JPH0548911B2 - - Google Patents

Info

Publication number
JPH0548911B2
JPH0548911B2 JP59225577A JP22557784A JPH0548911B2 JP H0548911 B2 JPH0548911 B2 JP H0548911B2 JP 59225577 A JP59225577 A JP 59225577A JP 22557784 A JP22557784 A JP 22557784A JP H0548911 B2 JPH0548911 B2 JP H0548911B2
Authority
JP
Japan
Prior art keywords
layer
ddp
charge generation
charge
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225577A
Other languages
Japanese (ja)
Other versions
JPS61103154A (en
Inventor
Shiro Kito
Ichiro Takegawa
Yasuo Sakaguchi
Kazuyuki Nakamura
Hideko Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP22557784A priority Critical patent/JPS61103154A/en
Publication of JPS61103154A publication Critical patent/JPS61103154A/en
Publication of JPH0548911B2 publication Critical patent/JPH0548911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • G03G5/0611Squaric acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an electrophotographic photoreceptor.

〔従来技術〕[Prior art]

従来、積層型有機感光体の構成として電荷発生
層を電荷輸送層の下層として積層する形態が数多
く見られる。現在、一般に見い出されている電荷
輸送層は正孔輸送性のものが殆んどであるため、
このような構成の感光体は負帯電で用いることが
必要である。このため、負帯電による高濃度のオ
ゾン発生、コントロンの帯電ムラ等、感光体にイ
ンパクトを与える種々の欠点を有していた。この
欠点を解消するため、電荷発生層を電荷輸送層の
上層として積層し、正帯電で使用し、更に機械強
度、変質等の改善をはかるため、最上層として低
抵抗表面保護層を積層した構成が試みられた。し
かしこのような構成の感光体は、充分な帯電性が
得られず、低いコントラスト・ポテンシヤルしか
得られない、あるいは帯電性が充分の場合でも、
光減衰が十分でなく残留電位が高い、温湿度の変
化により帯電々位、残留電位が変動してしまう、
繰り返し使用時の帯電々位、残留電位が変化して
しまう、表面保護層をつける前に比べて感度低下
が大きい、など種々の欠点を有していた。
Conventionally, there have been many configurations of laminated organic photoreceptors in which a charge generation layer is laminated as a lower layer of a charge transport layer. Currently, most of the charge transport layers commonly found have hole transport properties, so
It is necessary to use a photoreceptor having such a configuration with a negative charge. For this reason, it has had various drawbacks that impact the photoreceptor, such as generation of high concentration ozone due to negative charging and uneven charging of Kontron. In order to eliminate this drawback, a charge generation layer is laminated as an upper layer of a charge transport layer and used for positive charging, and in order to further improve mechanical strength, deterioration, etc., a low resistance surface protection layer is laminated as the top layer. was attempted. However, a photoreceptor with such a structure does not have sufficient chargeability and only has a low contrast potential, or even if it has sufficient chargeability,
The residual potential is high due to insufficient light attenuation, and the charge level and residual potential fluctuate due to changes in temperature and humidity.
It had various drawbacks, such as changes in charge level and residual potential during repeated use, and a large decrease in sensitivity compared to before the surface protective layer was applied.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこの様な欠点のない電子写真用
感光体、すなわち、帯電電位の低下、高残留電
位、温湿度の影響、感度低下を防止し、繰り返し
使用時の帯電々位、残留電位の安定した電子写真
用感光体を提供することである。
The purpose of the present invention is to provide an electrophotographic photoreceptor that does not have such drawbacks, that is, to prevent a decrease in charging potential, a high residual potential, the influence of temperature and humidity, and a decrease in sensitivity, and to reduce the charging level and residual potential during repeated use. An object of the present invention is to provide a stable electrophotographic photoreceptor.

〔発明の構成〕[Structure of the invention]

本発明の目的は、電荷発生層の材料として特定
のスクエアリン酸誘導体を用いることにより達成
できる。更に本発明の目的は特定のスクエアリン
酸誘導体を用いた電荷発生層上に、特定の導電性
金属酸化物の微細粒子を絶縁性樹脂中に分散させ
て成る低抵抗表面保護層を設けることにより達成
できる。
The object of the present invention can be achieved by using a specific squaric acid derivative as the material for the charge generation layer. A further object of the present invention is to provide a low-resistance surface protective layer made of fine particles of a specific conductive metal oxide dispersed in an insulating resin on a charge generation layer using a specific squaric acid derivative. It can be achieved.

