JPH02293854A - Laminate type electrophotographic sensitive body - Google Patents

Laminate type electrophotographic sensitive body

Info

Publication number
JPH02293854A
JPH02293854A JP11430789A JP11430789A JPH02293854A JP H02293854 A JPH02293854 A JP H02293854A JP 11430789 A JP11430789 A JP 11430789A JP 11430789 A JP11430789 A JP 11430789A JP H02293854 A JPH02293854 A JP H02293854A
Authority
JP
Japan
Prior art keywords
charge
charge transport
layer
transport layer
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11430789A
Other languages
Japanese (ja)
Other versions
JP2780810B2 (en
Inventor
Yoichi Takezawa
洋一 竹沢
Hiroaki Iwasaki
岩崎 宏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP1114307A priority Critical patent/JP2780810B2/en
Publication of JPH02293854A publication Critical patent/JPH02293854A/en
Application granted granted Critical
Publication of JP2780810B2 publication Critical patent/JP2780810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent accumulation of residual electric charge on a laminate type photosensitive body and to stabilize chargeability characteristics by incorporating in a charge transfer layer a charge generating material different in sensitive wavelength from the charge generating material used for a charge generating layer. CONSTITUTION:The charge transfer layer contains the charge generating material different in the sensitive wavelength from the charge generating material used for the charge generating layer. Therefore, charge can be generated only in the charge generating layer at the time of imagewise exposure, and charge can be generated only in the charge transfer layer at the time destaticization, and so, the charge accumulated at the interface between the charge generating layer and the charge transfer layer can be effectively eliminated, thus permitting the obtained laminate type photosensitive body to be prevented from the accumulation of residual charge, and to obtain stable chargeability characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繰り返し使用に際して安定した電子写真特性
を有する電子写真用積層感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laminated photoreceptor for electrophotography that has stable electrophotographic properties upon repeated use.

(従来技術及びその問題点) 導電性基板上に電荷発生層及び電荷輸送層を設けて成る
積層型の感光体は複写機等の電子写真分野において広く
使用されている。
(Prior Art and Problems Therewith) Laminated photoreceptors comprising a charge generation layer and a charge transport layer provided on a conductive substrate are widely used in the field of electrophotography such as copying machines.

この積層感光体は、繰り返し使用すると、電荷発生層と
電荷輸送層との界面において残留電荷が蓄積するという
問題を有している。
This laminated photoreceptor has a problem in that, when used repeatedly, residual charges accumulate at the interface between the charge generation layer and the charge transport layer.

この問題を解決するために、電荷輸送層中に電荷発生材
料が配合された積層感光体が提案されている(特公昭6
3−42775号公報)。
In order to solve this problem, a laminated photoreceptor in which a charge generating material is blended in the charge transport layer has been proposed (Japanese Patent Publication No. 6
3-42775).

黙しながら、上記先行技術の積層感光体は、残留電荷の
蓄積を防止するという点では比較的満足し得るが、除電
時にも電荷発生層から電荷輸送層にキャリアが注入され
、このことから電荷発生層と電荷輸送層との界面にキャ
リアが蓄積するため繰り返し使用に いて、帯電時に表
面電位の低下がみられるという問題点がある。
Although the laminated photoreceptor of the prior art described above is relatively satisfactory in terms of preventing the accumulation of residual charges, carriers are injected from the charge generation layer to the charge transport layer even during static electricity removal, which causes charge generation. Since carriers accumulate at the interface between the layer and the charge transport layer, there is a problem in that the surface potential decreases when charged after repeated use.

従って本発明は、積層感光体において残留電荷の蓄積を
防止し且つ安定した帯電特性を得ることを目的とする。
Therefore, an object of the present invention is to prevent accumulation of residual charges in a laminated photoreceptor and to obtain stable charging characteristics.

(問題点を解決するための手段) 即ち本発明によれば、導電性基板上に設けられた電荷発
生層及び電荷輸送層とから成る電子写真用積層感光体に
おいて、前記電荷輸送層中には電荷発生材料が配合され
ており、該電荷発生材料の感度波長は、電荷発生層に使
用されている電荷発生材料の感度波長と異なることを特
徴とする電子写真用積層感光体が提供される。
(Means for Solving the Problems) That is, according to the present invention, in an electrophotographic laminated photoreceptor comprising a charge generation layer and a charge transport layer provided on a conductive substrate, the charge transport layer contains There is provided a laminated photoreceptor for electrophotography, which is characterized in that a charge generation material is blended therein, and the sensitivity wavelength of the charge generation material is different from the sensitivity wavelength of the charge generation material used in the charge generation layer.

また本発明によれば、前記積層感光体を使用し、該電荷
輸送層中に配合されている電荷発生材料の感度波長領域
の光線を照射することにより除電を行なう電子写真方法
が提供される。
Further, according to the present invention, there is provided an electrophotographic method in which the laminated photoreceptor is used and static electricity is removed by irradiating the photoreceptor with light in the sensitivity wavelength range of the charge generating material contained in the charge transport layer.

(作 用) 本発明においては、電荷発生層に使用されている電荷発
生材料の感度波長とは異なる感度波長を有する電荷発生
材料を、電荷輸送層中に配合することが顕著な特徴であ
る。
(Function) A remarkable feature of the present invention is that a charge-generating material having a sensitivity wavelength different from that of the charge-generating material used in the charge-generating layer is blended into the charge-transporting layer.

即ち、電荷輸送層中に電荷発生材料を配合することは、
前述した先行技術にもみられる通り、従来公知の技術で
ある。
That is, incorporating a charge generating material into the charge transport layer means that
As seen in the prior art described above, this is a conventionally known technology.

