, so the strength characteristics can be improved compared to conventional products, and parts with complex shapes can be easily manufactured. can be manufactured.

第2請求項においては、第1請求項の効果に加
えて、更に良質な一次成形品を製造することがで
きる。
In the second claim, in addition to the effects of the first claim, a primary molded product of even higher quality can be manufactured.

第3請求項においては、第1又は第2請求項の
効果に加えて処理物から発生するガスを排気機構
で排出して多量の処理物を能率よくHIP処理でき
る。また、発生するガスの量、質を監視すること
によつて処理の進行状態を判断することができ、
HIP処理を一層完全に施すことができる。
In the third aspect, in addition to the effects of the first or second aspect, the gas generated from the processed material is exhausted by the exhaust mechanism, so that a large amount of processed material can be efficiently HIP-processed. In addition, by monitoring the quantity and quality of the gas generated, it is possible to judge the progress of the process.
HIP processing can be applied more completely.

(実施例) 以下に実施例をあげ、この発明を具体的に説明
するが、この発明はこれらに限定されるものでは
ない。
(Example) The present invention will be specifically described below with reference to Examples, but the invention is not limited thereto.

実施例 1 直径7μmのPAN系炭素繊維の3000本束の3次
元織物(直交織)にメチルエチルケトン1重量%
を含むフエノール樹脂溶液を含浸し、室温で1時
間、80℃で2時間乾燥させ、150℃で1時間キユ
アー、200℃で2時間ポストキユアーを行い、
CFRP一次成形品を得た。
Example 1 1% by weight of methyl ethyl ketone was added to a three-dimensional fabric (orthogonal weave) of 3000 bundles of PAN-based carbon fibers with a diameter of 7 μm.
impregnated with a phenolic resin solution containing , dried at room temperature for 1 hour and at 80°C for 2 hours, cured at 150°C for 1 hour, and post-cured at 200°C for 2 hours.
A CFRP primary molded product was obtained.

このCFRPを窒素雰囲気中1500℃、1時間炭化
処理を施した。繊維体積含有率は40vol%であつ
た。
This CFRP was subjected to carbonization treatment at 1500°C for 1 hour in a nitrogen atmosphere. The fiber volume content was 40vol%.

この成形品に軟化点280℃の光学的異方性相100
%の石油系ピツチを含浸し、HIP装置で開放型容
器に入れて、アルゴンガスにより、400Kg/cm2
加圧した後に、400℃まで1℃/分、550℃まで
0.5℃/分、800℃まで5℃/分、1000℃まで2
℃/分で昇温して、加圧炭化処理した。1000℃に
おける圧力は1000Kg/cm2であつた。さらに窒素雰
囲気中1500℃、1時間の炭化処理を施した。この
含浸、HIP、1500Kg炭化処理を3回繰り返した。
This molded product has an optically anisotropic phase of 100% with a softening point of 280°C.
% of petroleum-based pitch, put it in an open container using a HIP device, pressurize it to 400Kg/ cm2 with argon gas, and then heat it at 1℃/min up to 400℃ and up to 550℃.
0.5℃/min, 5℃/min up to 800℃, 2 up to 1000℃
The temperature was raised at a rate of °C/min to perform pressure carbonization. The pressure at 1000°C was 1000Kg/cm 2 . Further, carbonization treatment was performed at 1500° C. for 1 hour in a nitrogen atmosphere. This impregnation, HIP, and 1500 kg carbonization treatment were repeated three times.

得られた炭素/炭素複合材料はかさ密度
1.75g/cm2であつた。
The obtained carbon/carbon composite material has a bulk density
It was 1.75g/ cm2 .

実施例 2 直径10μmのピツチ系炭素繊維の3000本束の2
次元織物(平織)に、実施例1と同じフエノール
樹脂溶液を含浸し、室温で1時間、80℃で2時間
乾燥させ、この含浸を6枚積層し、一軸加圧下で
1時間キユアーし、さらに、200℃で2時間のポ
ストキユアーを行い、CFRP一次成形品を得た。
Example 2 2 of a bundle of 3000 pitch carbon fibers with a diameter of 10 μm
Dimensional fabric (plain weave) was impregnated with the same phenolic resin solution as in Example 1, dried at room temperature for 1 hour and at 80°C for 2 hours, six sheets of this impregnated fabric were laminated, cured for 1 hour under uniaxial pressure, and then A CFRP primary molded product was obtained by post-curing at 200°C for 2 hours.