本発明は、導電性支持体上に電荷輸送層、電荷
発生層、低抵抗表面保護層が順次積層されている
電子写真用感光体であつて、 該電荷発生層中に下記一般式() で表わされるスクエアリン酸誘導体が分散されて
いること;及び 該低抵抗表面保護層が、絶縁性樹脂中に導電性
金属酸化物の微細粒子を分散した層から成り、該
導電性金属酸化物が、電気抵抗109Ω・cm以下、
平均粒径0.3μm以下の粒子であることを特徴とす
る電子写真用感光体である。
The present invention is an electrophotographic photoreceptor in which a charge transport layer, a charge generation layer, and a low resistance surface protection layer are sequentially laminated on a conductive support, and the charge generation layer has the following general formula (). A squaric acid derivative expressed by , electrical resistance 109 Ω・cm or less,
This is an electrophotographic photoreceptor characterized by particles having an average particle size of 0.3 μm or less.

本発明に使用する導電性表面を有する支持体と
してはアルミニウム、銅、鉄、亜鉛、ニツケル等
の金属のドラム、およびシート、あるいはアルミ
ニウム、銅、金、銀、白金、パラジウム、チタ
ン、ニツケル−クロム、ステンレス、銅−インジ
ウム等の金属蒸着、導電性金属化合物(例、
In2O3、SnO2)の蒸着、金属箔のラミネート、又
はカーボンブラツク、導電性金属化合物(例、
In2O3、Sb2O3−SnO2、SnO2、TiOx)粉、金属
粉などを結着樹脂に分散し塗布する方法などで表
面を導電処理したドラム状、シート状、プレート
状などの紙、プラスチツクおよびガラス等が使用
される。
Supports with conductive surfaces used in the present invention include drums and sheets of metals such as aluminum, copper, iron, zinc, and nickel, or aluminum, copper, gold, silver, platinum, palladium, titanium, and nickel-chromium. , stainless steel, metal vapor deposition such as copper-indium, conductive metal compounds (e.g.
In 2 O 3 , SnO 2 ) vapor deposition, metal foil laminates, or carbon black, conductive metal compounds (e.g.
In 2 O 3 , Sb 2 O 3 −SnO 2 , SnO 2 , TiOx) powder, metal powder, etc., are dispersed in a binder resin and coated to make the surface conductive. Paper, plastic and glass etc. are used.

本発明に使用する電荷輸送層は電荷輸送材料と
してはピレン、N−エチルカルバゾール、N−イ
ソプロピルカルバゾール、2,5−ビス(P−ジ
エチルアミノフエニル)−1,3,4−オキサジ
アゾール、1−フエニル−3−(P−ジエチルア
ミノスチリル)−5−(P−ジエチルアミノフエニ
ル)ピラゾリン、1−〔ピリジル−(2)〕−3−
(P−ジエチルアミノスチリル)−5−(P−ジエ
チルアミノフエニル)ピラゾリン、1−〔キノリ
ル−(2)〕−3−(P−ジエチルアミノスチリル)
−5−(P−ジエチルアミノフエニル)ピラゾリ
ン、トリフエニルアミン、N,N′−ジフエニル
N−N′−ビス(3−メチルフエニル)−〔1,1′−
ビフエニル〕−4,4′−ジアミン、4−ジエチル
アミノベンズアルデヒド−1,1−ジフエニルヒ
ドラゾン、4,4′−ベンジリデン−ビス(N,
N′−ジエチル−m−トルイジン、ポリ−N−ビ
ニルカルバゾール、ハロゲン化ポリ−N−ビニル
カルバゾール、ポリビニルピレン、ポリピニルア
ントラセン、ポリビニルアクリジンポリ−9−ビ
ニルフエニルアントラセン、ピレン−ホルムアル
デヒド樹脂、エチルカルゾール〜ホルムアルデヒ
ド樹脂などが挙げられる。これらの電荷輸送物質
は単独あるいは2種類以上混合して用いることが
できる。電荷輸送物質はここに記載したものに限
定されるものではない。電荷輸送層に使用される
結着樹脂としては、アクリル系樹脂、メタクリル
系樹脂、ポリスチレン、ポリエステル、ポリアリ
レート、ポリサルフオン、ポリカーボネイトなど
の汎用樹脂、ポリ−N−ビニルカルバゾールなど
の正孔輸送性ポリマーを用いることができる。な
お、導電性支持体と電荷輪送層の間に接着層を設
けてもよい。
In the charge transport layer used in the present invention, charge transport materials include pyrene, N-ethylcarbazole, N-isopropylcarbazole, 2,5-bis(P-diethylaminophenyl)-1,3,4-oxadiazole, 1 -Phenyl-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl-(2)]-3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[quinolyl-(2)]-3-(P-diethylaminostyryl)
-5-(P-diethylaminophenyl)pyrazoline, triphenylamine, N,N'-diphenylN-N'-bis(3-methylphenyl)-[1,1'-
biphenyl]-4,4'-diamine, 4-diethylaminobenzaldehyde-1,1-diphenylhydrazone, 4,4'-benzylidene-bis(N,
N'-diethyl-m-toluidine, poly-N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyvinylpyrene, polypynylanthracene, polyvinylacridine poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethyl Examples include calsol to formaldehyde resins. These charge transport materials can be used alone or in combination of two or more. Charge transport materials are not limited to those described here. As the binder resin used for the charge transport layer, general-purpose resins such as acrylic resin, methacrylic resin, polystyrene, polyester, polyarylate, polysulfone, and polycarbonate, and hole-transporting polymers such as poly-N-vinylcarbazole are used. Can be used. Note that an adhesive layer may be provided between the conductive support and the charge transport layer.