かかる先行技術の手段によれば、感光体の繰り返し使用
によって電荷発生層と電荷輸送層との界面に蓄積した残
留電荷は、除電光の照射によって電荷輸送層中の電荷発
生材料から発生したキャリャにより中和されて消去され
る。
According to such prior art means, residual charges accumulated at the interface between the charge generation layer and the charge transport layer due to repeated use of the photoreceptor are removed by carriers generated from the charge generation material in the charge transport layer by irradiation with static eliminating light. neutralized and erased.

黙しながら、前記先行技術の積層感光体においては、電
荷輸送層中に配合される電荷発生材料は、電荷発生層に
使用されているものと同じものが使用されるため、除電
露光に際して、荷電発生層から電荷輸送層へのキャリャ
注入が、再び発生してしまう。この結果として、電荷発
生層と電荷輸送層との界面にキャリアが再びトラツブさ
れ、安定した帯電特性が得られないという問題を生ずる
However, in the laminated photoreceptor of the prior art, the same charge generation material as that used in the charge generation layer is used in the charge transport layer. Carrier injection from the layer into the charge transport layer will occur again. As a result, carriers are trapped again at the interface between the charge generation layer and the charge transport layer, resulting in a problem that stable charging characteristics cannot be obtained.

而して本発明によれば、電荷輸送層中に配合されている
電荷発生材料は、電荷発生層中に配合されている電荷発
生材料に比して感度波長が異なるため、画像露光に際し
ての電荷の発生を電荷発生層においてのみ、また除電時
には電荷輸送層においてのみ電荷の発生を行なうことが
でき、その結果、電荷発生層と電荷輸送層との界面に蓄
積された電荷を有効に除去することが可能となる。
According to the present invention, the charge-generating material blended in the charge transport layer has a different sensitivity wavelength than the charge-generating material blended in the charge-generating layer. can be generated only in the charge generation layer, and can be generated only in the charge transport layer during static elimination, and as a result, the charges accumulated at the interface between the charge generation layer and the charge transport layer can be effectively removed. becomes possible.

即ち、画像露光に際して電荷輸送媒体の電荷のトラップ
が有効に防止され、除電露光に際して電荷発生層との界
面に残る蓄積した電荷が中和消去され安定した繰り返し
帯電特性が保持される。
That is, trapping of charges in the charge transport medium is effectively prevented during image exposure, and accumulated charges remaining at the interface with the charge generation layer during static elimination exposure are neutralized and erased, thereby maintaining stable repeated charging characteristics.

この場合、電荷輸送層に使用される電荷発生材料のイオ
ン化ポテンシャルは、電荷発生層に使用されている電荷
発生材料のイオン化ポテンシャルよりも大きいものを用
いることで、除電に際しての電荷発生層と電荷輸送層と
の界面に蓄積する電荷へのキャリア注入効率を向上させ
て、蓄積電荷を確実に中和することができる。
In this case, the ionization potential of the charge generation material used in the charge transport layer is higher than that of the charge generation material used in the charge generation layer. It is possible to improve the efficiency of carrier injection into the charge accumulated at the interface with the layer, and to reliably neutralize the accumulated charge.

(発明の好適態様) 本発明の積層感光体は、導電性基質と、該基質上に設け
られた電荷発生層と、該電荷発生層上に設けられた電荷
輸送層とから成る。
(Preferred Embodiment of the Invention) The laminated photoreceptor of the present invention comprises an electrically conductive substrate, a charge generation layer provided on the substrate, and a charge transport layer provided on the charge generation layer.

導電性基質 導電性気体としては、アルミニウム、銅、錫、ブリキ等
の金属箔や金属板を、シート或いはドラム状にしたもの
が使用される。
As the conductive substrate and conductive gas, a sheet or drum-shaped metal foil or plate of aluminum, copper, tin, tin, etc. is used.

また二軸延伸ポリエステルフィルム等のフィルム基体や
ガラス等に、上記の金属を、真空蒸着、スパッタリング
、無電解メッキ等の手段で施したものも使用される。ま
た導電性処理した紙も使用し得る。
Also used is a film substrate such as a biaxially stretched polyester film, glass, or the like in which the above-mentioned metal is applied by vacuum deposition, sputtering, electroless plating, or the like. Paper treated to be conductive may also be used.

二m層 前記導電性基体上に設けられる電荷発生層は、電気絶縁
性の結着樹脂中に電荷発生材料を分散させたものである
. 用いる電気絶縁性結着樹脂は、それ自体公知のものであ
り、例えばポリエステル樹脂、アクリル樹脂、スチレン
樹脂、エボキシ樹脂、シリコーン樹脂、アルキド樹脂、
塩化ビニルー酢酸ビニル共重合体樹脂等が使用される。
2m layer The charge generation layer provided on the conductive substrate is made by dispersing a charge generation material in an electrically insulating binder resin. The electrically insulating binder resin used is known per se, such as polyester resin, acrylic resin, styrene resin, epoxy resin, silicone resin, alkyd resin,
Vinyl chloride-vinyl acetate copolymer resin and the like are used.

また電荷発生材料としては、光を受けて電荷キャリャを
発生するものであれば、電子写真の分野で周知のものが
何れも使用される。
As the charge-generating material, any material known in the field of electrophotography can be used as long as it generates charge carriers upon receiving light.

例えば、フタ口シアニン系顔料、ベリレン系顔料、キナ
クリドン系顔料、とラントロン系顔料、ジスアゾ顔料、
ボリスアゾ顔料等を挙げることができる。
For example, cyanine pigments, berylene pigments, quinacridone pigments, lanthrone pigments, disazo pigments,
Examples include borisazo pigments.

