JPS6333748A - Electrophotographic sensitive material - Google Patents

Electrophotographic sensitive material

Info

Publication number
JPS6333748A
JPS6333748A JP17661786A JP17661786A JPS6333748A JP S6333748 A JPS6333748 A JP S6333748A JP 17661786 A JP17661786 A JP 17661786A JP 17661786 A JP17661786 A JP 17661786A JP S6333748 A JPS6333748 A JP S6333748A
Authority
JP
Japan
Prior art keywords
layer
electric charge
weight
charge generating
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17661786A
Other languages
Japanese (ja)
Inventor
Kiyokazu Mashita
清和 真下
Kyoichi Sakama
享一 坂間
Kazuyuki Nakamura
和行 中村
Hideko Yamazaki
山崎 秀子
Tomoaki Takahashi
高橋 倫明
Ryosaku Igarashi
良作 五十嵐
Kentaro Ueishi
健太郎 上石
Masahiko Hozumi
穂積 正彦
Yasuo Sakaguchi
泰生 坂口
Ichiro Takegawa
一郎 竹川
Hisashi Akaha
赤羽 久史
Toshiyuki Yano
矢野 敏行
Koichi Yamamoto
孝一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP17661786A priority Critical patent/JPS6333748A/en
Publication of JPS6333748A publication Critical patent/JPS6333748A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Abstract

PURPOSE:To obtain the titled material having a stabilized charge potential and residual potential by laminating an electric charge transfer layer, an electric charge generating layer and a surface protective layer having a low resistance in this order, and by dispersing one kind of the compd. selected from the group composed of a specific phthalocyanine derivative in the electric charge generating layer. CONSTITUTION:The titled material is formed by laminating the electric charge transfer layer 12, the electric charge generating layer 11 and the low resistance surface protective layer 10 on the conductive substrate 13 in this order, and the one kind of the compd. selected from the group comprising the phthalocyanine derivatives shown by formula (I), (II), (III) or (IV) is dispersed in the electric charge generating layer. The electric charge generating layer comprises the phthalocyanine derivative as an electric charge generating substance, and is formed by dispersing said derivative in a binding resin in an amount of 5-90wt%, preferably 20-50wt% on the weight basis of the total body. The particle size of the phthalocyanine derivative is 0.02-3mum, preferably, 0.05-1mum. The film thickness of each layers is 5-40mum in the electric charge transfer layer, <=5mum in the electric charge generating layer and 0.5-20mum in the surface protective layer having the low resistance, respectively. Thus, the titled body having the stabilized charge potential, even in case of a repeated use, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真用感光体に関し、特に電子写真用感
光体の電荷発生層における電荷発生材料、並びに低抵抗
表面保護層に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor, and particularly relates to a charge generating material in a charge generation layer of an electrophotographic photoreceptor, and a low resistance surface protective layer. .

(従来の技術) 従来、積層型有機感光体の構成として電荷発生層を電荷
輸送層の下層として積層する形態が数多く見られる。現
在、一般に見い出されている電荷輸送層は正孔輸送性の
ものが殆んどであるため、このような構成の感光体は負
帯電で用いることが必要である。このため、負帯電によ
る高濃度のオゾン発生、コロトロンの帯電ムラ等、感光
体にインパクトを与える種々の欠点を有していた。この
欠点を解消するため、電荷発生層を′・電荷輸送層の上
層として積層し、正帯電で使用し、更に機械強度、変質
等の改善をはかるため、最上層として低抵抗表面保護層
を積層した構成が試みられた。しかしこのような構成の
感光体は、充分表帯電性が得られず、低いコントラスト
・ポテンシャルしか得られない、あるいは帯電性が充分
の場合でも、光減衰が十分でなく残留電位が高い、温湿
度の変化によシ帯電電位、残留電位が変動してしまう、
繰り返し使用時の帯電電位、残留電位が変化してしまう
、表面保護層をつける前に比べて感度低下が大きい、な
ど種々の欠点を有していた。
(Prior Art) Conventionally, there have been many configurations of laminated organic photoreceptors in which a charge generation layer is laminated as a lower layer of a charge transport layer. Since most of the charge transport layers commonly found at present have hole transport properties, it is necessary to use a photoreceptor having such a configuration with negative charging. For this reason, it has had various drawbacks that have an impact on the photoreceptor, such as generation of high concentration ozone due to negative charging and uneven charging of the corotron. In order to overcome this drawback, a charge generation layer is laminated as an upper layer of the charge transport layer and used for positive charging, and a low resistance surface protection layer is laminated as the top layer in order to improve mechanical strength and deterioration. A similar configuration was attempted. However, a photoreceptor with such a structure does not have sufficient surface chargeability and only a low contrast potential can be obtained, or even if chargeability is sufficient, light attenuation is insufficient and the residual potential is high, and the temperature and humidity are high. The charged potential and residual potential fluctuate due to changes in
It had various drawbacks, such as changes in charging potential and residual potential during repeated use, and a large decrease in sensitivity compared to before applying a surface protective layer.

(発明が解決しようとする問題点) 本発明の目的はこの様な欠点のない電子写真用感光体、
すなわち、帯電電位の低下、高残留電位、温湿度の影響
、感度低下を防止し、繰り返し使用時の帯電電位、残留
電位の安定した電子写真用感光体を提供することである
(Problems to be Solved by the Invention) The purpose of the present invention is to provide an electrophotographic photoreceptor that does not have such drawbacks.
That is, it is an object of the present invention to provide an electrophotographic photoreceptor that prevents a decrease in charging potential, a high residual potential, the influence of temperature and humidity, and a decrease in sensitivity, and has stable charging potential and residual potential during repeated use.

(問題点を解決するための手段) 本発明の目的は、電荷発生層の電荷発生材料として特定
のフタロシアニン誘導体を用いることにより達成するこ
とができる。更に、本発明の目的は、電荷発生層の電荷
発生材料として特定のフタロシアニン誘導体を用いると
ともに、電荷発生層の上に特定の導電性金属酸化物の微
細粒子を絶縁性樹脂中に分散させて成る低抵抗表面保護
層を設けることによシ一層良く達成することができる。
(Means for Solving the Problems) The objects of the present invention can be achieved by using a specific phthalocyanine derivative as the charge generation material of the charge generation layer. Furthermore, the object of the present invention is to use a specific phthalocyanine derivative as a charge generation material of a charge generation layer, and to disperse fine particles of a specific conductive metal oxide in an insulating resin on the charge generation layer. This can be better achieved by providing a low resistance surface protective layer.