本発明に使用する電荷発生層は、電荷発生材料
として前記スクエアリン酸誘導体を使用し、これ
を結着樹脂にたとえば5重量%から90重量%、好
ましくは20重量%から50重量%を分散したもので
ある。スクエアリン酸誘導体の粒径としては
0.02μmから3μm、好ましくは0.05μmから1μmが
適当である。電荷発生層の結着樹脂としてはポリ
ビニルブチラール、ポリ酢酸ビニル、ポリエステ
ル、ポリカーボネイト、フエノキシ樹脂、アクリ
ル系樹脂、ポリアクリルアミド、ポリアミド、ポ
リビニルピリジン樹脂、カゼイン、ポリビニルア
ルコール、ポリ−N−ビニルカルバゾールなどの
各種樹脂類が使用される。
The charge generation layer used in the present invention uses the above-mentioned squaric acid derivative as a charge generation material, and disperses it in a binder resin in an amount of, for example, 5% to 90% by weight, preferably 20% to 50% by weight. It is something. The particle size of squaric acid derivatives is
A suitable range is 0.02 μm to 3 μm, preferably 0.05 μm to 1 μm. Various binder resins for the charge generation layer include polyvinyl butyral, polyvinyl acetate, polyester, polycarbonate, phenoxy resin, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine resin, casein, polyvinyl alcohol, and poly-N-vinylcarbazole. Resins are used.

本発明に使用する低抵抗表面保護層は絶縁性樹
脂中に導電性金属酸化物の微細粒子を分散した層
であり、導電性金属酸化物としては電気抵抗が
109Ωcm以下で白色、灰色もしくは青白色を呈す
る平均粒径が0.3μm以下、好ましくは0.1μm以下
の微細粒子が適当であり、例えば、酸化アンチモ
ン、酸化スズ、酸化チタン、酸化インジウム、酸
化スズとアンチモンあるいは酸化アンチモンとの
固溶体などの単体又はこれら混合物、あるいは単
一粒子中にこれら金属酸化物を混合したもの、あ
るいは被覆した物が挙げられる。中でも酸化スズ
とアンチモン、あるいは酸化アンチモンとの固溶
体、又は酸化スズは電気抵抗を低くすることが可
能でかつ保護層を実質的に透明とすることが可能
であり、好ましく用いられる(特開昭57−30847
号、特開昭57−128344号公報参照)。
The low-resistance surface protective layer used in the present invention is a layer in which fine particles of a conductive metal oxide are dispersed in an insulating resin.
Fine particles with an average particle diameter of 0.3 μm or less, preferably 0.1 μm or less and exhibiting white, gray, or blue-white color at 10 9 Ωcm or less are suitable, such as antimony oxide, tin oxide, titanium oxide, indium oxide, and tin oxide. Examples include a single particle such as a solid solution of antimony and antimony oxide, a mixture thereof, a mixture of these metal oxides in a single particle, or a coating thereof. Among them, tin oxide and antimony, a solid solution of antimony oxide, or tin oxide are preferably used because they can lower the electrical resistance and make the protective layer substantially transparent (Japanese Patent Laid-Open No. 57 −30847
No., JP-A-57-128344).