この様な電荷発生材料は、一般に粒径が5ミクロン以下
となる様に前記結着樹脂中に微細分散され、通常結着樹
脂100重量部当り5乃至100重量部、特に1o乃至
50重量部の量割合で使用される。
Such a charge generating material is generally finely dispersed in the binder resin so that the particle size is 5 microns or less, and is usually contained in an amount of 5 to 100 parts by weight, particularly 1 to 50 parts by weight, per 100 parts by weight of the binder resin. Used in quantitative proportions.

この電荷発生層は、通常0,05乃至3μm、特に0.
3乃至1μmのみ厚みで設けられる。
This charge generation layer usually has a thickness of 0.05 to 3 μm, in particular 0.05 μm to 3 μm.
It is provided with a thickness of only 3 to 1 μm.

1且箪止贋 電荷発生層上に形成される電荷輸送層は、上記と同様の
結着樹脂中に電荷輸送材料を分散させて成るが、本発明
においては更に電荷発生材料を含有せしめる。
The charge transport layer formed on the charge generation layer is made by dispersing a charge transport material in the same binder resin as described above, but in the present invention, it further contains a charge generation material.

この電荷発生材料としては、前記電荷発生層中に使用し
得るものは全て使用し得るが、既に述べた通り、本発明
においては、電荷発生層中に用いられた電荷発生材料に
比してイオン化ポテンシャルが大きく、異なる波長に感
度を有するものが使用される。
As this charge generation material, any material that can be used in the charge generation layer can be used, but as mentioned above, in the present invention, the charge generation material is more ionized than the charge generation material used in the charge generation layer. Those with a large potential and sensitivity to different wavelengths are used.

以下の第1表に主な電荷発生材料、その構造感度波長及
びイオン化ポテンシャルを示す。
Table 1 below shows the main charge generating materials, their structural sensitivity wavelengths and ionization potentials.

また配合される電荷輸送材料としては、それ自体公知の
ものは全て使用されるが、この電荷輸送材料のイオン化
ポテンシャルは、電荷発生層中の電荷発生材料のイオン
化ポテンシャルよりも大となっていることが望ましく、
特に両者の差が0.2eV以内の範囲とすることが最も
好適である.即ち、上記の様なイオン化ポテンシャルを
有する電荷輸送材料を用いることによって、帯電時の電
荷発生層からの電荷輸送材料への電荷の注入が有効に抑
制され、優れた帯電特性が保持される。
All known charge transport materials can be used as the charge transport material, but the ionization potential of the charge transport material must be greater than the ionization potential of the charge generation material in the charge generation layer. is desirable,
In particular, it is most preferable that the difference between the two is within 0.2 eV. That is, by using a charge transport material having the above-mentioned ionization potential, injection of charge from the charge generation layer into the charge transport material during charging is effectively suppressed, and excellent charging characteristics are maintained.

一方、両者のイオン化ポテンシャルの差が上記範囲を超
えると、CGMで発生したホールキャリャが、CTMに
注入しにくくなるため感光体感度が著しく低下するとい
う不都合を生じる場合がある. 以下の第2表に主な電荷輸送材料とそのイオン化ポテン
シャルを示す。
On the other hand, if the difference in ionization potential between the two exceeds the above range, it becomes difficult for hole carriers generated in the CGM to be injected into the CTM, resulting in a disadvantage that the sensitivity of the photoreceptor is significantly reduced. Table 2 below shows the main charge transport materials and their ionization potentials.

上述した電荷輸送材料は、結着樹脂ioom量部当たり
10乃至200重量部、特に70乃至100重量部の割
合で使用される。
The above-mentioned charge transport material is used in a proportion of 10 to 200 parts by weight, particularly 70 to 100 parts by weight, per ioom parts of the binder resin.

また電荷輸送層中に配合される電荷発生材料は、前記電
荷輸送材料100重量部当たり10乃至1000重量部
、特に30乃至700重量部の割合で使用される。
The charge generating material to be incorporated into the charge transport layer is used in an amount of 10 to 1000 parts by weight, particularly 30 to 700 parts by weight, per 100 parts by weight of the charge transport material.

かかる電荷輸送層は、通常10乃至30μm、特に15
乃至20μmの厚みで設けられる。
Such a charge transport layer usually has a thickness of 10 to 30 μm, especially 15 μm.
It is provided with a thickness of 20 μm to 20 μm.

電子写真方法 本発明においては、上述した積層感光体を用い、帯電を
行なった後、電荷発生層中の電荷発生材料の感度波長領
域の光照射により画像露光を行なって、感光体表面に静
電潜像を形成する.本発明によれば、電荷派生層中の電
荷発生材料に比して電荷輸送層中の電荷発生材料の感度
波長域が異なるため、前記画像露光に際して電荷輸送層
中でのキャリャの発生が有効に回避され、電荷のトラッ
プが防止されるので、常に安定した静電潜像が形成され
る。
Electrophotographic method In the present invention, the laminated photoreceptor described above is used, and after being charged, image exposure is performed by irradiation with light in the sensitivity wavelength range of the charge generation material in the charge generation layer to generate electrostatic charges on the surface of the photoreceptor. Forms a latent image. According to the present invention, the sensitivity wavelength range of the charge generating material in the charge transport layer is different from that of the charge generating material in the charge derivation layer, so that carriers can be effectively generated in the charge transport layer during image exposure. Since charge trapping is prevented, a stable electrostatic latent image is always formed.