本発明は、導電性支持体上に電荷輸送層、電荷発生層、
低抵抗表面保護層が順次積層され、電荷発生層中に下記
構造式(I) 、 (n) 、価)、又は(社)で表わ
されるフタロシアニン誘導体の群からなる群から選択し
た1種が分散されていることを特徴とする電子写真用感
光体である。
The present invention provides a charge transport layer, a charge generation layer, a charge transport layer and a charge generation layer on a conductive support.
Low-resistance surface protective layers are sequentially laminated, and one type selected from the group consisting of phthalocyanine derivatives represented by the following structural formulas (I), (n), (N), or (Company) is dispersed in the charge generation layer. This is an electrophotographic photoreceptor characterized by:

構造式(1) 構造式(n) 構造式(OI) 構造式債) 本発明においては、mll全発生層中前記のフタロシア
ニン誘導体が含有されていればよいのではなく、分散さ
れていることが必要であって、そのようにして目的を達
成することができる。さらに、前記のフタロシアニン誘
導体は結着樹脂中に分散されていることが好ましい。
Structural formula (1) Structural formula (n) Structural formula (OI) Structural formula bond) In the present invention, it is not sufficient that the above-mentioned phthalocyanine derivative is contained in the entire generation layer of the ml, but it is preferable that the phthalocyanine derivative be dispersed. It is necessary and in this way the purpose can be achieved. Further, it is preferable that the phthalocyanine derivative is dispersed in the binder resin.

本発明に使用する導電性表面を有する支持体としてはア
ルミニウム、銅、鉄、亜鉛、ニッケル等の金属のドラム
、およびノート、あるいはアルミニウム、銅、金、銀、
白金、パラジウム、チタン、ニッケルークロム、ステン
レス、銅−インジウム等の金属蒸着、導電性金属化合物
(例、工n203、SnO□)の蒸着、金属箔のラミネ
ート、又はカーゼンブラック、導電性金属化合物(例、
In2O5,5b203− Sl2O3、SnO2、T
10x)粉、金属粉などを結着樹脂に分散し塗布する方
法などで表面を導電処理したPラム状、シート状、プレ
ート状などの紙、プラスチックおよびガラス等が使用さ
れる。
Supports with conductive surfaces used in the present invention include drums and notebooks made of metals such as aluminum, copper, iron, zinc, and nickel;
Vapor deposition of metals such as platinum, palladium, titanium, nickel-chromium, stainless steel, copper-indium, etc., vapor deposition of conductive metal compounds (e.g., N203, SnO□), lamination of metal foils, or casen black, conductive metal compounds (example,
In2O5,5b203- Sl2O3, SnO2, T
10x) Paper, plastic, glass, etc. in the form of Plam, sheet, or plate whose surface has been subjected to conductive treatment by dispersing powder, metal powder, etc. in a binder resin and applying it are used.

本発明に使用する電荷輸送層は電荷輸送材料とシテハぎ
レン、N−エチルカルノ々ゾール、N−1ソプロピルカ
ルノ々ゾール、2,5−ビス(p−ジエチルアミノフェ
ニル)−1,3,4−オキサジアゾール、1−フェニル
−3−(P−ジエチルアミノスチリル)−5−(P−ジ
エチルアミノフェニル)ピラゾリン、1−(ピリジル−
(2))−3−(P−ジエチルアミノスチリル)−5−
(P−ジエチルアミノフェニル)ピラゾリン、1−〔キ
ノリル−(2))−3−(P−ジエチルアミノスチリル
)−5−(P−ジエチルアミノフェニル)ピラゾリン、
トリフェニルアミン、N、N’−ジフェニルN 、 N
’−ビス(3−メチルフェニル)−(1,1’−ビフェ
ニル:)−4,4’−ジアミン、4−ジエチルアミノス
チリルデヒr−1,1−ジフェニルヒrラゾン 4 、
4/−ヘンI+)デンーピス(N 、 N’−ジエチル
−m−)ルイジン、ポリーN−ビニルカルノ々ゾール、
ハロゲン化ツリーN−ヒニルカルノ々ゾール、?リビニ
ルピレン、ポリビニルアントラセン、ポリビニルアクリ
ジンポリ−9−ビニルフェニルアントラセン、ビ)/ン
ーホルムアルデヒ)’ 樹Wt、エチルカルノ々ゾール
〜ホルムアルデヒP樹脂などが挙げられる。これらの電
荷輸送材料は単独あるいは2種類以上混合して用いるこ
とができる。′i?、荷輸送材料はここに記載したもの
に限定されるものではない。電荷輸送層に使用される結
着樹脂としては、アクリル系樹脂、メタクリル系樹脂、
ポリスチレン、ポリエステル、ポリアクリレート、ポリ
サル7オン、ポリカーゼネイトなどの汎用樹脂、ポリー
N−ピニルカルノ々ゾールなどの正孔輸送性ポリマーを
用いることができる。なお、導電性支持体と電荷輸送層
の間に接着層を設けてもよい。
The charge transport layer used in the present invention includes a charge transport material, cytehagylene, N-ethylcarnozole, N-1sopropylcarnozole, 2,5-bis(p-diethylaminophenyl)-1,3,4- Oxadiazole, 1-phenyl-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-(pyridyl-
(2))-3-(P-diethylaminostyryl)-5-
(P-diethylaminophenyl)pyrazoline, 1-[quinolyl-(2))-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline,
Triphenylamine, N, N'-diphenyl N, N
'-bis(3-methylphenyl)-(1,1'-biphenyl:)-4,4'-diamine, 4-diethylaminostyryldehyr-1,1-diphenylhyrazone 4,
4/-hen I+) denupis (N, N'-diethyl-m-)luidine, poly N-vinylcarnozole,
Halogenated tree N-hinylcarnozole, ? Examples include ribinylpyrene, polyvinylanthracene, polyvinylacridine poly-9-vinylphenylanthracene, bi)/-formaldehydehyde Wt, and ethyl carnosol to formaldehy P resins. These charge transport materials can be used alone or in a mixture of two or more. 'i? However, the cargo transportation materials are not limited to those described herein. Binder resins used in the charge transport layer include acrylic resins, methacrylic resins,
General-purpose resins such as polystyrene, polyester, polyacrylate, polysal7one, and polycarzenate, and hole-transporting polymers such as polyN-pinylcarnozole can be used. Note that an adhesive layer may be provided between the conductive support and the charge transport layer.

本発明に使用する電荷発生層は、電荷発生材料として前
記フタロシアニン誘導体を使用し、これを結着樹脂中に
全体の5重1に%から90重量%、好ましくは20重量
%から50重量%の割合で分散したものである。フタロ
シアニン誘導体の粒径としては0.02μmから3μm
1好ましくは0.05μmから1μmが適当である。電
荷発生層の結着樹脂としてはポリビニルブチラール、ポ
リ酢酸ビニル、ポリエステル、ポリカーダネイト、フェ
ノキシ樹脂、アクリル系樹脂、ポリアクリルアミド、ポ
リアミド、ポリビニルピリジン樹脂、カゼイン、ホl)
 ビニルアルコール、ポリーN−ビニルカルノセゾール
などの各種樹脂類が使用される。
The charge generation layer used in the present invention uses the above-mentioned phthalocyanine derivative as a charge generation material, and contains the phthalocyanine derivative in a binder resin in an amount of 90% by weight, preferably 20% to 50% by weight. It is distributed in proportion. The particle size of the phthalocyanine derivative is 0.02 μm to 3 μm.
1, preferably 0.05 μm to 1 μm. Binder resins for the charge generation layer include polyvinyl butyral, polyvinyl acetate, polyester, polycarbonate, phenoxy resin, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine resin, casein, hol).
Various resins are used, such as vinyl alcohol and poly N-vinylcarnocesol.