保護層はその電気抵抗が109〜1014Ω・cmとなる
様構成することが望ましい。電気抵抗が1014Ω・
cm以上となる残留電位が上昇しカブリの多い複写
物となつてしまい、又109Ω・cm以下になると画
像のボケ、解像力の低下が生じてしまう。又保護
層は像露光に用いられる光の通過を実質上妨げな
い様、構成されなければならない。用いる導電性
金属酸化物の粒径が大きすぎると、保護層が不透
明になり、減感、像濃度の低下が生じてしまう。
粒径としては像露光に用いる光の波長(0.42〜
0.8μm)以下、好ましくはその2分の1以下の粒
径、即ち0.3μm以下、好ましくは0.1μm以下の粒
子を用いることが望ましい。又絶縁性樹脂として
は、電気絶縁性の透明樹脂で湿度あるいは温度等
の変化により電気抵抗が変化しにくい樹脂を用い
ることが望ましい。絶縁性樹脂としては、ポリア
ミド、ポリウレタン、ポリエステル、エポキシ樹
脂、ポリケトン、ポリカーボネイトなどの縮合樹
脂や、ポリビニルケトン、ポリスチレン、ポリア
クリルアミドのようなビニル重合体などが挙げら
れ、中でもポリウレタンが被膜強度、化学的安定
性の点で好ましく用いられる。導電性金属酸化物
の微細粒子は絶縁性樹脂に対して20重量%から60
重量%まで分散するのが望ましい。20重量%以下
では、電気抵抗が1014Ω・cm以上となつてしま
い、60重量%以上では保護層の被膜強度が著しく
低下してしまう。したがつて、好ましくは30重量
%から50重量%の範囲で分散が行なわれる。
The protective layer is desirably constructed so that its electrical resistance is 10 9 to 10 14 Ω·cm. Electrical resistance is 10 14 Ω・
When the residual potential exceeds 10 9 Ω·cm, the residual potential increases, resulting in a copy with a lot of fog, and when it becomes below 10 9 Ω·cm, the image becomes blurred and the resolution decreases. The protective layer must also be constructed so as not to substantially block the passage of light used for imagewise exposure. If the particle size of the conductive metal oxide used is too large, the protective layer becomes opaque, resulting in desensitization and a decrease in image density.
The particle size is determined by the wavelength of the light used for image exposure (0.42~
It is desirable to use particles having a particle size of 0.8 μm or less, preferably one half or less, that is, 0.3 μm or less, preferably 0.1 μm or less. As the insulating resin, it is desirable to use an electrically insulating transparent resin whose electrical resistance does not easily change due to changes in humidity or temperature. Examples of insulating resins include condensation resins such as polyamide, polyurethane, polyester, epoxy resin, polyketone, and polycarbonate, and vinyl polymers such as polyvinyl ketone, polystyrene, and polyacrylamide. It is preferably used in terms of stability. The fine particles of conductive metal oxide are 20% to 60% by weight of the insulating resin.
It is desirable to disperse up to % by weight. If it is less than 20% by weight, the electrical resistance will be 10 14 Ω·cm or more, and if it is more than 60% by weight, the film strength of the protective layer will be significantly reduced. Dispersion is therefore preferably carried out in the range 30% to 50% by weight.

又、低抵抗表面保護層と電荷発生層の間に更に
電荷注入阻止補助層を設けても良い。この補助層
形成材料としては、シランカツプリング剤、チタ
ンカツプリング剤等のカツプリング剤、有機ジル
コニウム化合物、有機チタン化合物等の有機金属
化合物、ポリエステル、ポリビニルブチラール等
の汎用樹脂などが挙げられる。
Further, a charge injection blocking auxiliary layer may be further provided between the low resistance surface protective layer and the charge generation layer. Examples of the auxiliary layer forming material include coupling agents such as silane coupling agents and titanium coupling agents, organometallic compounds such as organic zirconium compounds and organic titanium compounds, and general-purpose resins such as polyester and polyvinyl butyral.