また、上記静電潜像が形成された感光体は、それ自体公
知の現像及び転写の各行程に賦され、所定の用紙等に画
像が形成される。この転写画像は、熱定着等の定着行程
に供給され、画像の定着が行われる。
Further, the photoreceptor on which the electrostatic latent image has been formed is subjected to development and transfer steps, which are known per se, to form an image on a predetermined sheet of paper or the like. This transferred image is supplied to a fixing process such as thermal fixing, and the image is fixed.

一方、前記感光体は、現像及び転写の各行程を通った後
、電荷輸送層中の電荷発生材料の感度波長領域での除電
に賦される. この場合、電荷輸送層中の電荷発生材料に比して、電荷
発生層中の電荷発生材料のイオン化ポテンシャルが小さ
いため、前記除電によって電荷輸送層中に発生したキャ
リャが効率よく電荷発生層と電荷輸送層との界面に注入
され、電荷輸送層と発生層との界面に残存蓄積した電荷
を中和消去する。
On the other hand, after the photoreceptor passes through each process of development and transfer, it is subjected to static elimination in the sensitive wavelength range of the charge generating material in the charge transport layer. In this case, since the ionization potential of the charge generating material in the charge generating layer is smaller than that of the charge generating material in the charge transporting layer, the carriers generated in the charge transporting layer by the static elimination are efficiently transferred to the charge generating layer. It is injected into the interface between the charge transport layer and the charge generation layer to neutralize and erase the remaining charge accumulated at the interface between the charge transport layer and the generation layer.

以上のサイクルを一行程として画像形成が行われる。Image formation is performed using the above cycle as one process.

(発明の効果) かかる本発明によれば、積層感光体において電荷発生層
と電荷輸送層との界面に蓄積する電荷の消去を、帯電特
性を損うことなく消去することが可能となり、繰り返し
の使用によっても常に安定した画像を得ることが可能と
なった。
(Effects of the Invention) According to the present invention, it is possible to erase the charges accumulated at the interface between the charge generation layer and the charge transport layer in the laminated photoreceptor without impairing the charging characteristics. It has become possible to obtain stable images at all times.

本発明を次の例で説明する。The invention is illustrated by the following example.

(実施例) 以下、本発明を実施例に基づいてより詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail based on examples.

〔電子写真感光体の調製〕[Preparation of electrophotographic photoreceptor]

実施例1 結着剤としてポリビニルブチラール(積水化学社製、商
品名工スレックBLI)100重量部、電荷発生材料と
してのメタルフリーフタ口シアニン200重量部、及び
所定量のテトラヒド口フランをボールミルに仕込み、2
4時間攪拌混合して電荷発生層用塗布液を調製し、この
調製液をアルミニウムドラムに浸漬法により塗布し、1
10℃で30分間熱風乾燥して硬化させることにより膜
厚0,5μmの電荷発生層を形成した。
Example 1 100 parts by weight of polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., trade name Slec BLI) as a binder, 200 parts by weight of metal-free lid cyanine as a charge generating material, and a predetermined amount of tetrahydrofuran were charged in a ball mill. 2
A coating solution for the charge generation layer was prepared by stirring and mixing for 4 hours, and this prepared solution was applied to an aluminum drum by the dipping method.
A charge generation layer having a thickness of 0.5 μm was formed by drying and curing with hot air at 10° C. for 30 minutes.

次に、結着剤としてボリカーボネート樹脂(三..菱瓦
斯化学社製、商品名ユーピロン)100重量部、電荷輸
送材料としてN,N’ − (0,P−ジメチルフェニ
ル)−N,N’−(ジフエニル)ベンジジン(以下4M
e−TPDと略す)100重量部、電荷発生材料として
N,N’−ジ(3.5一ジメチルフェニル)ベリレン−
3.4,9.10−テトラカルボキシジイミド0.2重
量部、及び所定量のトルエンをホモミキサーで攪拌混合
して電荷輸送層用塗布液を調製した。この塗布液を上記
電荷発生層の表面に浸漬法により塗布し、90℃で30
分間熱風乾燥することにより膜厚約20μmの電荷輸送
層を形成し、電子写真感光体を作成した。
Next, 100 parts by weight of polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: Iupilon) was used as a binder, and N,N'-(0,P-dimethylphenyl)-N,N' was used as a charge transport material. -(diphenyl)benzidine (hereinafter 4M
e-TPD) 100 parts by weight, N,N'-di(3.5-dimethylphenyl)berylene as a charge generating material
A coating solution for a charge transport layer was prepared by stirring and mixing 0.2 parts by weight of 3.4,9.10-tetracarboxydiimide and a predetermined amount of toluene using a homomixer. This coating solution was applied to the surface of the charge generation layer by dipping, and
A charge transport layer having a thickness of about 20 μm was formed by drying with hot air for 1 minute, thereby producing an electrophotographic photoreceptor.

亙』d1ユ 電荷輸送層で用いる電荷発生材料をN,N″ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド0.4重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した. XJu生ユ 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフエニル)ペリレン−3.4.9、10−テ
トラカルボキシジイミド0.6重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した。
The charge generating material used in the charge transport layer is N,N'' (3.5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 0.4 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used. The charge generating material used in the XJu charge transport layer is N,N' di(3.5
-dimethylphenyl)perylene-3. An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 0.6 parts by weight of 4.9,10-tetracarboxydiimide was used.

実施例4 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ペリレン−3.4,9.10−テ
トラカルボキシジイミド0.8 3!量部としたこと以
外は、実施例1と同様にして電子写真感光体を作成した
Example 4 The charge generating material used in the charge transport layer was N,N'di(3.5
-dimethylphenyl)perylene-3.4,9.10-tetracarboxydiimide 0.8 3! An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the amounts were changed.