このCFRPを窒素雰囲気中2000℃、1時間炭化
処理した。この結果、繊維体積含有率はそれぞれ
60vol%であつた。
This CFRP was carbonized at 2000°C for 1 hour in a nitrogen atmosphere. As a result, the fiber volume content is
It was 60vol%.

この成形品に実施例1と同じ含浸、HIP、1500
℃炭化処理を3回施した。
This molded product was impregnated with the same impregnation as in Example 1, HIP, 1500
C. carbonization treatment was performed three times.

得られた炭素/炭素複合材料はかさ密度
1.83g/cm3、曲げ強度35Kg/mm2であつた。
The obtained carbon/carbon composite material has a bulk density of
The weight was 1.83g/cm 3 and the bending strength was 35Kg/mm 2 .

比較例 1 実施例2と同じCFRP一次成形体を、実施例2
と同じ2000℃炭化処理及び含浸をし、常圧窒素雰
囲気で実施例1のHIP処理と同じ昇温条件で炭化
処理を行い、さらに2000℃1時間の炭化処理を行
つた。この含浸、1000℃炭化処理及び2000℃炭化
処理を3回繰り返した。
Comparative Example 1 The same CFRP primary molded body as in Example 2 was used in Example 2.
The same carbonization treatment and impregnation at 2000°C were carried out, the carbonization treatment was carried out in a normal pressure nitrogen atmosphere under the same heating conditions as the HIP treatment in Example 1, and the carbonization treatment was further carried out at 2000°C for 1 hour. This impregnation, 1000°C carbonization treatment, and 2000°C carbonization treatment were repeated three times.

得られた炭素/炭素複合材料はかさ密度
1.53g/cm3、曲げ強度10Kg/mm2であり、ち密化が
ほとんどなされていなかつた。
The obtained carbon/carbon composite material has a bulk density of
It had a bending strength of 1.53 g/cm 3 and a bending strength of 10 Kg/mm 2 , with almost no densification.

実施例 3 実施例2と同じCFRP一次成形品を窒素雰囲気
中で1000℃1時間炭化処理し、実施例1と同じピ
ツチを含浸した。
Example 3 The same CFRP primary molded product as in Example 2 was carbonized at 1000° C. for 1 hour in a nitrogen atmosphere, and the same pitch as in Example 1 was impregnated.

これを開放型容器に入れて、排気機構付HIP装
置でアルゴンガスにより1000Kg/cm3に加圧し、
2Nm3/時間で排気しながら、550℃まで1℃/
分、1000℃まで3℃/分で昇温して加圧炭化処理
した。この含浸、HIP処理を2回繰り返した。
This was placed in an open container and pressurized to 1000 kg/cm 3 with argon gas using a HIP device with an exhaust mechanism.
1℃/up to 550℃ while exhausting at 2Nm 3 /hour.
The temperature was increased to 1000°C at a rate of 3°C/min for pressurized carbonization. This impregnation and HIP treatment were repeated twice.

得られた炭素/炭素複合材料はかさ密度
1.88g/cm3、曲げ強度40Kg/mm2であつた。
The obtained carbon/carbon composite material has a bulk density of
The weight was 1.88g/cm 3 and the bending strength was 40Kg/mm 2 .