各層の膜厚は、電荷輸送層は5μm〜40μm、好
ましく8μm〜30μmが適当であり、電荷発生層は
5μm以下、好ましくは0.1μm〜3μm、低抵抗表面
保護層は0.5μm〜20μm、好ましくは1μm〜10μm
が適当である。
The appropriate thickness of each layer is 5 μm to 40 μm for the charge transport layer, preferably 8 μm to 30 μm, and the appropriate thickness for the charge generation layer.
5μm or less, preferably 0.1μm to 3μm, low resistance surface protective layer 0.5μm to 20μm, preferably 1μm to 10μm
is appropriate.

〔実施例〕〔Example〕

本発明の実施例を以下に示す。 Examples of the present invention are shown below.

実施例 1 アルミニウムを蒸着したPET基板上に、下記
材料系より成る電荷輸送層、電荷発発生層、表面
保護層を順次スプレー塗布にて積層して感光体を
作製した。
Example 1 A photoreceptor was prepared by sequentially laminating a charge transport layer, a charge generation layer, and a surface protection layer made of the following materials by spray coating on a PET substrate on which aluminum was vapor-deposited.

電荷輸送層 ポリカーボネート樹脂 50重量部 (20μ) (帝人製:パイライト)1−フエニ
ル−3−(P−ジエチルアミノスチリル)−5−
(P−ジエチルアミノフエニル)ピラゾリン
50重量部 電荷発生層 スクエアリン酸誘導体 (1μ) (構造式()) 4.0重量部 ポリエステル樹脂(デユポン製:アドヘツシ
ブ49000) 60重量部 表面保護層 酸化スズ粉末 40重量部 (2μ) ポリウレタン樹脂 60重量部 この感光体を市販の静電複写紙試験装置(川口
電機:エレクトロスタテイツク・ペーパー・アナ
ライザーSP−428)を用いて、+7kVのコロナ放
電を行なつて正帯電させ、1秒間暗所に放置した
後の表面電位VDDPを測定し、5ルツクスのタング
ステン光を3秒間照射して、その間にVDDPが半減
するのに要する光量E1/2を求めた。更にこの後、
200ルツクスの光を0.5秒照射してさらに減衰さ
せ、残留電位RPを求めた。この測定を連続して
1000回行ない、1サイクル目と1000サイクル目の
VDDP、RPの差をΔVDDP(C)、ΔRP(C)として、サイ
クル安定性を表わした。又、同様の測定を10℃、
20%RHの環境下と30℃、80%RHの環境下にて
行ない、1サイクル目のVDDP、RPの差をΔVDDP
(E)、ΔRP(E)として、環境安全性を表わした。
Charge transport layer Polycarbonate resin 50 parts by weight (20μ) (Teijin: Pyrite) 1-phenyl-3-(P-diethylaminostyryl)-5-
(P-diethylaminophenyl)pyrazoline
50 parts by weight Charge generation layer Squaric acid derivative (1μ) (Structural formula ()) 4.0 parts by weight Polyester resin (DuPont: Adhesive 49000) 60 parts by weight Surface protective layer Tin oxide powder 40 parts by weight (2μ) Polyurethane resin 60 parts by weight Using a commercially available electrostatic copying paper testing device (Kawaguchi Electric: Electrostatic Paper Analyzer SP-428), this photoreceptor was positively charged by +7kV corona discharge, and left in a dark place for 1 second. After that, the surface potential V DDP was measured, and tungsten light of 5 lux was irradiated for 3 seconds, and the amount of light E1/2 required for V DDP to be halved during that time was determined. Furthermore, after this,
The residual potential RP was determined by irradiating 200 lux light for 0.5 seconds to further attenuate it. Continuously perform this measurement.
Perform 1000 times, 1st cycle and 1000th cycle
Cycle stability was expressed by using the difference between V DDP and RP as ΔV DDP (C) and ΔRP (C). Also, similar measurements were carried out at 10℃.
The difference between V DDP and RP in the first cycle was calculated as ΔV DDP under 20%RH environment and 30℃, 80%RH environment.
Environmental safety was expressed as (E) and ΔRP(E).

本実施例中の各測定値を以下に示す。 Each measured value in this example is shown below.