火J1生二 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド1.0重量部としたこと以外は
、゛実施例1と同様にして電子写真感光体を作成した。
The charge generating material used in the charge transport layer of Tue J1 is N,N'di(3.5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 1.0 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used.

夾J1生1 電荷輸送層で用いる電荷発生材料なN,N’ジ(3,5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド2.0重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した。
J1 student 1 N,N' di(3,5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 2.0 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used.

夾』一生ユ 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド3.0重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した。
The charge generating material used in the charge transport layer is N, N'di (3.5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 3.0 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used.

火!{+II互 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド4.0重量部としたこと以外は
、実施例1と同桜にして電子写真感光体を作成した. 犬』UI旦 電荷輸送層で用いる電荷発生材料をN,N’ジ(3,5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド5.0重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した。
fire! {+II The charge generating material used in the mutual charge transport layer is N,N' di(3.5
-dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide An electrophotographic photoreceptor was prepared using the same cherry blossoms as in Example 1, except that 4.0 parts by weight of berylene-3.4,9.10-tetracarboxydiimide was used. N,N' di(3,5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 5.0 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used.

ゑ溝i{Jlll旦 電荷輸送層で用いる電荷発生材料なN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド6.0 1i量部としたこと以
外は、実施例1と同様にして電子写真感光体を作成した
N, N' di(3.5
-Dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 6.0 1 i parts of the tetracarboxydiimide was used.

実茄1口」. 電荷輸送層で用いる電荷発生材料をN,N’ 一ジ(3
.5−ジメチルフエニル)ベリレン−3.4,9.10
−テトラカルボキシジイミド7.0重量部としたこと以
外は、実施例1と同様にして電子写真感光体を作成した
1 mouthful of eggplant.” The charge generating material used in the charge transport layer is N,N'
.. 5-dimethylphenyl)berylene-3.4,9.10
- An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that 7.0 parts by weight of tetracarboxydiimide was used.

実施例12 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド8,0重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した. 実施例13 電荷輸送層で用いる電荷発生材料をN,N’ジ(3.5
−ジメチルフェニル)ベリレン−3,4,9.10−テ
トラカルボキシジイミド9.0重量部としたこと以外は
、実施例1と同様にして電子写真感光体を作成した。
Example 12 The charge generating material used in the charge transport layer was N,N'di(3.5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 8.0 parts by weight of -dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide was used. Example 13 The charge generating material used in the charge transport layer was N,N'di(3.5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 9.0 parts by weight of -dimethylphenyl)berylene-3,4,9.10-tetracarboxydiimide was used.

夫五似11 電荷輸送層で用いる電荷発生材料をN,N’ジ(3,5
−ジメチルフェニル)ベリレン−3.4,9.10−テ
トラカルボキシジイミド10重量部としたこと以外は、
実施例1と同様にして電子写真感光体を作成した。
Fugoni 11 The charge generating material used in the charge transport layer is N,N'di(3,5
-dimethylphenyl)berylene-3.4,9.10-tetracarboxydiimide 10 parts by weight,
An electrophotographic photoreceptor was produced in the same manner as in Example 1.

皮!± 電荷輸送層に電荷発生材料を用いないこと以外は、実施
例1と同様にして電子写真感光体を作成した. 〔電子写真感光体の評価方法〕 帯電能、残留電位等の電子写真特性は、図1に示す装置
で測定した. 実施例1乃至実施例14および比較例1で得られた電子
写真感光体5を回転させながら、コロトロン1を用い−
6KVの条件でコロナ放電を行い負に帯電させるととも
に表面電位を7の位置に配置した表面電位計で測定した
leather! ± An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that no charge generating material was used in the charge transport layer. [Method for evaluating electrophotographic photoreceptors] Electrophotographic properties such as charging ability and residual potential were measured using the apparatus shown in Figure 1. While rotating the electrophotographic photoreceptors 5 obtained in Examples 1 to 14 and Comparative Example 1, using a corotron 1, -
Corona discharge was performed under conditions of 6 KV to negatively charge the sample, and the surface potential was measured using a surface potentiometer placed at position 7.

次いで、半導体レーザー2(λ=780nm、露光強度
wO.7 mW/cm’ 、露光時間=260μsec
 )を用いて、感光体を露光し、露光後400msec
経通後の表面電位を残留電位とした。
Next, a semiconductor laser 2 (λ = 780 nm, exposure intensity wO.7 mW/cm', exposure time = 260 μsec
) to expose the photoreceptor to light for 400 msec after exposure.
The surface potential after passage was defined as the residual potential.

次いで、コロトロン3を用い+4KVの条件でコロナ放
電を行って後、λ=550nmのLED(緑色光)ある
いはλ=630nmのLED (赤色光)を用いて、感
光体を露光し、除電行程4行った。
Next, after performing corona discharge under +4KV conditions using Corotron 3, the photoreceptor was exposed to light using a λ = 550 nm LED (green light) or a λ = 630 nm LED (red light), and 4 static elimination steps were performed. Ta.

上記電子写真行程を1サイクル行った後の表面電位V.
,(V)と残留電位vr+=(v)および、100サイ
クル行った後の表面電位V1。。at(V)と残留電位
V IOOrP (V )を測定し、その差を△V,,
.(V)および△vrp(v)  として算出しその結
果を表1に示した。
Surface potential V. after performing one cycle of the above electrophotographic process.
, (V), residual potential vr+=(v), and surface potential V1 after 100 cycles. . Measure at(V) and residual potential VIOOrP(V), and calculate the difference as △V,,
.. (V) and Δvrp(v), and the results are shown in Table 1.