Claims (1)

【特許請求の範囲】 1 炭素繊維強化プラスチツク製の一次成形品を
炭化処理及び黒鉛化処理のいずれか一方又は双方
を施した後に、上記一次成形品に炭素質ピツチを
含浸し、この含浸物を開放型処理容器に入れ、熱
間静水圧加圧下で熱処理し、必要に応じてさらに
炭化処理及び黒鉛化処理のいずれか一方又は双方
を施すことを特徴とする炭素/炭素複合材料の製
造法。 2 一次成形品は、炭素繊維のトウに熱硬化性樹
脂を含浸し、この含浸物を加圧下で熱処理して製
造することを特徴とする上記第1請求項に記載の
炭素/炭素複合材料の製造法。 3 加圧熱処理を排気機構付熱間静水圧加圧装置
にて行うことを特徴とする上記第1又は第2請求
項に記載の炭素/炭素複合材料の製造法。
[Scope of Claims] 1. After subjecting a primary molded product made of carbon fiber reinforced plastic to one or both of carbonization treatment and graphitization treatment, the primary molded product is impregnated with carbonaceous pitch, and this impregnated product is impregnated with carbonaceous pitch. 1. A method for producing a carbon/carbon composite material, which comprises placing the material in an open processing container, heat-treating it under hot isostatic pressure, and, if necessary, further subjecting it to one or both of carbonization and graphitization. 2. The carbon/carbon composite material according to claim 1, wherein the primary molded product is produced by impregnating a carbon fiber tow with a thermosetting resin and heat-treating the impregnated product under pressure. Manufacturing method. 3. The method for producing a carbon/carbon composite material according to claim 1 or 2, wherein the pressurized heat treatment is performed using a hot isostatic pressurizing device equipped with an exhaust mechanism.
JP1081795A 1989-03-31 1989-03-31 Production of carbon/carbon composite material Granted JPH02258676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081795A JPH02258676A (en) 1989-03-31 1989-03-31 Production of carbon/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081795A JPH02258676A (en) 1989-03-31 1989-03-31 Production of carbon/carbon composite material

Publications (2)

Publication Number Publication Date
JPH02258676A JPH02258676A (en) 1990-10-19
JPH0519507B2 true JPH0519507B2 (en) 1993-03-16

Family

ID=13756427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081795A Granted JPH02258676A (en) 1989-03-31 1989-03-31 Production of carbon/carbon composite material

Country Status (1)

Country Link
JP (1) JPH02258676A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404714B (en) * 2022-08-25 2023-08-25 易高碳材料控股(深圳)有限公司 Preparation method of low-impedance carbon fiber paper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284291A (en) * 1985-10-08 1987-04-17 株式会社神戸製鋼所 Hot hydrostatic molding equipment
JPS62252371A (en) * 1986-04-24 1987-11-04 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284291A (en) * 1985-10-08 1987-04-17 株式会社神戸製鋼所 Hot hydrostatic molding equipment
JPS62252371A (en) * 1986-04-24 1987-11-04 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Also Published As

Publication number Publication date
JPH02258676A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US7871592B2 (en) Method for preparing a carbon/carbon composite
EP2093453B1 (en) CVI followed by coal tar pitch densification by VPI
EP0335736B1 (en) Process for producing carbon/carbon composites
EP0323750B1 (en) Process for producing carbon material and carbon/carbon composites
JP2004537488A (en) Method for producing porous graphite and articles made therefrom
US4166145A (en) High temperature consolidation process for the production of a substantially all carbon composite
US5336522A (en) Method of manufacturing parts made of ceramic matric composite material
US4567007A (en) Method of making carbon/carbon composites
CN116283332A (en) Preparation method of pitch-based carbon/carbon composite material with high thermal conductivity in thickness direction
JPH0519507B2 (en)
US4777093A (en) High carbon composite
US4776994A (en) Method of making a structure from carbonaceous fibers
GB2197305A (en) High carbon composite
JPH054945B2 (en)
JPH09316217A (en) Ablator material and its production
CN106316438B (en) Highly dense carbon-carbon friction material
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JPS62138361A (en) Manufacture of high density formed body from carbon material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP2541852B2 (en) Manufacturing method of fiber-reinforced ceramic composite materials
JPH0458428B2 (en)
JPH02129069A (en) Production of carbon material and carbon/carbon composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
CN117229068A (en) Preparation method and application of high-fiber volume fraction composite material
JPH01239064A (en) Production of carbon material and carbon/carbon composite material