本発明に使用する低抵抗表面保護層は絶縁性樹脂中に導
電性金属酸化物の微細粒子を分散した1台であり、導電
性金属酸化物としては電気抵抗が1090国以下で白色
、灰色もしくは青白色を呈する平均粒径が0.3μm以
下、好ましくは0.1μm以下の微細粒子が適当でらり
、例えば、酸化アンチモン、酸化スズ、酸化チタン、酸
化インジウム、酸化スズとアンチモンあるいは酸化アン
チモンとの固溶体などの単体又はこれら混合物、するい
は単一粒子中にこれら金属酸化物を混合したもの、ある
いは被覆した物が挙げられる。中でも酸化スズとアンチ
モン、ろるいは酸化アンチモンとの固溶体、又は酸化ス
ズは電気抵抗を低くすることが可能でかつ保護層を実質
的に透明とすることが可能でアシ、好ましく用いられる
(fF開昭57−30847号、特開昭57−1283
44号公報参照)。
The low resistance surface protective layer used in the present invention is one in which fine particles of a conductive metal oxide are dispersed in an insulating resin. Fine particles with an average particle diameter of 0.3 μm or less, preferably 0.1 μm or less that exhibit a blue-white color are suitable, such as antimony oxide, tin oxide, titanium oxide, indium oxide, tin oxide and antimony, or antimony oxide. These metal oxides may be used singly or as a mixture thereof, such as a solid solution of these metal oxides, or a mixture of these metal oxides in a single particle, or a coating thereof. Among them, tin oxide and antimony, a solid solution of antimony oxide, or tin oxide are preferably used because they can lower the electrical resistance and make the protective layer substantially transparent (fF opening). No. 57-30847, JP-A-57-1283
(See Publication No. 44).

保護層はその電気抵抗が109〜1014Ω・口となる
様構成することが望ましい。電気抵抗が10140・α
以上となると残留電位が上昇しカブリの多い複写物とな
ってしまい、又10Ω・α以下になると画像のダケ、解
像力の低下が生じてしまう。又保護層は像露光に用いら
れる光の通過を実質上妨げない様、構成されなければな
らない。用いる導電性金属酸化物の粒径が大きすぎると
、保護層が不透明になシ、減感、像濃度の低下が生じて
しまう。粒径としては像露光に用いる光の波長(0,4
2〜0.8μmn)以下、好ましくはその2分の1以下
の粒径、即ち0.3μm以下、好ましくは0.1μm以
下の粒子を用いることが望ましい。又絶縁性樹脂として
は、電気絶縁性の透明樹脂で湿度あるいは温度等の変化
によに電気抵抗が変化しにくい樹脂を用いることが望ま
しい。絶縁性樹脂としては、ポリアミP1?リウレタン
、ポリエステル、エポキシ樹脂、ポリケトン、ポリカー
ぜネイトなどの縮合樹脂や、ポリビニルケトン、ポリス
チレン、ポリアクリルアミドのようなビニル重合体など
が挙げられ、中でもポリウレタンが被膜強度、化学的安
定性の点で好ましく用いられる。導電性金属酸化物の微
細粒子は絶縁性樹脂に対して20重量%から60?1i
f1%まで分散するのが望ましい。20重量%以下では
、電気抵抗が10140・α以上となってしまい、60
重量−以上では保護層の被膜強度が著しく低下してしま
う。中でも30重量%から50重量%の範囲で分散を行
うのが好ましい。
The protective layer is desirably constructed so that its electrical resistance is 10 9 to 10 14 Ω. Electrical resistance is 10140・α
If it is more than 10 Ω·α, the residual potential will increase, resulting in a copy with a lot of fog, and if it is less than 10Ω·α, the image will be blurred and the resolution will be lowered. The protective layer must also be constructed so as not to substantially block the passage of light used for imagewise exposure. If the particle size of the conductive metal oxide used is too large, the protective layer becomes opaque, desensitization, and a decrease in image density occur. The particle size is determined by the wavelength of light used for image exposure (0,4
It is desirable to use particles having a particle diameter of 2 to 0.8 μm (n) or less, preferably one-half or less, that is, 0.3 μm or less, preferably 0.1 μm or less. Further, as the insulating resin, it is desirable to use an electrically insulating transparent resin whose electrical resistance does not easily change due to changes in humidity or temperature. As an insulating resin, polyamide P1? Examples include condensation resins such as urethane, polyester, epoxy resin, polyketone, and polycarbonate, and vinyl polymers such as polyvinyl ketone, polystyrene, and polyacrylamide. Among them, polyurethane is preferable in terms of film strength and chemical stability. used. The conductive metal oxide fine particles range from 20% by weight to 60% by weight based on the insulating resin.
It is desirable to disperse up to f1%. If it is less than 20% by weight, the electrical resistance will be more than 10140·α, which is 60% by weight or less.
If the weight exceeds -, the strength of the protective layer will drop significantly. Among these, it is preferable to perform the dispersion in a range of 30% by weight to 50% by weight.

又、低抵抗表面保護層と電荷発生層の間に更に電荷注入
阻止補助層を設けても良い。この補助層形成材料として
は、シランカップリング剤、チタンカップリング剤等の
カップリング剤、有機ジルコニウム化合物、有機チタン
化合物等の有機金属化合物、ポリエステル、ポリビニル
ブチラール等の汎用樹脂などが挙げられる。
Further, a charge injection blocking auxiliary layer may be further provided between the low resistance surface protective layer and the charge generation layer. Examples of the auxiliary layer forming material include coupling agents such as silane coupling agents and titanium coupling agents, organometallic compounds such as organic zirconium compounds and organic titanium compounds, and general-purpose resins such as polyester and polyvinyl butyral.

各層の膜厚は、電荷輸送層は5μm〜40μm1好まし
くは8μm〜30μmが適当でろり、電荷発生層は5μ
m以下、好ましくは0.1μm〜3μm、低抵抗表面保
護層は0.5μm〜20μm1好ましくは1μm〜10
μmが適当である。
The appropriate thickness of each layer is 5 μm to 40 μm for the charge transport layer, preferably 8 μm to 30 μm, and 5 μm for the charge generation layer.
m or less, preferably 0.1 μm to 3 μm, and the low resistance surface protective layer has a thickness of 0.5 μm to 20 μm, preferably 1 μm to 10 μm.
μm is appropriate.