VDDP:1000V E1/2:1.0ルツクス・秒 RP:80V ΔVDDP(C):100V ΔRP(C):30V ΔVDDP(E): 70V ΔRP(E):30V 即ち、十分な帯電性と、高い感度、及びすぐれ
たサイクル安定性、環境安全性を有しているとい
える。
V DDP : 1000V E1/2: 1.0 Lux・sec RP: 80V ΔV DDP (C): 100V ΔRP(C): 30V ΔV DDP (E): 70V ΔRP(E): 30V In other words, sufficient chargeability and high It can be said that it has high sensitivity, excellent cycle stability, and environmental safety.

比較例 1 実施例1における電荷発生層のスクエアリン酸
誘導体の代わりにβ型銅フタロシアニンを用いた
以外は実施例1と同様に感光体を作製し、同様の
測定を行なつたところ、下記の値を示した。
Comparative Example 1 A photoreceptor was prepared in the same manner as in Example 1 except that β-type copper phthalocyanine was used instead of the squaric acid derivative in the charge generation layer in Example 1, and the same measurements were performed. The value was shown.

VDDP:650V E1/2:10.5ルツクス・秒 RP:80V ΔVDDP(C):300V ΔRP(C):30V ΔVDDP(E):200V ΔRP(E):50V 帯電性が低く、かつサイクル、環境の両安定性
に問題があることを示している。
V DDP : 650V E1/2: 10.5 Lux・sec RP: 80V ΔV DDP (C): 300V ΔRP(C): 30V ΔV DDP (E): 200V ΔRP(E): 50V Low chargeability, cycle, environment This indicates that there is a problem with both stability.

比較例 2 実施例1における表面保護層の代わりに、厚さ
1μのメチルセルロースを設けた以外は実施例1
と同様に感光体を作製し、同様の測定を行なつた
ところ下記の特性を示した。
Comparative Example 2 Instead of the surface protective layer in Example 1, the thickness
Example 1 except that 1μ of methyl cellulose was provided.
A photoreceptor was prepared in the same manner as above, and the same measurements were performed, and it showed the following characteristics.

VDDP:900V E1/2:1.1ルツクス・秒 RP:90V ΔVDDP(C):180V ΔRP(C):50V ΔVDDP(E):310V ΔRP(E):70V 特に環境安定性に問題があることを示してい
る。
V DDP : 900V E1/2: 1.1 Lux・sec RP: 90V ΔV DDP (C): 180V ΔRP(C): 50V ΔV DDP (E): 310V ΔRP(E): 70V In particular, there is a problem with environmental stability. It shows.

実施例 2 実施例1における表面保護層を酸化スズ−酸化
アンチモン固溶体/ポリウレタン樹脂=35/65
(重量部)に変更した以外は、実施例1と同様に
感光体を作製し、測定したが、実施例1の感光体
と同様の安定した特性を示した。
Example 2 The surface protective layer in Example 1 was made of tin oxide-antimony oxide solid solution/polyurethane resin = 35/65
A photoreceptor was produced and measured in the same manner as in Example 1, except that (parts by weight) was changed, and it showed the same stable characteristics as the photoreceptor of Example 1.

VDDP:970V E1/2:1.2ルツクス・秒 RP:75V ΔVDDP(C):120V ΔRP(C):40V ΔVDDP(E): 80V ΔRP(E):30V 〔発明の効果〕 本発明によれば、すぐれた帯電性、感度、サイ
クル安定性ならびに環境安定性を有する電子写真
用感光体が得られる。
V DDP : 970V E1/2: 1.2 Lux・sec RP: 75V ΔV DDP (C): 120V ΔRP(C): 40V ΔV DDP (E): 80V ΔRP(E): 30V [Effects of the Invention] According to the present invention Thus, an electrophotographic photoreceptor having excellent charging properties, sensitivity, cycle stability, and environmental stability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ本発明の電子写真用
感光体の具体例の断面図である。 10……低抵抗表面保護層、11……電荷発生
層、12……電荷輸送層、13……導電性支持
体、14……導電性金属酸化物、15……電荷発
生材料、20……接着層、30……電荷注入阻止
補助層。
1 to 4 are sectional views of specific examples of the electrophotographic photoreceptor of the present invention. DESCRIPTION OF SYMBOLS 10... Low resistance surface protective layer, 11... Charge generation layer, 12... Charge transport layer, 13... Conductive support, 14... Conductive metal oxide, 15... Charge generation material, 20... Adhesive layer, 30...Charge injection blocking auxiliary layer.