表3から明らかなように、電荷発生層および電荷輸送層
に含有する電荷発生材料のそれぞれを、異なる感度波長
を持つものとした実施例1乃至実施例14の電子写真感
光体は除電光をλ=550nmのLED (緑色光)と
した場合初期残留電位が低く、さらには繰り退し使用後
の残留電位の安定性が非常に良好である,また、電荷輸
送層に含有される電荷発生材料としてのペリレン含量の
添加量を増加させることにより、繰り返し使用による表
面電位の低下が改善されることが判明した.これに対し
て、除電光をλ=630nmのLED(赤色光)とした
場合初期残留電位が高く、さらには繰り返し使用後の残
留電位の安定性が悪いものであり、電荷輸送層に含有さ
れる電荷発生材料とそてのベリレン含量の添加量を増加
させても表面電位の低下が大恭いものであった.電荷輸
送層に電荷発生材料を添加していない比較例1の電子写
真感光体は、初期在留電位が高く、さらには繰り返し使
用後の残留電位および表面電位の安定性が悪いものであ
った。
As is clear from Table 3, the electrophotographic photoreceptors of Examples 1 to 14, in which the charge generation materials contained in the charge generation layer and the charge transport layer had different sensitivity wavelengths, = 550 nm LED (green light) has a low initial residual potential, and furthermore, the stability of the residual potential after retraction use is very good. It was found that by increasing the amount of perylene added, the decrease in surface potential due to repeated use was improved. On the other hand, when the static elimination light is an LED (red light) with λ = 630 nm, the initial residual potential is high, and furthermore, the stability of the residual potential after repeated use is poor. Even when the amount of charge-generating material and berylene added to the material was increased, the surface potential decreased significantly. The electrophotographic photoreceptor of Comparative Example 1, in which no charge generating material was added to the charge transport layer, had a high initial residence potential and also had poor stability of residual potential and surface potential after repeated use.

比」たヱL旦 電荷輸送層で用いる電荷発生材料を、N,N’−ジ(3
.5−ジメチルフェニル)ベリレン−3.4,9.10
−テトラカルボキシジイミド0.2重量部に代えて、メ
タルフリーフタ口シアニン0.2重量部としたこと以外
は、実施例1と同様にして電子写真感光体を作成した。
The charge generating material used in the charge transport layer was N,N'-di(3
.. 5-dimethylphenyl)berylene-3.4,9.10
- An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that 0.2 parts by weight of metal-free lid cyanine was used instead of 0.2 parts by weight of tetracarboxydiimide.

比較例3 電荷輸送層で用いる電荷発生材料を、メタルフリーフタ
口シアニン0.4重量部としたこと以外は、比較例2と
同様にして電子写真感光体を作成した。
Comparative Example 3 An electrophotographic photoreceptor was prepared in the same manner as Comparative Example 2, except that 0.4 parts by weight of metal-free lid cyanine was used as the charge-generating material in the charge transport layer.

比較例4 電荷輸送層で用いる電荷発生材料を、メタルフリーフタ
口シアニン0.6 fii部としたこと以外は、比較例
2と同様にして電子写真感光体を作成した。
Comparative Example 4 An electrophotographic photoreceptor was prepared in the same manner as Comparative Example 2, except that the charge generating material used in the charge transport layer was 0.6 fii parts of metal free lid cyanine.

比較例5 電荷輸送層で用いる電荷発生材料を、メタルフリーフタ
口シアニン0.8 g9部としたこと以外は、比較例2
と同禄にして電子写真感光体を作成した。
Comparative Example 5 Comparative Example 2 except that the charge generating material used in the charge transport layer was 0.8 g 9 parts of metal free lid cyanine.
At the same time, he created an electrophotographic photoreceptor.

ル」先J(互 電荷輸送層で用いる電荷発生材料を、メタルフリーフタ
口シアニン1.0重量部としたこと以外は、比較例2と
同様にして電子写真感光体を作成した。
An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 2, except that the charge generating material used in the charge transport layer was 1.0 parts by weight of metal-free lid cyanine.

店」先j(ヱ 電荷輸送層で用いる電荷発生材料を、メタルフリーフタ
口シアニン1,2重量部としたこと以外は、比較例2と
同様にして電子写真感光体を作成した。
An electrophotographic photoreceptor was prepared in the same manner as in Comparative Example 2, except that the charge-generating material used in the charge transport layer was 1.2 parts by weight of metal-free lid cyanine.

(電子写真感光体の評価方法) 帯電能、残留電位等の電子写真特性は、図1に示す装置
で測定した。
(Evaluation method of electrophotographic photoreceptor) Electrophotographic properties such as charging ability and residual potential were measured using the apparatus shown in FIG.

比較例2乃至比較例7で得られた電子写真感光体5を回
転させながら、コロトン1を用い−6κVの条件でコロ
ナ放電を行い負に帯電させるとともに表面電位を7の位
置に配置した表面電位計で測定した. ?いで、半導体レーザー2(λ=780nm,露光強度
=0.7 mW/cm” 、露光時間=260μsec
 )を用いて、感光体を露光し、露光後400msec
経過後の表面電位を残留電位とした.次いで、コロトロ
ン3を用い+4KVの条件でコロナ放電を行って後、λ
=630nmのLED(赤色光)を用いて、感光体を露
光し、除電行程4行った. 上記電子写真行程を1サイクル行った後の残留電位V■
(V)を測定し、その結果を表4に示した。
While rotating the electrophotographic photoreceptors 5 obtained in Comparative Examples 2 to 7, corona discharge was performed using Coroton 1 under the condition of -6κV to negatively charge the electrophotographic photoreceptors 5, and the surface potential was placed at position 7. It was measured with a meter. ? Then, semiconductor laser 2 (λ = 780 nm, exposure intensity = 0.7 mW/cm", exposure time = 260 μsec
) to expose the photoreceptor to light for 400 msec after exposure.
The surface potential after the elapsed time was taken as the residual potential. Next, after performing corona discharge under +4KV conditions using Corotron 3, λ
The photoreceptor was exposed to light using a =630 nm LED (red light), and static elimination step 4 was performed. Residual potential V after performing one cycle of the above electrophotographic process
(V) was measured and the results are shown in Table 4.