本発明の具体的構成を図面によシ説明すると、第1図は
本発明の基本的構成を示したもので、導電性支持体13
上に電荷輸送層12、電荷発生層11及び低抵抗性表面
保護層lOが順次積層されて電子写真用感光体が形成さ
れておシ、電荷発生層中に電荷発生材料15の微細粒子
が分散しておシ、また表面保護層中には導電性金属酸化
物14の微細粒子が分散している。第2図以下は本発明
の変形例を示したものであって、第2図は導電性支持体
13と電荷輸送層12との間に接着層20を設けたもの
を示すものであり、第3図は低抵抗表面保護層10と電
荷発生層11との間に電荷注入阻止補助層30を設けた
ものを示すものでめ9、第4図は導電性支持体13と電
荷輸送層12との間に接着層20を設け、さらに低抵抗
表面保護層10と電荷発生層11との間に電荷注入阻止
補助層30を設けたものである。
The specific structure of the present invention will be explained with reference to the drawings. FIG. 1 shows the basic structure of the present invention, in which a conductive support 13
A charge transport layer 12, a charge generation layer 11, and a low-resistivity surface protection layer 10 are sequentially laminated thereon to form an electrophotographic photoreceptor, and fine particles of a charge generation material 15 are dispersed in the charge generation layer. Furthermore, fine particles of conductive metal oxide 14 are dispersed in the surface protective layer. Figure 2 and the following diagrams show modified examples of the present invention, in which an adhesive layer 20 is provided between the conductive support 13 and the charge transport layer 12; 3 shows a structure in which a charge injection blocking auxiliary layer 30 is provided between a low resistance surface protection layer 10 and a charge generation layer 11, and FIG. An adhesive layer 20 is provided between the low resistance surface protection layer 10 and the charge generation layer 11, and a charge injection blocking auxiliary layer 30 is provided between the low resistance surface protection layer 10 and the charge generation layer 11.

(作用) 本発明の感光体は、帯電電位が900〜1180■と高
くて、十分な帯電性が得られる。光減量が大きく、正に
帯電した感光体に5ルツクスのタングステン光を3秒照
射して、表面電位が半減する光景で測定して10〜1.
フルックス・秒程度の光を照射すれば十分である。残留
電位も50〜80■と低い。温度、湿度が低温低湿度ろ
るいは高温高湿度であっても帯電電位が高く、残留電位
も大きくならないので、環境の変化によって帯電電位及
び残留電位が変動しない。また、繰シ返し使用しても帯
電電位及び残留電位が僅かにしか変化しないので安定し
ている。
(Function) The photoreceptor of the present invention has a high charging potential of 900 to 1180 square meters and can provide sufficient charging performance. A positively charged photoreceptor with a large photoreceptor is irradiated with 5 lux tungsten light for 3 seconds, and the surface potential is halved.
It is sufficient to irradiate light with a flux of seconds. The residual potential is also as low as 50-80μ. Even if the temperature and humidity are low and low humidity or high temperature and high humidity, the charging potential is high and the residual potential does not increase, so the charging potential and residual potential do not fluctuate due to changes in the environment. Furthermore, even if it is used repeatedly, the charged potential and residual potential change only slightly, so it is stable.

(実施例) 次に、本発明について実施例に基づいて洋しく説明する
が、本発明がこれら実施例によって限定されるものでは
々い。
(Examples) Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1 アルミニウム基板上に、下記材料系よシ成る電荷輸送層
、電荷発生層、表面保護層を順次積層して電子写真用感
光体を作成した。
Example 1 An electrophotographic photoreceptor was prepared by sequentially laminating a charge transport layer, a charge generation layer, and a surface protection layer made of the following materials on an aluminum substrate.

電荷輸送層 ポリカーダネート樹脂 60重量部(20
μ)  (今人ニーぐンライト)4−ジエチルアミノベ ンズアルデヒr−1゜ 1−ジフェニルヒドラ ジン         40重量部 電荷発生層 フタロシアニン誘導体 30 重Stm(
0,5μ)   (構造式(1) ) At−ctポリ
ビニルブチラール (漬水化学:BM−1)70重量部 表面保護層 酸化スズ粉末    40重量部(2μ)
  ポリウレタン樹脂   60重量部この感光体を市
販の静電複写紙試験装置(川口電機:エレクトロスタテ
ィック・ペーノぞ−・アナライザー5P−428)を用
イテ、+ 6 kVo:l Oす放電を行なって正帯電
させ、1秒間暗所に放置した後の表面電位VDDPを測
定し、その直後5ルツクスのタングステン光を3秒間照
射して、VDDPが半減するのに要する光−11E’A
を求めた。更にこの後、200ルツクスの光を0.5秒
照射して表面電位をさらに減衰させ、残留電位RPを求
めた。この測定は、常温常温下(25℃、40%R)I
)で行った。
Charge transport layer polycarbonate resin 60 parts by weight (20 parts by weight)
μ) (Kinjin Nigun Light) 4-diethylaminobenzaldehyr-1゜1-diphenylhydrazine 40 parts by weight Charge generation layer Phthalocyanine derivative 30 Heavy Stm (
0.5μ) (Structural formula (1)) At-ct polyvinyl butyral (Zukesui Kagaku: BM-1) 70 parts by weight Surface protective layer Tin oxide powder 40 parts by weight (2μ)
Polyurethane resin 60 parts by weight This photoreceptor was positively charged by discharging +6 kVo:lO using a commercially available electrostatic copying paper tester (Kawaguchi Electric: Electrostatic Penozo Analyzer 5P-428). Measure the surface potential VDDP after leaving it in the dark for 1 second, and immediately irradiate it with 5 lux tungsten light for 3 seconds to calculate the amount of light required to reduce VDDP by half -11E'A
I asked for Furthermore, after this, 200 lux light was irradiated for 0.5 seconds to further attenuate the surface potential, and the residual potential RP was determined. This measurement was performed at room temperature (25°C, 40% R).
).

この測定を連続して1000回行ない、lサイクル目と
1000サイクル目のvDDP % RPの差をΔ■D
DP(C)、ΔRP(C)として、サイクル安定性を表
わした。
This measurement is performed 1000 times in succession, and the difference between vDDP % RP between the 1st cycle and the 1000th cycle is calculated as Δ■D
Cycle stability was expressed as DP (C) and ΔRP (C).

又同様の測定を低温低湿下(10℃、2096RH)の
環境下と高温高湿下(30℃、80%RH)の環境下で
行ない、1000サイクル目のいずれかの環境下の良い
方のVDDPと1000サイクル目のいずれかの環境下
の悪い方のVDDPとの差をΔVDDI匂とし、また1
000サイクル目のいずれかの環境下の良い方のRPと
1000サイクル目のいずれかの環境下の患い方のRP
との差をΔRP(E)として、環境安定性を表わした。
Similar measurements were conducted under low temperature, low humidity (10°C, 2096RH) and high temperature, high humidity (30°C, 80% RH) environments, and the VDDP of the better one under either environment at the 1000th cycle was determined. The difference between VDDP and the worse VDDP under any environment at the 1000th cycle is defined as ΔVDDI, and 1
RP of the good person under any environment at the 000th cycle and RP of the affected person under any environment at the 1000th cycle
The environmental stability was expressed as ΔRP(E).

本実施例中の各測定値を以下に示す。Each measured value in this example is shown below.

vDDP:1130v EIA: 1.5ルツクス・秒 RP  :60V ΔDDP(C) : l 00 V   ΔRP(C)
 : 30 VΔDDP(a:  80V   ΔRP
(E:l:40V即ち、十分な帯電性と高い感度、及び
すぐれたサイクル安定性、環境安定性を有しているとい
える。
vDDP: 1130v EIA: 1.5 Lux・sec RP: 60V ΔDDP(C): l 00 V ΔRP(C)
: 30VΔDDP(a: 80VΔRP
(E:l:40V, that is, it can be said that it has sufficient chargeability, high sensitivity, and excellent cycle stability and environmental stability.

比較例1 実施例1における電荷発生層のクロルアルミニウムフタ
ロシアニンの代hlKβ型鋼フタロシアニンを用いた以
外は実施例1と同様に感光体を炸裂し、同様の測定を行
なったところ下記の値を示した。
Comparative Example 1 A photoreceptor was exploded in the same manner as in Example 1, except that hlKβ type steel phthalocyanine was used in place of the chloraluminum phthalocyanine in the charge generation layer in Example 1, and the same measurements were performed, and the following values were obtained.

■DDPニア00v E17:8.0ルツクス・秒 RP  :80V ΔvDDP(C) : 250 v    ΔRP(C
) = 30 vΔVDD、(E) : 250 V 
  ΔRP(純=40■帯電性が低く、かつサイクル、
環境の両安定性に問題があることを示している。
■DDP near 00v E17: 8.0 Lux・sec RP: 80V ΔvDDP(C): 250 v ΔRP(C
) = 30 vΔVDD, (E): 250 V
ΔRP (purity = 40■Low chargeability and cycle,
This indicates that there is a problem with the bi-stability of the environment.

実施例2 実施例1における表面保護層を酸化スズ−酸化アンチモ
ン固溶体/ポリウレタン樹脂=40/60(重量部)に
変更した以外は実施例1と同様に感光体を作製し、測定
したが、実施例1の感光体と同様の安定した特性を示し
た。
Example 2 A photoreceptor was prepared and measured in the same manner as in Example 1, except that the surface protective layer in Example 1 was changed to tin oxide-antimony oxide solid solution/polyurethane resin = 40/60 (parts by weight), but the It exhibited stable characteristics similar to those of the photoreceptor of Example 1.

■DDP:1060v E捧 :1.5ルツクス・秒 RP  :50V ΔVDDP(C) : 90 V    ΔRP(C)
 : 20 VΔVDDP(E:l  二 9 0  
V       ΔRP(E)  :  3 0  V
実施例3 実施例2と同一の条件でPラム型感光体を作製し、この
感光体を当社改造機に装着し、複写画儂を形成せしめた
ところ、コントラストが高くて原稿に忠実で鮮明な可視
像が得られた。
■DDP: 1060v E: 1.5 Lux・sec RP: 50V ΔVDDP(C): 90V ΔRP(C)
: 20 VΔVDDP(E:l 2 9 0
VΔRP(E): 30V
Example 3 A P-ram type photoreceptor was manufactured under the same conditions as Example 2, and this photoreceptor was installed in our modified machine to form a copy image.The photoreceptor was high in contrast, faithful to the original, and clear. A visible image was obtained.

また複写を1000回繰り返したが、最後まで第1回目
と同等な像が得られた。
Further, the copying was repeated 1000 times, and until the end, the same image as the first copy was obtained.

実施例4 アルミニウムを蒸着したPET基板上に、下記材料系を
スプレー塗布した後、乾燥し、厚さ20μの電荷輸送層
を形成した。
Example 4 The following material system was spray-coated on a PET substrate on which aluminum was vapor-deposited, and then dried to form a charge transport layer with a thickness of 20 μm.

ポリカーゼネート樹脂      10重を部(今人:
/ξンライトL1250) N、N’−ジフェニル−ビス(3−メ チルフェニル)−(1,1’−ビフェ ニル)−4,4’−ジアミン       8重量部塩
化メチレン          40重it部トリクロ
ルエタン         40重量部次ニペイントコ
ンディショナーにて均一分散した、下記材料系をスプレ
ー塗布した後、乾燥し、厚さ1μの電荷発生層を形成し
た。
Polycarbonate resin 10 parts (Imato:
/ξNlite L1250) N,N'-diphenyl-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine 8 parts by weight Methylene chloride 40 parts by weight Trichloroethane 40 parts by weight The following material system uniformly dispersed with Nipaint conditioner was spray coated and dried to form a charge generation layer with a thickness of 1 μm.

フタロシアニン誘導体       2重量部(構造式
(ID)  V=0 ポリビニルブチラール樹脂     3重量部(漬水化
学: BM−1) 塩化メチレン          40重量部トリクロ
ルエタン        55重量部さらに、この上に
ゼールミルにて均一分散した下記材料系をスプレー塗布
した後、乾燥し、厚さ2μの表面保護層を形成した。
Phthalocyanine derivative 2 parts by weight (Structural formula (ID) V=0 Polyvinyl butyral resin 3 parts by weight (Kusui Kagaku: BM-1) Methylene chloride 40 parts by weight Trichloroethane 55 parts by weight Further, on top of this, homogeneous dispersion was performed using a Zeel mill. After spray coating the following material system, it was dried to form a surface protective layer with a thickness of 2 μm.

酸化スズ粉末           4重量部ポリウレ
タン樹脂         sTiTi基部塩化メチレ
ン        35重量部トリクロルエタン   
     56重量部このようにして得られた感光体を
静電複写紙試験装置(川口電機:エレクトロスタティッ
ク・ペーパーアナライザーEPA −8100)を用い
て常温常湿下(25℃、404RH)の環境下で測定し
、次の特性値を得た。
Tin oxide powder 4 parts by weight Polyurethane resin sTiTi base Methylene chloride 35 parts by weight Trichloroethane
56 parts by weight The photoreceptor thus obtained was measured using an electrostatic copying paper tester (Kawaguchi Electric: Electrostatic Paper Analyzer EPA-8100) under normal temperature and normal humidity (25°C, 404RH). The following characteristic values were obtained.

VDDP(+25μAのコロナ帯電の後1秒の表面電位
):950V Ev2(VDDPが半減するのに要する露光1)=1.
0ルツクス・秒 RP(残留電位)         :  80V又、
この帯電、露光のサイクルを1000回くり返して次の
特性値を得た。
VDDP (surface potential 1 second after corona charging of +25 μA): 950V Ev2 (1 exposure required to reduce VDDP by half) = 1.
0 lux・sec RP (residual potential): 80V
This cycle of charging and exposure was repeated 1000 times to obtain the following characteristic values.