Claims (1)

【特許請求の範囲】 1 導電性支持体上に電荷輸送層、電荷発生層、
低抵抗表面保護層が順次積層されている電子写真
用感光体であつて、 該電荷発生層中に下記一般式() で表わされるスクエアリン酸誘導体が分散されて
いること;及び 該低抵抗表面保護層が、絶縁性樹脂中に導電性
金属酸化物の微細粒子を分散した層から成り、該
導電性金属酸化物が、電気抵抗109Ω・cm以下、
平均粒径0.3μm以下の粒子であることを特徴とす
る電子写真用感光体。
[Claims] 1. A charge transport layer, a charge generation layer,
An electrophotographic photoreceptor in which low-resistance surface protective layers are sequentially laminated, the charge generation layer having the following general formula () A squaric acid derivative expressed by , electrical resistance 109 Ω・cm or less,
An electrophotographic photoreceptor characterized by having particles having an average particle size of 0.3 μm or less.
JP22557784A 1984-10-26 1984-10-26 Electrophotographic sensitive body Granted JPS61103154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22557784A JPS61103154A (en) 1984-10-26 1984-10-26 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22557784A JPS61103154A (en) 1984-10-26 1984-10-26 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61103154A JPS61103154A (en) 1986-05-21
JPH0548911B2 true JPH0548911B2 (en) 1993-07-22

Family

ID=16831487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22557784A Granted JPS61103154A (en) 1984-10-26 1984-10-26 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61103154A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656502B2 (en) * 1986-07-31 1994-07-27 富士ゼロックス株式会社 Electrophotographic photoconductor
JPS63113465A (en) * 1986-10-30 1988-05-18 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS63113468A (en) * 1986-10-30 1988-05-18 Fuji Xerox Co Ltd Electrophotographic sensitive body
JP2536149B2 (en) * 1989-05-16 1996-09-18 富士ゼロックス株式会社 Electrophotographic photoreceptor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190827A (en) * 1975-01-23 1976-08-09
JPS5255643A (en) * 1975-09-15 1977-05-07 Ibm Method of producing electrophotographic image forming element
JPS57144558A (en) * 1981-03-02 1982-09-07 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5843460A (en) * 1981-09-10 1983-03-14 Tomoegawa Paper Co Ltd Electrophotographic receptor
JPS6132850A (en) * 1984-07-25 1986-02-15 Takasago Corp Electrophotographic sensitive body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190827A (en) * 1975-01-23 1976-08-09
JPS5255643A (en) * 1975-09-15 1977-05-07 Ibm Method of producing electrophotographic image forming element
JPS57144558A (en) * 1981-03-02 1982-09-07 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5843460A (en) * 1981-09-10 1983-03-14 Tomoegawa Paper Co Ltd Electrophotographic receptor
JPS6132850A (en) * 1984-07-25 1986-02-15 Takasago Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS61103154A (en) 1986-05-21

Similar Documents

Publication Publication Date Title
JPH0259767A (en) Electrophotographic sensitive body
JPH0548911B2 (en)
JPS61103156A (en) Electrophotographic sensitive body
JPS61103153A (en) Electrophotographic sensitive body
JPH01179163A (en) Electrophotographic sensitive body
JPS615253A (en) Electrophotographic sensitive body
JPH01224770A (en) Photoconductive coating film and electrophotographic sensitive body using said coating film
JPS61103155A (en) Electrophotographic sensitive body
JP2536149B2 (en) Electrophotographic photoreceptor
JPH0656502B2 (en) Electrophotographic photoconductor
JPH087447B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JPH0623858B2 (en) Electrophotographic photoconductor
JP2595234B2 (en) Electrophotographic photoreceptor
JPS62275274A (en) Electrophotographic sensitive body
JPH024271A (en) Electrophotographic sensitive body
JPH05289376A (en) Electrophotographic sensitive body
EP0161005B1 (en) Novel squarium compounds, process for preparing the same and electrophotographic photoreceptors containing the same
JPH07109518B2 (en) Electrophotographic photoconductor
JPS6333748A (en) Electrophotographic sensitive material
JPH05119491A (en) Electrophotographic sensitive material
JPS62275270A (en) Electrophotographic sensitive body
JPS61137154A (en) Electrophotographic sensitive body
JPH07333867A (en) Electrophotographic photoreceptor
JPH0833660B2 (en) Photoconductor