表4 表4から明らかなように、電荷発生層および電荷輸送層
で使用する電荷発生材料を同一とした比較例2乃至比較
例7の電子写真感光体は、いずれも残留電位の高いもの
であった. 火A±工互 電荷輸送層で用いる電荷輸送材料を、4Me−TPDに
代えて、1.1−ビス(P−ジェチルアミノフェニル)
−4、4−ジフェニル−1,3ーブタジエン(以下T−
405と略す)としたこと以外は、実施例5と同様にし
て電子写真感光体を作成した. 叉籐±1至 電荷輸送層で用いる電荷輸送材料を、4Me−TPDに
代えて、丁−405としたこと以外は、実施例6と同様
にして電子写真感光体を作成した. 夾族■1ユ 電荷輸送層で用いる電荷輸送材料を、4Me−TPOに
代えて、T−405としたこと以外は、実施例7と同様
にして電子写真感光体を作成した。
Table 4 As is clear from Table 4, the electrophotographic photoreceptors of Comparative Examples 2 to 7, in which the same charge generation material was used in the charge generation layer and the charge transport layer, all had high residual potentials. Ta. 1.1-bis(P-jethylaminophenyl) was used instead of 4Me-TPD as the charge transport material used in the charge transport layer.
-4,4-diphenyl-1,3-butadiene (hereinafter T-
An electrophotographic photoreceptor was produced in the same manner as in Example 5, except that the sample was abbreviated as 405). An electrophotographic photoreceptor was prepared in the same manner as in Example 6, except that the charge transport material used in the charge transport layer was D-405 instead of 4Me-TPD. An electrophotographic photoreceptor was prepared in the same manner as in Example 7, except that T-405 was used instead of 4Me-TPO as the charge transport material used in the charge transport layer.

東五孤1互 電荷輸送層で用いる電荷輸送材料を、4Me−TPOに
代えて、T−405としたこと以外は、実施例8と同様
にして電子写真感光体を作成した. 寒11ユ1 電荷輸送層で用いる電荷輸送材料を、4Me−TPDに
代えて,T−405としたこと以外は、実施例9と同様
にして電子写真感光体を作成した. (電子写真感光体の評価方法) 帯電能、残留電位等の電子写真特性は、図1に示す装置
で測定した. 実施例15乃至実施例19で得られた電子写真感光体5
を回転させながら、コロトロン1を用い−6κVの条件
でコロナ放電を行い負に帯電させるとともに表面電位を
7の位置に配置した表面電位計で測定した. 次いで、半導体レーザー2(λ=780nm,露光強度
=0.7 mW/cm’ .露光時間=260μsec
 )を用いて、感光体を露光し、露光後400’mse
c経過後の表面電位を残留電位とした。
An electrophotographic photoreceptor was prepared in the same manner as in Example 8, except that T-405 was used instead of 4Me-TPO as the charge transport material used in the Togokou 1 charge transport layer. Cold 11 Yu 1 An electrophotographic photoreceptor was prepared in the same manner as in Example 9, except that the charge transport material used in the charge transport layer was T-405 instead of 4Me-TPD. (Method for evaluating electrophotographic photoreceptors) Electrophotographic properties such as chargeability and residual potential were measured using the apparatus shown in Figure 1. Electrophotographic photoreceptor 5 obtained in Examples 15 to 19
While rotating, corona discharge was performed under the condition of -6κV using Corotron 1 to negatively charge the sample, and the surface potential was measured with a surface potentiometer placed at position 7. Next, a semiconductor laser 2 (λ = 780 nm, exposure intensity = 0.7 mW/cm', exposure time = 260 μsec
) to expose the photoreceptor to light for 400'mse after exposure.
The surface potential after c elapsed was defined as the residual potential.

次いで、コロトロン3を用い+4KVの条件でコロナ放
電を行って後、λ=550nmのLED(緑色光)を用
いて、感光体を露光し、除電行程4行った。
Next, corona discharge was performed using a corotron 3 under the condition of +4 KV, and then the photoreceptor was exposed to light using a λ=550 nm LED (green light), and a static elimination step 4 was performed.

上記電子写真行程を1サイクル行った後の残留電位vr
p(■)を測定し、その結果を表5に示した。
Residual potential vr after performing one cycle of the above electrophotographic process
p(■) was measured and the results are shown in Table 5.

表  5 電荷輸送層に使用される電荷輸送材料のイオン化ポテン
シャルよりも高いものとした実施例15乃至実施例19
の電子写真感光体は、いずれも残留電位は低いがベリレ
ン含量の添加量が増加するにしたがって残留電位が上昇
する傾向が見られた。
Table 5 Examples 15 to 19 in which the ionization potential was higher than that of the charge transport material used in the charge transport layer
Although all of the electrophotographic photoreceptors had low residual potentials, there was a tendency for the residual potentials to increase as the amount of berylene added increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電子写真感光体の評価を行った装置を示した
ものである。 1,3・・・・コロトロン、 2・・・・半1体レーザ
ー、 4・・・・LED、  5・・・・電子写真感光
体、  7・・・・表面電位計。
FIG. 1 shows an apparatus in which the electrophotographic photoreceptor was evaluated. 1, 3... Corotron, 2... Semi-unit laser, 4... LED, 5... Electrophotographic photoreceptor, 7... Surface electrometer.