ΔvDDP(C)(1000サイクルまテノvDDP)
変化):  40V ΔRP(C)(1000サイクルまでのRPの変化):
  30V さらに、低温低湿下(10℃、20チRH)、高温高湿
下(30℃、804RH)にテvDDP1RPの測定を
行ない、次の特性値を得た。
ΔvDDP(C) (1000 cycles teno vDDP)
Change): 40V ΔRP(C) (Change in RP up to 1000 cycles):
30V Furthermore, TvDDP1RP was measured under low temperature and low humidity (10° C., 20 RH) and high temperature and high humidity (30° C., 804 RH), and the following characteristic values were obtained.

ΔvDDP(E) (環境条件によるVDDPの変化)
:  60v ΔRP(1(環境条件によるRPの変化):  40V 従って、この感光体は、十分な帯電性と、高い感度、す
ぐれたサイクル安定性と環境安全性を有しているといえ
る。
ΔvDDP(E) (Change in VDDP due to environmental conditions)
: 60v ΔRP (1 (change in RP due to environmental conditions): 40V Therefore, it can be said that this photoreceptor has sufficient chargeability, high sensitivity, excellent cycle stability, and environmental safety.

同様にして得た感光体を富士ゼロックスxp−9レーザ
ービームプリンターを用いて画質特性を評価したところ
、50KCV以上まで十分な画質を維持することを確認
した。
When the image quality characteristics of the similarly obtained photoreceptor were evaluated using a Fuji Xerox XP-9 laser beam printer, it was confirmed that sufficient image quality was maintained up to 50 KCV or higher.

実施例5 実施例4における表面保護層を下記材料系に変更させた
以外は、実施例4と同様にして、2μの表面保護層を有
する感光体を作製した。
Example 5 A photoreceptor having a 2μ thick surface protective layer was produced in the same manner as in Example 4, except that the surface protective layer in Example 4 was changed to the following material system.

酸化ス、e/酸化アンチモン固溶体  3重量部ポリウ
レタン樹脂         5重量部塩化メチレン 
         35重量部トリクロルエタン   
      57重量部実施例4と同様の測定を行なっ
たが、十分な帯電性、高感度、及びすぐれた安定性を示
した。
Oxide, e/antimony oxide solid solution 3 parts by weight Polyurethane resin 5 parts by weight Methylene chloride
35 parts by weight trichloroethane
57 parts by weight The same measurements as in Example 4 were carried out, and sufficient chargeability, high sensitivity, and excellent stability were shown.

VDD、 : 900 V EV2 :1.2ルツクス・秒 RP  ニア0V ΔVnop(C) :  90 V   ΔRP(C)
 : 30 V”■nDp(1:100V   ΔRP
(1:40V実施例6 アルミニウム基板上に1下記材料系より成る電荷輸送層
、電荷発生層、表面保護層を順次積層して感光体を作製
した。
VDD, : 900 V EV2 : 1.2 Lux・sec RP Near 0 V ΔVnop(C) : 90 V ΔRP(C)
: 30 V"■nDp (1:100V ΔRP
(1:40V Example 6 A photoreceptor was prepared by sequentially laminating a charge transport layer, a charge generation layer, and a surface protection layer made of the following materials on an aluminum substrate.

電荷輸送層 ポリカーゼネート樹脂 60重量部(20
μ)  (奇人ニーξンライト)4−−)エチルアミノ
ベ ンズアルデとr−1。
Charge transport layer Polycarbonate resin 60 parts by weight (20 parts by weight)
μ) (odd person ξn light) 4--) ethylaminobenzalde and r-1.

1−ジフェニルヒPラ ジン         40重量部 電荷発生層 フタロシアニン誘導体 40重量部(1,
0μ) (構造式(In))(Mg)ポリビニルブチラ
ール (漬水化学:BM−1)60重量部 表面保護層 酸化スズ粉末     40重量部(2μ
)  −リウレタン樹脂   60重置部この感光体を
市販の静電複写紙試験装置(川口電機:エレクトロスタ
ティック・ペーパー・アナライザー5P−428)を用
イテ、+6kVのコ。
1-diphenylhydrazine 40 parts by weight Charge generation layer Phthalocyanine derivative 40 parts by weight (1,
0μ) (Structural formula (In)) (Mg) 60 parts by weight of polyvinyl butyral (Kusui Kagaku: BM-1) Surface protective layer Tin oxide powder 40 parts by weight (2μ
) - Urethane resin 60 overlapping parts This photoreceptor was tested using a commercially available electrostatic copying paper testing device (Kawaguchi Electric: Electrostatic Paper Analyzer 5P-428) at +6 kV.

ナ放電を行なって正帯電させ、1秒間暗所に放置した後
の表面電位VDDPを測定し、その直後5ルツクスのタ
ングステン光を3秒間照射して、vDDPが半減するの
に要する光f’14 E %を求めた。更にこの後、2
00ルツクスの光を0.5秒照射して表面電位をさらに
減衰させ、残留電位RPを求めた。この測定は、常温常
湿下(25℃、40%RH)で行った。
Measure the surface potential VDDP after performing a negative discharge to positively charge it and leaving it in a dark place for 1 second.Immediately after that, 5 lux tungsten light is irradiated for 3 seconds, and the light required to reduce vDDP by half is f'14. E% was calculated. Furthermore, after this, 2
The surface potential was further attenuated by irradiating light of 0.00 lux for 0.5 seconds, and the residual potential RP was determined. This measurement was performed at normal temperature and normal humidity (25° C., 40% RH).

この測定を連続して1000回行ない、1サイクル目と
1000サイクル目のVDD、、RPO差をΔVDDP
(C)、ΔRP(C)として、サイクル安定性を表わし
た。
This measurement is performed 1000 times in succession, and the difference in VDD, RPO between the 1st cycle and the 1000th cycle is ΔVDDP.
(C), cycle stability was expressed as ΔRP(C).

又同様の測定を低温低湿下(10℃、20%RH)の環
境下と高温高湿下(30℃、80%RH)の環境下で行
ない、1000サイクル目のいずれかの環境下の良い方
のvDDPと1000サイクル目のいずれかの環境下の
悪い方のVDDPとの差をΔVDDP(1とし、また1
000サイクル目のいずれかの環境下の良い方のRPと
1000サイクル目のいずれかの環境下の悪い方のRP
との差をΔRP(E:lとして、環境安定性を表わした
Similar measurements were conducted under low temperature, low humidity (10°C, 20% RH) and high temperature, high humidity (30°C, 80% RH) environments. Let ΔVDDP(1 be the difference between the vDDP of
The better RP under any environment at the 000th cycle and the worse RP under any environment at the 1000th cycle
The environmental stability was expressed as ΔRP (E:l).

VDD、 : 1150 V E%:1.フル7クス・秒  RP:60VΔDDP(
C)=120■  ΔRP(c):30VΔDDP(E
):  80V   ΔRP(E):30V即ち十分な
帯電性と高い感度、及びすぐれたサイクル安定性、環境
安定性を有しているといえる。
VDD: 1150 V E%: 1. Full 7x・sec RP: 60VΔDDP (
C) = 120■ ΔRP(c): 30VΔDDP(E
): 80V ΔRP(E): 30V, that is, it can be said that it has sufficient chargeability, high sensitivity, and excellent cycle stability and environmental stability.

実施例7 実施例6における表面保護層を酸化スズ−酸化アンチモ
ン固溶体/ポリウレタン樹脂=40/60<X滑部)に
変更した以外は実施例6と同様に感光体を作製し、測定
したが、実施例6の感光体と同様の安定した特性を示し
た。
Example 7 A photoreceptor was prepared and measured in the same manner as in Example 6, except that the surface protective layer in Example 6 was changed to tin oxide-antimony oxide solid solution/polyurethane resin = 40/60<X slip part). It exhibited stable characteristics similar to those of the photoreceptor of Example 6.

■oDP:1O80v E112:1.6ルツクス・秒 RP:50V ΔVDDp(Q : 100 V   ΔRP (C)
 : 20 VΔVDDp(a :  90 V   
ΔRP(El : 30 V実施例8 実施例7と同一の条件でPラム微感光体を作製し、この
感光体を当社改造機に装着し、複写画像を形成せしめた
ところ、コントラストが高くて原稿に忠実で鮮明な可視
像が得られた。
■oDP: 1O80v E112: 1.6 Lux・sec RP: 50V ΔVDDp (Q: 100V ΔRP (C)
: 20VΔVDDp(a: 90V
ΔRP (El: 30 V Example 8 A P-ram microphotoreceptor was manufactured under the same conditions as Example 7, and this photoreceptor was installed in our modified machine to form a copy image. A clear and faithful visible image was obtained.

また複写を1000回繰υ返したが量部まで第1回目と
同等な像が得られた。
The copying process was repeated 1,000 times, but an image equivalent to the first copy was obtained up to the size.

実施例9 アルミニウム基板上に、下記材料系より成る電荷輸送層
、電荷発生層、表面保護層を順次積層して感光体を作製
した。
Example 9 A photoreceptor was prepared by sequentially laminating a charge transport layer, a charge generation layer, and a surface protection layer made of the following materials on an aluminum substrate.

電荷輸送層 ポリカーゼネート樹脂 60重量部(20
μ) (今人二パンライト) 4−ジエチルアミノベ ンズアルデヒド−1゜ 1−ジフェニルヒドラ ジン         40重量部 電荷発生層 フタロシアニン誘導体 30重量部(0,
5,a)   (構造式(fv) ) In −CLポ
リビニルブチラール (種水化学:BM−1)70重量部 表面保護層 酸化スズ粉末    40重量部(2μ)
  ポリウレタン樹脂  60重量部この感光体を市販
の静電複写紙試験装置(川口電機:エレクトロスタティ
ック・ベーノンー・アナライザー5P−428)を用い
て、+6kvのコロナ放電を行なって正帯電させ、1秒
間暗所に放置した後の表面電位VDDPを測定し、その
直後5ルツクスのタングステン光を3秒間照射して、V
DDPが半減するのに要する光iEμを求めた。更にこ
の後、200ルツクスの光を0.5秒照射して表面電位
をさらに減衰させ、残留電位RPを求めた。この測定は
常温常湿下(25℃、404RH)で行った。
Charge transport layer Polycarbonate resin 60 parts by weight (20 parts by weight)
μ) (Imajin Nipanrite) 4-diethylaminobenzaldehyde-1゜1-diphenylhydrazine 40 parts by weight Charge generation layer Phthalocyanine derivative 30 parts by weight (0,
5, a) (Structural formula (fv)) In -CL polyvinyl butyral (Tanesui Kagaku: BM-1) 70 parts by weight Surface protective layer Tin oxide powder 40 parts by weight (2μ)
Polyurethane resin 60 parts by weight This photoconductor was positively charged by +6kV corona discharge using a commercially available electrostatic copying paper tester (Kawaguchi Electric: Electrostatic Benon-Analyzer 5P-428), and then left in the dark for 1 second. Measure the surface potential VDDP after leaving it at
The light iEμ required to reduce DDP by half was determined. Furthermore, after this, 200 lux light was irradiated for 0.5 seconds to further attenuate the surface potential, and the residual potential RP was determined. This measurement was performed at room temperature and humidity (25°C, 404RH).

この測定を連続して1000回行ない、lサイクル目と
1000サイクル目のVDDP1 RPの差をΔvDD
P(C:)、ΔRP(C)として、サイクル安定性を表
わした。
This measurement is performed 1000 times in succession, and the difference between VDDP1 RP at the 1st cycle and the 1000th cycle is calculated as ΔvDD.
Cycle stability was expressed as P(C:) and ΔRP(C).

又同様の測定を低温低湿下(10℃、20SRH)の環
境下と高温高湿下(30℃、80SRH)の環境下で行
ない、1OOOサイクル目のいずれかの環境下の良い方
のVDDPと1000サイクル目のいずれか環境下の悪
い方のVDDPとの差をΔvDDP(すとし、また10
00サイクル目のいずれかの環境下の良い方のRPと1
000サイクル目のいずれかの環境下の悪い方のRPと
の差をΔRP(F3として、環境安定性を表わした。
In addition, similar measurements were carried out under a low temperature, low humidity environment (10°C, 20SRH) and a high temperature, high humidity environment (30°C, 80SRH), and the VDDP and 1000 of the better one under either environment at the 100th cycle were The difference between the VDDP of either cycle in the worst environment is ΔvDDP (satoshi, and 10
RP and 1 of the better one under any environment in the 00th cycle
The environmental stability was expressed as ΔRP (F3), which was the difference from the RP under the worse environment at the 000th cycle.

本実施例中の各測定値を以下に示す。Each measured value in this example is shown below.

■DDP:1180■ Eに :1.フルックス・秒 RP  :50V ΔVDDP(C) : 110 V   ΔRP(C)
 : 20 VΔVDDP(1:   70 V   
ΔRP(E) : 30 V即ち、十分な帯電性と、高
い感度、及びすぐれたサイクル安定性、環境安定性を有
しているといえるO 実施例10 実施例9における表面保d層を酸化スズ−酸化アンチモ
ン固溶体/ポリウレタン樹脂=40/60(重量部)K
変更した以外は実施例9と同様に感光体を作製し、測定
したが、実施例9の感光体と同様の安定した特性を示し
た。
■DDP: 1180■ To E: 1. Flux seconds RP: 50V ΔVDDP(C): 110V ΔRP(C)
: 20 VΔVDDP (1: 70 V
ΔRP(E): 30 V, that is, it can be said to have sufficient chargeability, high sensitivity, and excellent cycle stability and environmental stability. Example 10 The surface retention layer in Example 9 was made of tin oxide. - Antimony oxide solid solution/polyurethane resin = 40/60 (parts by weight) K
A photoreceptor was produced and measured in the same manner as in Example 9 except for the changes, and it showed stable characteristics similar to those of the photoreceptor of Example 9.

■DDP:1090v E捧 :1.フルックス・秒 RP  :50V ΔvDDp(C) : 90 V    ΔRP(C)
 : 20 VΔVonp(e : 80 V    
ΔRP(1: 20 V実施例11 実施例1Oと同一の条件でPラム型感光体を作製し、こ
の感光体を当社改造機に装着し、複写画像を形成せしめ
たところ、コントラストが高くて原稿に忠実で鮮明な可
視像が得られた。
■DDP: 1090v E dedication: 1. Flux seconds RP: 50V ΔvDDp(C): 90V ΔRP(C)
: 20VΔVonp(e: 80V
ΔRP (1: 20 V Example 11 A P ram type photoreceptor was manufactured under the same conditions as Example 1O, and this photoreceptor was installed in our modified machine to form a copy image. A clear and faithful visible image was obtained.

また複写を1000回繰シ返したが、最後まで第1回目
と同等な像が得られた。
Although the copying process was repeated 1000 times, the same image as the first copy was obtained until the end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ本発明の電子写真用感光体の
具体例の断面図である。 10・・・低抵抗表面保護層、11・−・電荷発生層、
12・・・電荷輸送層、13・・・導電性支持体、14
・・・導電性金属酸化物、15・・・電荷発生材料、2
0・・・接着層、30・・・電荷注入阻止補助層。 ′A
1 to 4 are sectional views of specific examples of the electrophotographic photoreceptor of the present invention. 10...Low resistance surface protective layer, 11...Charge generation layer,
12... Charge transport layer, 13... Conductive support, 14
... Conductive metal oxide, 15... Charge generating material, 2
0...adhesive layer, 30...charge injection blocking auxiliary layer. 'A

Claims (4)

【特許請求の範囲】[Claims] (1)導電性支持体上に電荷輸送層、電荷発生層、低抵
抗表面保護層が順次積層され、電荷発生層中に下記構造
式( I )、(II)、(III)、又は(IV)で表わされる
フタロシアニン誘導体からなる群から選択した1種が分
散されていることを特徴とする電子写真用感光体。 構造式( I ) ▲数式、化学式、表等があります▼ 構造式(II) ▲数式、化学式、表等があります▼ 構造式(III) ▲数式、化学式、表等があります▼ 構造式(IV) ▲数式、化学式、表等があります▼
(1) A charge transport layer, a charge generation layer, and a low resistance surface protection layer are sequentially laminated on a conductive support, and the charge generation layer has the following structural formula (I), (II), (III), or (IV 1. A photoreceptor for electrophotography, characterized in that one kind selected from the group consisting of phthalocyanine derivatives represented by the following is dispersed. Structural formula (I) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ Structural formula (II) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ Structural formula (III) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ Structural formula (IV) ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(2)上記フタロシアニン誘導体が結着樹脂中に分散さ
れている特許請求の範囲第(1)項記載の電子写真用感
光体。
(2) The electrophotographic photoreceptor according to claim (1), wherein the phthalocyanine derivative is dispersed in a binder resin.
(3)上記フタロシアニン誘導体が結着樹脂中に全体の
5重量%〜90重量%の割合で分散している特許請求の
範囲第(2)項記載の電子写真用感光体。
(3) The electrophotographic photoreceptor according to claim (2), wherein the phthalocyanine derivative is dispersed in the binder resin in a proportion of 5% to 90% by weight of the total weight.
(4)低抵抗表面保護層が、絶縁性樹脂中に導電性金属
酸化物の微細粒子を分散した層から成り、該導電性金属
酸化物が電気抵抗10^9Ω・cm以下、平均粒子0.
3μm以下の粒子である特許請求の範囲第(1)項記載
の電子写真用感光体。
(4) The low-resistance surface protective layer is composed of a layer in which fine particles of a conductive metal oxide are dispersed in an insulating resin, and the conductive metal oxide has an electrical resistance of 10^9 Ω·cm or less and an average particle size of 0.
The electrophotographic photoreceptor according to claim (1), which has particles of 3 μm or less.
JP17661786A 1986-07-29 1986-07-29 Electrophotographic sensitive material Pending JPS6333748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17661786A JPS6333748A (en) 1986-07-29 1986-07-29 Electrophotographic sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17661786A JPS6333748A (en) 1986-07-29 1986-07-29 Electrophotographic sensitive material

Publications (1)

Publication Number Publication Date
JPS6333748A true JPS6333748A (en) 1988-02-13

Family

ID=16016702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17661786A Pending JPS6333748A (en) 1986-07-29 1986-07-29 Electrophotographic sensitive material

Country Status (1)

Country Link
JP (1) JPS6333748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050731A (en) * 1997-07-16 2000-04-18 Olympus Optical Co., Ltd. Code image quality check apparatus and code image reader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529844A (en) * 1978-08-25 1980-03-03 Ricoh Co Ltd Laminated type electrophotographic photoreceptor
JPS59229571A (en) * 1983-06-06 1984-12-24 Fuji Xerox Co Ltd Electrophotographic method
JPS61124951A (en) * 1984-11-22 1986-06-12 Dainippon Ink & Chem Inc Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529844A (en) * 1978-08-25 1980-03-03 Ricoh Co Ltd Laminated type electrophotographic photoreceptor
JPS59229571A (en) * 1983-06-06 1984-12-24 Fuji Xerox Co Ltd Electrophotographic method
JPS61124951A (en) * 1984-11-22 1986-06-12 Dainippon Ink & Chem Inc Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050731A (en) * 1997-07-16 2000-04-18 Olympus Optical Co., Ltd. Code image quality check apparatus and code image reader

Similar Documents

Publication Publication Date Title
JPH0580572A (en) Electrophotographic sensitive material
JP2526969B2 (en) Electrophotographic photoreceptor
JPH06266136A (en) Single layer type electrophotographic sensitive body
JPS6333748A (en) Electrophotographic sensitive material
JPS61103156A (en) Electrophotographic sensitive body
JPH01179163A (en) Electrophotographic sensitive body
JP2536149B2 (en) Electrophotographic photoreceptor
JPS61103154A (en) Electrophotographic sensitive body
JPH07175233A (en) Single-layer electrophotographic photoreceptor
JPH056179B2 (en)
JP2833222B2 (en) Electrophotographic photoreceptor
JPS61103155A (en) Electrophotographic sensitive body
JP2631735B2 (en) Electrophotographic photoreceptor
JPH02293854A (en) Laminate type electrophotographic sensitive body
JPH03196049A (en) Electrophotograhic sensitive body
JPH01177553A (en) Electrophotographic sensitive body
JPH0656502B2 (en) Electrophotographic photoconductor
JP2568679B2 (en) Electrophotographic photoreceptor and resin composition for electrophotographic photoreceptor
JP2540036B2 (en) Electrophotographic photoreceptor
JP2568681B2 (en) Electrophotographic photoreceptor and resin composition for electrophotographic photoreceptor
JPS62275271A (en) Electrophotographic sensitive body
JPS63151954A (en) Positive electrification type electrophotographic sensitive body
JPH04191861A (en) Electrophotographic sensitive body
JPH07261420A (en) Electrophotographic photoreceptive material
JPS60218660A (en) Electrophotographic sensitive body