Claims (3)

【特許請求の範囲】[Claims] (1)導電性基板上に設けられた電荷発生層及び電荷輸
送層とから成る電子写真用積層感光体において、 前記電荷輸送層中には電荷発生材料が配合されており、
該電荷発生材料の感度波長は、電荷発生層に使用されて
いる電荷発生材料の感度波長と異なることを特徴とする
電子写真用積層感光体。
(1) In an electrophotographic laminated photoreceptor comprising a charge generation layer and a charge transport layer provided on a conductive substrate, a charge generation material is blended in the charge transport layer,
A laminated photoreceptor for electrophotography, wherein a sensitivity wavelength of the charge generation material is different from a sensitivity wavelength of the charge generation material used in the charge generation layer.
(2)電荷輸送層に使用される電荷発生材料のイオン化
ポテンシャルは、電荷発生層に使用されている電荷発生
材料のイオン化ポテンシャルよりも大きいものである請
求項(1)記載の積層感光体。
(2) The laminated photoreceptor according to claim 1, wherein the ionization potential of the charge generation material used in the charge transport layer is greater than the ionization potential of the charge generation material used in the charge generation layer.
(3)請求項(1)の記載の積層感光体を用いて画像露
光、現像、転写及び除電の各工程を行なう電子写真方法
において、 電荷輸送層中に配合された電荷発生材料の感度波長領域
の光線を照射することにより除電を行なうことを特徴と
する電子写真方法。
(3) In an electrophotographic method in which each step of image exposure, development, transfer, and static elimination is performed using the laminated photoreceptor according to claim (1), the sensitivity wavelength range of the charge generation material blended in the charge transport layer is provided. An electrophotographic method characterized in that static electricity is removed by irradiation with a light beam.
JP1114307A 1989-05-09 1989-05-09 Multilayer photoreceptor for electrophotography Expired - Fee Related JP2780810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114307A JP2780810B2 (en) 1989-05-09 1989-05-09 Multilayer photoreceptor for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114307A JP2780810B2 (en) 1989-05-09 1989-05-09 Multilayer photoreceptor for electrophotography

Publications (2)

Publication Number Publication Date
JPH02293854A true JPH02293854A (en) 1990-12-05
JP2780810B2 JP2780810B2 (en) 1998-07-30

Family

ID=14634598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114307A Expired - Fee Related JP2780810B2 (en) 1989-05-09 1989-05-09 Multilayer photoreceptor for electrophotography

Country Status (1)

Country Link
JP (1) JP2780810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158264A (en) * 1991-12-06 1993-06-25 Fuji Xerox Co Ltd Electrophotographic method
CN102540785A (en) * 2010-12-28 2012-07-04 京瓷美达株式会社 Multilayer electrophotographic photoconductor and image- forming apparatus
JP2017049519A (en) * 2015-09-04 2017-03-09 京セラドキュメントソリューションズ株式会社 Laminated electrophotographic photoreceptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151954A (en) * 1986-12-17 1988-06-24 Toshiba Corp Positive electrification type electrophotographic sensitive body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151954A (en) * 1986-12-17 1988-06-24 Toshiba Corp Positive electrification type electrophotographic sensitive body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158264A (en) * 1991-12-06 1993-06-25 Fuji Xerox Co Ltd Electrophotographic method
CN102540785A (en) * 2010-12-28 2012-07-04 京瓷美达株式会社 Multilayer electrophotographic photoconductor and image- forming apparatus
JP2012141413A (en) * 2010-12-28 2012-07-26 Kyocera Document Solutions Inc Multilayer type electrophotographic photoreceptor and image forming apparatus
JP2017049519A (en) * 2015-09-04 2017-03-09 京セラドキュメントソリューションズ株式会社 Laminated electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP2780810B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
EP0189991B1 (en) Photoresponsive imaging members with polysilylenes hole transporting compostions
JP2780810B2 (en) Multilayer photoreceptor for electrophotography
EP0536692B2 (en) Use of a photoconductor in an electrophotographic apparatus employing contact charging
US5066557A (en) Styrene butadiene copolymers as binders in mixed pigment generating layer
JPH056179B2 (en)
US4076528A (en) Xerographic binder plate
JPS61103156A (en) Electrophotographic sensitive body
JPH03216662A (en) Electrophotographic sensitive body
JPH01179163A (en) Electrophotographic sensitive body
JPH0248669A (en) Electrophotographic sensitive body
JPS63158556A (en) Electrophotographic sensitive body
JP2541283B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JP2674305B2 (en) Electrophotographic photoreceptor
JPH0524505B2 (en)
JPH06103394B2 (en) Multilayer type photoconductor for electrophotography
JPS63157159A (en) Electrophotographic sensitive body
JPS63151954A (en) Positive electrification type electrophotographic sensitive body
JPH0339969A (en) Electrophotographic sensitive body
JPH0823702B2 (en) Electrophotography method
JPH07140684A (en) Electrophotographic photoreceptor
JPS6333748A (en) Electrophotographic sensitive material
JPS63158559A (en) Electrophotographic sensitive body
JP2002258500A (en) Electrophotographic receptor
JP2002091034A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees