JPH0548776B2 - - Google Patents

Info

Publication number
JPH0548776B2
JPH0548776B2 JP3638689A JP3638689A JPH0548776B2 JP H0548776 B2 JPH0548776 B2 JP H0548776B2 JP 3638689 A JP3638689 A JP 3638689A JP 3638689 A JP3638689 A JP 3638689A JP H0548776 B2 JPH0548776 B2 JP H0548776B2
Authority
JP
Japan
Prior art keywords
flame retardant
foam
polyolefin
cell
open cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3638689A
Other languages
Japanese (ja)
Other versions
JPH02215844A (en
Inventor
Motoyoshi Hatada
Kanako Kaji
Iwao Yoshizawa
Choji Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Kako Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Sanwa Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Sanwa Kako Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP3638689A priority Critical patent/JPH02215844A/en
Publication of JPH02215844A publication Critical patent/JPH02215844A/en
Publication of JPH0548776B2 publication Critical patent/JPH0548776B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、難燃性架橋ポリオレフイン連続気泡
体の製造方法に関する。 〔従来の技術〕 近年開発された架橋ポリオレフイン連続気泡体
は、安価にして、クツシヨン性、吸音性等の物性
に優れているので、クツシヨン材、パツキング材
フイルター、塗布材、吸音材等の各種の用途に広
く利用されている。 従来、架橋ポリオレフイン連続気泡体の製造方
法としては、密閉金型中加圧下で発泡性架橋ポリ
オレフイン組成物中の発泡剤と架橋剤を部分的に
分解させ、常圧下で残存する発泡剤と架橋剤を分
解させて独立気泡体を得、次いで得られた独立気
泡体を圧縮して独立気泡を破壊する方法が提案さ
れていた(参照:特公昭59−23545号公報及び特
開昭56−146732号公報)。また本出願人は、発泡
性架橋性ポリオレフイン組成物を所望の形状に加
熱成形した後、常圧下にて加熱して架橋剤及び発
泡剤を同時進行的に分解させて気泡体を生成さ
せ、次いで機械的変形を加えて気泡を連通化させ
る方法を開発している(参照:特公昭62−19294
号公報及び特開昭56−121739号公報)。 しかし、ポリエチレンやポリプロピレン等のポ
リオレフイン樹脂は、極めて燃え易く、また燃焼
熱が高いため、ポリオレフイン連続気泡体を床
材、壁材、航空機内の材料などの用途に用いるこ
とができなかつた。 一方、従来から行われている難燃性発泡体の製
造方法としては、ポリオレフイン樹脂に無機系充
填剤を添加したものを加熱発泡する方法(参照:
特公昭60−26500号公報)、あるいはリン系または
ハロゲン系等の難燃剤を添加したものを加熱発泡
する方法(参照:特公昭48−9587号公報、特公昭
48−29857号公報及び特公昭58−5930号公報)等
がある。 〔発明が解決しようとする課題〕 しかしながら、前記の無機系充填剤またはリン
系、ハロゲン系等の難燃剤を添加したものを加熱
発泡する方法は、独立気泡体に関するものであ
り、連続気泡体に適用することは困難である。な
ぜなら、連続気泡は独立気泡に比較して燃焼を助
長する空気の供給が多いので、独立気泡体に対す
る添加量と同じ割合で無機系充填剤または難燃剤
を連続気泡体に添加したとしても、充分な難燃性
を付与できず、難燃性の連続気泡体を得ることが
できない。一方、多量の無機系充填剤または難燃
剤を添加すると、連続気泡体は発泡条件が厳しい
ため、満足な気泡体が得られない。 本出願人は先に、前記のような従来法の欠点を
解消し、永久的に難燃性を有する架橋ポリオレフ
イン連続気泡体を提供すべく、ポリオレフイン連
続気泡体にビニルフオスフオネート化合物を含浸
させ、次いで電子線を照射し、該気泡体の内部お
よび表面に不溶性の重合物を生ぜしめることを特
徴とするポリオレフイン連続気泡体の改良方法を
開発し、既に特許出願している(参照:特願昭63
−172496号)。 しかしながら、この方法によれば難燃性のポリ
オレフイン連続気泡体を得ることはできるが、非
常に高価なビニルフオスフオネート化合物を多量
に使用しなければならないので、経済性に欠ける
ことが問題であつた。 したがつて、本発明の目的は、前記のような欠
点を解消し、永久的に難燃性を有する架橋ポリオ
レフイン連続気泡体を安価に製造する方法を提供
することにある。 〔課題を解決するための手段〕 本発明の難燃性架橋ポリオレフイン連続気泡体
の製造方法は、ポリオレフインにハロゲン系難燃
剤を配合した発泡性架橋性組成物を発泡させて気
泡体を生成させ、次いで機械的変形を加えて気泡
を連通化させて架橋ポリオレフイン連続気泡体を
得る工程と、得られた架橋ポリオレフイン連続気
泡体にリン系難燃剤を含浸させ、次いで電子線を
照射し、該連続気泡体の内部および表面に不溶性
の重合物を生ぜしめる工程とからなることを特徴
とする。 〔発明の作用及び態様〕 すなわち、本発明の方法は、ハロゲン系難燃剤
とリン系難燃剤を併用することによつて高価なリ
ン系難燃剤の使用量を減らし、製造コストを低減
し、かつ、気泡膜中に存在するハロゲン系難燃剤
と気泡膜表面及び気泡体表面に結合付着している
リン系難燃剤の2種類の難燃剤の相乗効果によつ
て、優れた難燃性を付与できるものである。すな
わち、気泡膜表面及び気泡体表面に存在するリン
系難燃剤によるポリオレフインの着火燃焼防止及
び自己消火性と気泡膜中に存在するハロゲン系難
燃剤による燃焼防止及び自己消火性の両効果が相
乗的に奏され、優れた難燃性を付与できるもので
ある。 本発明においてポリオレフインとしては、例え
ばポリエチレン、エチレン−酢酸ビニル共重合
体、ポリプロピレン、ポリテトラフルオロエチレ
ン、エチレン−プロピレン共重合体、ポリ−4−
メチル−1−ペンテン、ポリビニルクロライド、
ポリビニリデンクロライド、ポリビニリデンフル
オライド、テトラフルオロエチレン・エチレン共
重合体を挙げることができ、気泡体の回復性、ク
ツシヨン性等の物性上、エチレン−酢酸ビニル共
重合体が特に好ましい。 本発明においてハロゲン系難燃剤としては、臭
素系と塩素系があるが、難燃性が高く、かつ有害
なガスを発生しないことから、臭素系難燃剤が好
ましい。臭素系難燃剤としては、無機系難燃剤、
または鎖状炭化水素系、環状炭化水素系、りん系
の有機系難燃剤が使用でき、例えば、臭化アンモ
ニウム、クロロテトラブロモブタン、臭化ビニ
ル、テトラブロモビスフエノールA、テトラブロ
モ無水フタル酸、ヘキサブロモベンゼン、ヘキサ
ブロモシクロドデカン、ビス(ブロモエチルエー
テル)テトラブロモビスフエノールA、トリス
(ジブロモプロピル)ホスフエート等を例示でき
る。 ハロゲン系難燃剤の添加量は、樹脂100重量部
に対して10〜30重量部であり、好ましくは14〜25
重量部である。添加量が少なすぎると十分な難燃
性が付与できず、りん系難燃剤の使用量を減らす
ことができない。逆に多すぎると発泡に悪影響を
及ぼすので好ましくない。 上記ポリオレフイン及びハロゲン系難燃剤を用
いて架橋ポリオレフイン連続気泡体を得る方法と
しては、ポリオレフインにハロゲン系難燃剤を配
合した発泡性架橋性組成物を発泡させて気泡体を
生成させ、次いで機械的変形を加えて気泡を連通
化させて架橋ポリオレフイン連続気泡体を得る方
法であれば、従来公知の方法が適用でき、特に限
定されない。 このような方法の内、特に特公昭62−19294号
公報及び特開昭56−121739号公報に記載されてい
るように、発泡性架橋性組成物を所望の形状に加
熱整形した後、常圧下にて加熱して架橋剤及び発
泡剤を同時進行的に分解させて気泡体を生成さ
せ、次いで機械的変形を加えて気泡を連通化させ
る方法において、本発明の効果は特に顕著であ
る。 以下、本発明に係る連続気泡体の製造方法につ
いて具体的に説明する。 まず、ポリオレフインに発泡剤、架橋剤、必要
に応じて発泡助剤、充填剤、顔料を添加し、これ
を加熱したミキシングロール等によつて練和す
る。次いで、得られた組成物を金型に仕込み、プ
レスにて加圧下で樹脂及び架橋剤の種類に応じて
115〜155℃、好ましくは120〜140℃において加熱
整形する。この加熱整形工程において、発泡性架
橋性組成物をゲル分率ゼロの状態に維持して整形
することが、連続気泡率100%又は100%に近い連
続気泡体を得る条件である。なお、この加熱整形
工程において、非常に微量の発泡剤が初期分解を
生じ、整形品を金型から取り出した場合に2倍程
度まで膨脹することがあるが、これは発泡という
概念からは程遠く、本発明にとつて何ら差し支え
ない。 上記のようにして整形された発泡性架橋性組成
物は、次いで常圧下にて加熱することによつて、
架橋剤及び発泡剤の分解を同時進行的に行なわし
められる。この発泡・架橋工程は、例えば整形さ
れたポリオレフイン組成物を所望の断面形状、寸
法を有する気密でない、即ち密閉されていない金
型中に入れ、該金型の金属板を外部から加熱する
ことによつて上記組成物を間接的に加熱せしめ
る。間接的に加熱せしめる方法としては、例えば
金属板外表面にヒーターを密着させて加熱する
か、あるいは金属板に熱媒の流路を設け、ジヤケ
ツト方式で蒸気、加熱オイル等によつて加熱する
方法がある。 あるいは、整形されたポリオレフイン組成物を
気密でない開閉式の金型に入れ、ローゼ合金、ウ
ツド合金等を用いるメタルバスやオイルバス中、
硝酸ナトリウム、硝酸カリウム、亜硝酸カリウム
等の塩の1種又は2種以上の溶融塩を用いる塩浴
中、もしくは窒素気流中で、あるいは伸長(ない
し拡張)可能な鉄板等により覆われた状態で直接
加熱せしめる。所定時間加熱した後、冷却して気
泡体を得る。 加熱温度は、使用するポリオレフインの種類に
応じて140〜210℃、好ましくは160〜190℃の範囲
に設定する。加熱時間は、好ましくは10〜90分、
さらに好ましくは20〜70分である。 このようにして、機械的変形与えることによつ
て容易に破壊しうる気泡膜を有し、、かつ従来の
気泡体と同程度の架橋度(ゲル分率95%程度ま
で)を有する気泡体が得られる。 また、本発明では、上記発泡・架橋工程におけ
る加熱を二段階に分けて行なうことができ、これ
により発泡架橋条件が緩慢となり、架橋剤及び発
泡剤の分解を2段階でより同時進行的に行なうこ
とができる。すなわち、発泡性架橋性組成物の均
質加熱が行なわれ、上記組成物の厚さ方向におけ
る加熱の不均質性がなくなり、これによつて、部
分的な発泡ムラの出現やガス抜け現象等を効果的
に防止できる。このように発泡・架橋工程におけ
る加熱を二段階で行なう場合には、第二段階の加
熱温度が第一段階の加熱温度よりも高くなるよう
に設定するのが効果的であり、例えば第一段加熱
を145〜180℃、第二段加熱を170〜210℃の範囲で
行なう。 以上のようにして得られた気泡体(いわゆる独
立気泡体)は、次いで例えば等速二本ロール等に
より圧縮変形を加えることによつて気泡膜は破壊
され、気泡が連通化されて連続気泡体が得られ
る。等速二本ロールの表面に無数の小さい針を設
けるか、又は等速二本ロールの前及び/又は後に
無数の小さい針を設けたロールを配置して、該気
泡体の表面に無数の小孔を開けることによつて、
気泡の連通化を促進させることができる。 この方法によつて、Remington Pariser法
(ASTM D1940−62T)に基づいて測定した連続
気泡率で100%又は100%に近い連続気泡体が得ら
れる。 上記のような連続気泡体の製造方法に好適に用
いられる架橋剤としては、ポリオレフイン系樹脂
の流動開始温度以上の分解温度を有するものであ
つて、加熱により分解され、遊離ラジカルを発生
してその分子間もしくは分子内に架橋結合を生ぜ
しめるラジカル発生剤であるところの有機過酸化
物、例えばジクミルパーオキサイド、1,1−ジ
−t−ブチルパーオキシ−3,3,5−トリメチ
ルシクロヘキサン、2,5−ジメチル−2,5−
ジ−t−ブチルパーオキシヘキサン、2,5−ジ
メチル−2,5−ジ−t−ブチルパーオキシヘキ
シン、α,α′−ビス(t−ブチルパーオキシ)ジ
イソプロピルベンゼン、t−ブチルパーオキシケ
トン、t−ブチルパーオキシベンゾエートなどが
あり、また発泡剤としてはポリオレフイン系樹脂
の溶融温度以上の分解温度を有する化学発泡剤で
あり、例えばアゾ系化合物のアゾジカルボンアミ
ド、バリウムアゾジカルボキシレート等;ニトロ
ソ系化合物のジニトロソペンタメチレンテトラミ
ン、トリニトロソトリメチルトリアミン等;ヒド
ラジツド系化合物のp,p′−オキシビスベンゼン
スルホニルヒドラジツト等;スルホニルセミカル
バジツト系化合物p,p′−オキシビスベンゼンス
ルホニルセミカルバジツド、トルエンスルホニル
セミカルバジツド等、などが好適に使用できる
が、これらに限定されるではない。また、発泡助
剤を発泡剤の種類に応じて添加することができ
る。発泡助剤としては、尿素を主成分とした化合
物、塩基性炭酸亜鉛、酸化亜鉛、酸化鉛等の金属
酸化物、サリチル酸、ステアリン酸等を主成分と
する化合物、即ち高級脂肪酸あるいは高級脂肪酸
の金属化合物などがある。 さらに、使用する組成物の物性の改良あるいは
価格の低下を目的として、架橋結合に著しい悪影
響を与えない配合剤(充填剤)、例えばカーボン
ブラツク、酸化亜鉛、酸化チタン、酸化カルシウ
ム、酸化マグネシウム、酸化ケイ素等の金属酸化
物、炭酸マグネシウム、炭酸カルシウム等炭酸
塩、あるいはパルプ等の繊維物質、または各種染
料、顔料並びに螢光物質、その他常用のゴム配合
剤等を必要に応じて添加することができる。 本発明において、リン系難燃剤を含浸させる連
続気泡体の連続気泡率は、好ましくは80%以上、
特に好ましくは90%以上のものが良い。 連続気泡率が80%以下であると、リン系難燃
剤、例えばビニルフオスフオネート化合物を含浸
させることが困難となるので好ましくない。 本発明の次工程において、連続気泡体に含浸さ
せるリン系難燃剤としては、、非ハロゲンリン酸
エステル、含ハロゲンリン酸エステル、特殊リン
酸エステル、含リンポリオール等が使用できる
が、中でもビニルフオスフオネート化合物が難燃
効果に優れ、特に好ましい。 ビニルフオスフオネート化合物は、下記一般式 (但し、xおよびy≧1)で表わされる化合物
が好ましい。上式の化合物においてリンPが難燃
元素であり、重量基準で約22.5%含有されてい
る。 本発明でポリオレフイン連続気泡体にビニルフ
オスフオネート化合物を含浸させる方法として
は、まずビニルフオスフオネート化合物を濃度が
10〜100重量%、好ましくは15〜75重量%になる
ように後述の溶媒に溶解せしめる。この場合、15
%より低いと自己消火性の気泡体が得られず、一
方、75%を越えると溶液の粘性が高く、含浸の効
率が悪いので好ましくない。 次いで、上記溶液中に架橋ポリオレフイン連続
気泡体を浸漬するか、又は上記溶液を該連続気泡
体に噴霧機によつて吹き付ける等の方法によつ
て、上記溶液を含浸させる。 次に、上記溶液を含浸させた連続気泡体を取出
し、余分な溶液を絞り取つた後、充分に風乾また
は減圧乾燥し、溶媒をを蒸発させる。含浸率は、
上記溶液の濃度と含浸後の絞り方により調節する
ことができる。 ここで用いる溶媒としては、例えば、水、アセ
トン、エタノール、メチルエチルケトン、酢酸エ
チル、ベンゼン、テトラヒドロフランなどを挙げ
ることができる。 乾燥後、上記気泡体に不活性ガス雰囲気下ある
いは真空下で電離性放射線を照射する。電離性放
射線としては、Co60よりのγ線、加速器より電
子線が便利に用いられる。例えば、上記気泡体に
好ましくは10〜50℃で、1.0〜1.0×107rad/秒の
線量率で1〜20Mradの線量を照射することによ
り、上記気泡体の内部および表面に不溶性の重合
物を生ぜしめる。その結果、耐久性の難燃化を達
成することができる。 このようにして得られる気泡体の重量増加率
は、リン系難燃剤を含浸する前の気泡体の重量基
準で5%以上が好ましく、特に好ましくは10%以
上であると本発明の効果が顕著である。重量増加
率の上限は、作用面では特に制限されないが、経
済性の面から60%以下が好ましい。 本発明の方法によつて得られる連続気泡体は、
難燃性に優れ、米国印刷局の発行するCFR(Code
of Federal Regulations)のタイトルNo.14(航空
及び宇宙)、Part25.853(b)に定められた床材、シ
ートのクツシヨン材等に適用される燃焼試験に合
格するものである。したがつて、得られる難燃性
気泡体は、従来の建築分野だけでなく航空産業及
び宇宙産業にも適用できる。 〔実施例〕 以下に実施例を挙げて本発明についてさらに具
体的に説明するが、本発明は下記実施例により何
ら限定されるものではない。 実施例 1 エチレン−酢酸ビニル共重合体(商品名ユカロ
ンEVA−41H、酢酸ビニル含有率16重量%、三
菱油化株式会社製)100重量部、アゾジカルボン
アミド18重量部、活性亜鉛華0.05重量部、ジクミ
ルパーオキサイド0.8重量部、臭素化芳香族化合
物(商品名ピロガードSR−600A、第一工業製薬
株式会社製)16重量部からなる組成物を85℃のミ
キシングロールにて練和し、120℃に加熱された
プレス内の金型(195×380×28mm)に上記練和物
を充填し、40分間加圧下で加熱し、発泡性架橋性
シートを整形した。該発泡性架橋性シートのゲル
分率は0であつた。次いで、得られた発泡性架橋
性シートを、既に170℃に加熱されている気密で
ない開閉式の金型(1000×500×100mm)に入れ、
ジヤケツト方式により170℃の蒸気で60分間加熱
し、冷却後取り出し、発泡体を得た。 得られた発泡体をロール間隔20mmに設定した等
速二本ロールの間を5回通過させて気泡膜を破壊
させ、気泡の連通化を行なつた。得られた連続気
泡体は、見掛け密度0.03g/cm3、連続気泡率100
%、気泡径約2mmであつた。 得られた連続気泡体を380×80×10mmの六面気
泡体のシートに裁断し、裁断したシートを、ビニ
ルフオスフオネート化合物〔米国アクゾケミカル
ズ(AKZO Chemicals)株式会社製フアイロー
ル(Fyrol)76〕の25%メタノール溶液に浸漬
し、該溶液を含浸させた後、該気泡体を取り出し
てメタノールを風乾除去した。充分に乾燥させた
気泡体をポリエチレンの袋に入れ、窒素を10分間
通した後、密閉した。これをコンベアの上に乗
せ、室温で変圧器整流型電子線加速器により、
800Kev、6mA、2.1×106rad/秒の電子線を
10Mrad照射した。 照射後、該気泡体の重量増加率は、原気泡体の
重量基準で40.0%であつた。処理気泡体について
前記CFRの燃焼試験を行なつた結果、すべての
要求を満たし合格した。 実施例 2 実施例1におけるビニルフオスフオネート化合
物のメタノール溶液の濃度を33重量%に変えた以
外は、全て実施例1と同一条件で全く同様にして
気泡体を成形し、ビニルフオスフオネート化合物
を含浸処理した。処理後の気泡体の重量増加率は
56.5%であり、前記CFRの燃焼試験に合格するも
のであつた。 比較例 1 実施例1と同一条件で連続気泡体を成形し、ビ
ニルフオスフオネート化合物を含浸させることな
く前記CFR燃焼試験を実施したが、不合格であ
つた。 実施例 3 実施例1における臭素化芳香族化合物(商品名
ピロガードSR600−A)配合部数を20重量部に、
またビニルフオスフオネート化合物のメタノール
溶液の濃度を15重量%に変えた以外は、全て実施
例1と同一条件で全く同様にして処理した。処理
後の気泡体の重量増加率は20.8%であり、前記
CFR燃焼試験に合格した。 実施例 4 実施例1における臭素化芳香族化合物の配合部
数を20重量部に変えた以外は、、全て実施例1と
同一条件で全く同様にして処理した。処理後の気
泡体の重量増加率は45.2%であり、前記CFR燃焼
試験に合格した。 実施例 5 実施例1における臭素化芳香族化合物の配合部
数を20重量部に、またビニルフオスフオネート化
合物のメタノール溶液の濃度を33重量%に変えた
以外は、全て実施例1と同一条件で全く同様にし
て処理した。処理後の気泡体の重量増加率は59.3
%であり、、前記CFR燃焼試験に合格した。 比較例 2 実施例1における臭素化芳香族化合物の配合部
数を20重量部に変えた以外は、全て実施例1と同
一条件で全く同様にして連続気泡体を成形し、ビ
ニルフオスフオネート化合物を含浸することなく
前記CFRの燃焼試験を実施したところ不合格で
あつた。 比較例 3 実施例1における臭素化芳香族化合物を添加せ
ず、ビニルフオスフオネート化合物のメタノール
溶液の濃度を33重量%に変えた以外は、全て実施
例1と同一条件で全く同様に処理した。処理後の
気泡体の重量増加率は53.3%であり、前記CFRの
燃焼試験を実施したところ、不合格であつた。 比較例 4 実施例1における臭素化芳香族化合物を添加せ
ず、ビニルフオスフオネート化合物のメタノール
溶液の濃度を75重量%に変えた以外は、全て実施
例1と同一条件で全く同様に処理した。処理後の
気泡体の重量増加率は80.9%であり、前記CFRの
燃焼試験に合格した。処理後の気泡体は難燃性に
優れているが、ビニルフオスフオネート化合物の
消費量が多く、経済上の問題があつた。 比較例 5 実施例1における臭素化芳香族化合物16重量部
に変え、赤りん(商品名ノーバレツド#120、燐
化学工業株式会社製)16重量部添加した以外は、
全て実施例1と同一条件で全く同様にして連続気
泡体成形した。得られた連続気泡体を、、ビニル
フオスフオネート化合物を含浸させることなく、
前記CFRの燃焼試験を実施したが、不合格であ
つた。 実施例 6〜10 実施例1において、ハロゲン系難燃剤としてサ
イテツク インコ (SAITECH lnc.)社製の
サイテツクス(SAYTEX)BT−93を使用し、
そのポリオレフイン組成物への配合部数を下記表
−1のように変え、かつ得られた連続気泡体への
ビニルフオスフオネートの含浸割合(重合し乾燥
した後の気泡体の重量増加率で表示)を表−1に
示すように変える以外は、全て実施例1と同一条
件で全く同様にして難燃性連続気泡体を製造し
た。
[Industrial Field of Application] The present invention relates to a method for producing a flame-retardant crosslinked polyolefin open cell foam. [Prior art] Cross-linked polyolefin open cell foams developed in recent years are inexpensive and have excellent physical properties such as cushioning properties and sound absorption properties, so they can be used in various applications such as cushioning materials, packing material filters, coating materials, and sound absorption materials. Used for a wide range of purposes. Conventionally, the method for producing open-cell crosslinked polyolefin foams involves partially decomposing the foaming agent and crosslinking agent in the foamable crosslinked polyolefin composition under pressure in a closed mold, and decomposing the remaining foaming agent and crosslinking agent under normal pressure. A method has been proposed in which a closed cell is obtained by decomposing the closed cell, and then the closed cell is destroyed by compressing the obtained closed cell (see: Japanese Patent Publication No. 59-23545 and Japanese Patent Application Laid-open No. 56-146732) Public bulletin). The present applicant also heat-molded a foamable crosslinkable polyolefin composition into a desired shape, heated it under normal pressure to simultaneously decompose the crosslinking agent and the blowing agent, and then generated a foam. Developed a method to make air bubbles open by applying mechanical deformation (Reference: Special Publication 1986-19294)
(Japanese Patent Publication No. 121739/1983). However, polyolefin resins such as polyethylene and polypropylene are extremely flammable and have a high heat of combustion, so polyolefin open cell foams cannot be used for flooring materials, wall materials, materials in aircraft interiors, and the like. On the other hand, a conventional method for producing flame-retardant foam is a method of heating and foaming polyolefin resin with an inorganic filler added (see:
(Japanese Patent Publication No. 60-26500) or a method of heating and foaming a material to which a phosphorus-based or halogen-based flame retardant is added (Reference: Japanese Patent Publication No. 48-9587, Japanese Patent Publication No. 48-9587,
48-29857 and Special Publication No. 58-5930). [Problems to be Solved by the Invention] However, the method of heating and foaming a material to which an inorganic filler or a phosphorus-based, halogen-based, etc. It is difficult to apply. This is because open cells have a larger supply of air that promotes combustion than closed cells, so even if an inorganic filler or flame retardant is added to an open cell at the same rate as the amount added to a closed cell, it will not be enough. It is not possible to provide flame retardant properties and it is not possible to obtain flame retardant open cell bodies. On the other hand, if a large amount of inorganic filler or flame retardant is added, the foaming conditions for an open cell are severe, making it impossible to obtain a satisfactory cell. The present applicant previously impregnated an open-cell polyolefin with a vinyl phosphonate compound in order to overcome the drawbacks of the conventional method and provide a permanently flame-retardant cross-linked open-cell polyolefin. , has developed a method for improving polyolefin open cell foam, which is characterized by irradiating it with an electron beam to produce an insoluble polymer inside and on the surface of the cell, and has already filed a patent application (see: patent application). Showa 63
−172496). However, although it is possible to obtain flame-retardant open-cell polyolefin cells using this method, the problem is that it is uneconomical because it requires the use of large amounts of extremely expensive vinyl phosphonate compounds. Ta. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method for inexpensively producing a permanently flame-retardant crosslinked polyolefin open-cell foam. [Means for Solving the Problems] The method for producing a flame-retardant crosslinked polyolefin open-celled foam of the present invention includes foaming a foamable crosslinkable composition in which a halogenated flame retardant is blended with polyolefin to generate a foam; Next, a step of applying mechanical deformation to connect the cells to obtain a crosslinked polyolefin open cell, impregnating the obtained crosslinked polyolefin open cell with a phosphorus flame retardant, and then irradiating the open cell with an electron beam to It is characterized by a step of producing an insoluble polymer inside and on the surface of the body. [Operation and mode of the invention] That is, the method of the present invention reduces the amount of expensive phosphorus flame retardant used by using a halogen flame retardant and a phosphorus flame retardant together, reduces manufacturing costs, and Excellent flame retardancy can be imparted through the synergistic effect of two types of flame retardants: the halogen-based flame retardant present in the cell membrane and the phosphorus-based flame retardant bonded and attached to the cell surface and the cell surface. It is something. In other words, the ignition combustion prevention and self-extinguishing properties of polyolefin due to the phosphorus flame retardant present on the surface of the cell membrane and the foam surface and the combustion prevention and self-extinguishing properties due to the halogenated flame retardant present in the cell membrane are synergistic. It has excellent flame retardancy. In the present invention, examples of the polyolefin include polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polytetrafluoroethylene, ethylene-propylene copolymer, poly-4-
Methyl-1-pentene, polyvinyl chloride,
Examples include polyvinylidene chloride, polyvinylidene fluoride, and tetrafluoroethylene/ethylene copolymer, and ethylene-vinyl acetate copolymer is particularly preferred in terms of physical properties such as foam recovery and cushioning properties. In the present invention, halogen-based flame retardants include bromine-based and chlorine-based flame retardants, but bromine-based flame retardants are preferred because they have high flame retardancy and do not generate harmful gases. Brominated flame retardants include inorganic flame retardants,
Alternatively, chain hydrocarbon-based, cyclic hydrocarbon-based, or phosphorus-based organic flame retardants can be used, such as ammonium bromide, chlorotetrabromobutane, vinyl bromide, tetrabromo bisphenol A, tetrabromo phthalic anhydride, hexa Examples include bromobenzene, hexabromocyclododecane, bis(bromoethyl ether)tetrabromobisphenol A, and tris(dibromopropyl)phosphate. The amount of the halogen flame retardant added is 10 to 30 parts by weight, preferably 14 to 25 parts by weight, per 100 parts by weight of the resin.
Parts by weight. If the amount added is too small, sufficient flame retardancy cannot be imparted, and the amount of phosphorus flame retardant used cannot be reduced. On the other hand, if it is too large, it will have a negative effect on foaming, so it is not preferable. A method for obtaining a crosslinked polyolefin open cell using the polyolefin and a halogen flame retardant is to foam a foamable crosslinkable composition containing a polyolefin and a halogen flame retardant to form a foam, and then mechanically deform the foam. Any method known in the art can be applied as long as it is a method for obtaining a cross-linked polyolefin open-celled cell by adding . Among these methods, as described in Japanese Patent Publication No. 62-19294 and Japanese Patent Application Laid-open No. 56-121739, a foamable crosslinkable composition is heated and shaped into a desired shape, and then heated and shaped under normal pressure. The effects of the present invention are particularly remarkable in a method in which the crosslinking agent and the blowing agent are simultaneously decomposed by heating to generate foam, and then mechanical deformation is applied to make the foam open. Hereinafter, the method for manufacturing an open cell body according to the present invention will be specifically explained. First, a foaming agent, a crosslinking agent, and if necessary a foaming aid, a filler, and a pigment are added to polyolefin, and the mixture is kneaded using a heated mixing roll or the like. Next, the obtained composition is put into a mold and pressed under pressure according to the type of resin and crosslinking agent.
Heat shaping is carried out at 115-155°C, preferably 120-140°C. In this heat shaping step, maintaining the foamable crosslinkable composition in a gel fraction state of zero is a condition for obtaining an open cell body with an open cell rate of 100% or close to 100%. In addition, in this heat shaping process, a very small amount of foaming agent may initially decompose, and when the shaped product is taken out of the mold, it may expand to about twice its size, but this is far from the concept of foaming. There is no problem with the present invention. The foamable crosslinkable composition shaped as described above is then heated under normal pressure to
The crosslinking agent and the blowing agent are simultaneously decomposed. This foaming/crosslinking process involves, for example, placing the shaped polyolefin composition in a non-airtight, that is, non-sealed mold having a desired cross-sectional shape and dimensions, and heating the metal plate of the mold from the outside. Thus, the composition is indirectly heated. Indirect heating methods include, for example, heating the metal plate by placing a heater in close contact with the outer surface of the metal plate, or providing a heat medium flow path in the metal plate and heating the metal plate using steam, heating oil, etc. using a jacket method. There is. Alternatively, the shaped polyolefin composition is placed in an open/close type mold that is not airtight, and placed in a metal bath or oil bath using Rose alloy, Utsudo alloy, etc.
Direct heating in a salt bath using one or more molten salts such as sodium nitrate, potassium nitrate, potassium nitrite, etc., in a nitrogen stream, or covered with an extensible (or expandable) iron plate, etc. urge After heating for a predetermined time, it is cooled to obtain a foam. The heating temperature is set in the range of 140 to 210°C, preferably 160 to 190°C, depending on the type of polyolefin used. Heating time is preferably 10 to 90 minutes,
More preferably, the time is 20 to 70 minutes. In this way, a cell membrane with a cell membrane that can be easily destroyed by mechanical deformation and a degree of crosslinking (up to about 95% gel fraction) comparable to that of conventional cell foams has been created. can get. Furthermore, in the present invention, the heating in the foaming/crosslinking step can be carried out in two stages, which slows down the foaming and crosslinking conditions and allows the decomposition of the crosslinking agent and the blowing agent to occur more simultaneously in the two stages. be able to. That is, homogeneous heating of the foamable crosslinkable composition is performed, and non-uniformity in heating in the thickness direction of the composition is eliminated, thereby effectively preventing the appearance of local uneven foaming and outgassing phenomena. can be prevented. When heating in the foaming/crosslinking process is performed in two stages as described above, it is effective to set the heating temperature in the second stage to be higher than the heating temperature in the first stage. Heating is performed at 145-180°C, and second-stage heating is performed at 170-210°C. The cell membrane obtained in the above manner (so-called closed cell cell) is then compressed and deformed using, for example, two constant-velocity rolls, so that the cell membrane is destroyed and the cells are communicated to form an open cell cell. is obtained. Countless small needles are provided on the surface of the two constant velocity rolls, or rolls provided with countless small needles are placed before and/or after the two constant velocity rolls, and countless small needles are provided on the surface of the foam. By making a hole,
Communication between air bubbles can be promoted. By this method, open cells of 100% or close to 100% are obtained as measured by the Remington Pariser method (ASTM D1940-62T). The crosslinking agent suitably used in the above-mentioned method for producing open-celled cells is one that has a decomposition temperature higher than the flow initiation temperature of the polyolefin resin, and is decomposed by heating to generate free radicals. Organic peroxides that are radical generators that create crosslinks between or within molecules, such as dicumyl peroxide, 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-
Di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexine, α,α'-bis(t-butylperoxy)diisopropylbenzene, t-butylperoxy There are ketones, t-butyl peroxybenzoate, etc., and blowing agents are chemical blowing agents having a decomposition temperature higher than the melting temperature of polyolefin resins, such as azo compounds such as azodicarbonamide, barium azodicarboxylate, etc. ; Nitroso compounds such as dinitrosopentamethylenetetramine and trinitrosotrimethyltriamine; Hydrazide compounds such as p, p'-oxybisbenzenesulfonyl hydrazide; Sulfonyl semicarbasite compounds p, p'-oxybisbenzene Sulfonyl semicarbazide, toluenesulfonyl semicarbazide, and the like can be suitably used, but the present invention is not limited thereto. Further, a foaming aid can be added depending on the type of foaming agent. Foaming aids include compounds whose main component is urea, metal oxides such as basic zinc carbonate, zinc oxide, and lead oxide, compounds whose main components are salicylic acid, stearic acid, etc., i.e., higher fatty acids or metals of higher fatty acids. There are compounds, etc. Furthermore, for the purpose of improving the physical properties of the compositions used or lowering the cost, we have added compounding agents (fillers) that do not have a significant adverse effect on crosslinking, such as carbon black, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, and Metal oxides such as silicon, carbonates such as magnesium carbonate and calcium carbonate, fiber materials such as pulp, various dyes, pigments, fluorescent substances, and other commonly used rubber compounding agents can be added as necessary. . In the present invention, the open cell ratio of the open cell impregnated with the phosphorus flame retardant is preferably 80% or more,
Particularly preferably 90% or more. An open cell ratio of 80% or less is not preferable because it becomes difficult to impregnate a phosphorus-based flame retardant, such as a vinyl phosphonate compound. In the next step of the present invention, non-halogen phosphoric esters, halogen-containing phosphoric esters, special phosphoric esters, phosphorus-containing polyols, etc. can be used as the phosphorus flame retardant to be impregnated into the open cell. Phonate compounds are particularly preferred because they have excellent flame retardant effects. The vinyl phosphonate compound has the following general formula: (However, a compound represented by x and y≧1) is preferred. In the compound of the above formula, phosphorus P is a flame retardant element and is contained in an amount of about 22.5% by weight. In the present invention, the method for impregnating a polyolefin open cell with a vinyl phosphonate compound first involves adding a vinyl phosphonate compound at a concentration.
It is dissolved in the below-mentioned solvent to a concentration of 10 to 100% by weight, preferably 15 to 75% by weight. In this case, 15
If it is less than 75%, a self-extinguishing foam cannot be obtained, whereas if it exceeds 75%, the viscosity of the solution is high and impregnation efficiency is poor, which is not preferable. Next, the crosslinked polyolefin open cell is impregnated with the solution by immersing the open cell in the solution, or by spraying the open cell with the solution using a sprayer. Next, the open-celled foam impregnated with the above solution is taken out, excess solution is squeezed out, and the foam is sufficiently air-dried or dried under reduced pressure to evaporate the solvent. The impregnation rate is
It can be adjusted by the concentration of the solution and the method of squeezing after impregnation. Examples of the solvent used here include water, acetone, ethanol, methyl ethyl ketone, ethyl acetate, benzene, and tetrahydrofuran. After drying, the foam is irradiated with ionizing radiation under an inert gas atmosphere or under vacuum. As ionizing radiation, gamma rays from Co60 and electron beams from accelerators are conveniently used. For example, by irradiating the foam with a dose of 1 to 20 Mrad at a dose rate of 1.0 to 1.0×10 7 rad/sec at a temperature of preferably 10 to 50°C, an insoluble polymer can be formed inside and on the surface of the foam. give rise to As a result, durable flame retardance can be achieved. The weight increase rate of the foam thus obtained is preferably 5% or more, particularly preferably 10% or more based on the weight of the foam before being impregnated with the phosphorus-based flame retardant, for the effects of the present invention to be significant. It is. The upper limit of the weight increase rate is not particularly limited from an operational point of view, but is preferably 60% or less from an economical point of view. The open cell body obtained by the method of the present invention is
It has excellent flame retardancy and is certified by CFR (Code
It passes the combustibility test applicable to flooring materials, seat cushion materials, etc. as specified in Part 25.853(b) of Title No. 14 (Aeronautics and Space) of the Federal Regulations. The flame-retardant foams obtained can therefore be applied not only in the traditional construction field, but also in the aeronautical and space industries. [Examples] The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to the Examples below. Example 1 100 parts by weight of ethylene-vinyl acetate copolymer (trade name Yucalon EVA-41H, vinyl acetate content 16% by weight, manufactured by Mitsubishi Yuka Corporation), 18 parts by weight of azodicarbonamide, 0.05 parts by weight of activated zinc white. , 0.8 parts by weight of dicumyl peroxide, and 16 parts by weight of a brominated aromatic compound (trade name: Pyrogard SR-600A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was kneaded with a mixing roll at 85°C, The kneaded product was filled into a mold (195 x 380 x 28 mm) in a press heated to 0.degree. C., and heated under pressure for 40 minutes to form a foamable crosslinkable sheet. The gel fraction of the foamable crosslinkable sheet was 0. Next, the obtained foamable crosslinkable sheet was placed in a non-airtight retractable mold (1000 x 500 x 100 mm) that had already been heated to 170°C.
It was heated with steam at 170°C for 60 minutes using a jacket method, and after cooling, it was taken out to obtain a foam. The obtained foam was passed five times between two rolls at a constant velocity set at a roll interval of 20 mm to destroy the cell membrane and to make the cells open. The obtained open cell body had an apparent density of 0.03 g/cm 3 and an open cell ratio of 100.
%, and the bubble diameter was approximately 2 mm. The obtained open-celled foam was cut into six-sided foam sheets of 380 x 80 x 10 mm, and the cut sheets were mixed with a vinyl phosphorus phosphonate compound [Fyrol 76 manufactured by AKZO Chemicals, Inc., USA]. After being impregnated with the solution, the foam was taken out and the methanol was removed by air drying. The thoroughly dried foam was placed in a polyethylene bag, nitrogen was passed through it for 10 minutes, and the bag was sealed. This is placed on a conveyor, and a transformer-rectified electron beam accelerator is used at room temperature.
800Kev, 6mA, 2.1×10 6 rad/sec electron beam
It was irradiated with 10 Mrad. After irradiation, the weight increase rate of the foam was 40.0% based on the weight of the original foam. As a result of conducting the CFR combustion test on the treated foam, it met all requirements and passed. Example 2 A foam was molded in exactly the same manner as in Example 1, except that the concentration of the methanol solution of the vinyl phosphonate compound in Example 1 was changed to 33% by weight, and the vinyl phosphonate compound was molded in the same manner as in Example 1. was impregnated. The weight increase rate of the foam after treatment is
It was 56.5% and passed the CFR combustion test. Comparative Example 1 An open cell was molded under the same conditions as in Example 1, and the CFR combustion test was conducted without impregnating it with a vinyl phosphonate compound, but it failed. Example 3 The number of parts of the brominated aromatic compound (trade name Pyroguard SR600-A) in Example 1 was changed to 20 parts by weight,
Further, the treatment was carried out in exactly the same manner as in Example 1, except that the concentration of the methanol solution of the vinyl phosphonate compound was changed to 15% by weight. The weight increase rate of the foam after treatment was 20.8%, and the
Passed CFR combustion test. Example 4 The treatment was carried out under the same conditions as in Example 1, except that the number of brominated aromatic compounds in Example 1 was changed to 20 parts by weight. The weight increase rate of the foam after treatment was 45.2% and passed the CFR combustion test. Example 5 All conditions were the same as in Example 1 except that the number of blended parts of the brominated aromatic compound in Example 1 was changed to 20 parts by weight, and the concentration of the methanol solution of the vinyl phosphonate compound was changed to 33% by weight. It was treated in exactly the same way. The weight increase rate of the foam after treatment is 59.3
%, and passed the CFR combustion test. Comparative Example 2 An open cell body was molded in exactly the same manner as in Example 1, except that the number of blended parts of the brominated aromatic compound in Example 1 was changed to 20 parts by weight, and the vinyl phosphonate compound was molded. When the CFR was subjected to a combustion test without impregnation, it failed. Comparative Example 3 All treatments were performed under the same conditions as in Example 1, except that the brominated aromatic compound in Example 1 was not added and the concentration of the methanol solution of the vinyl phosphonate compound was changed to 33% by weight. . The weight increase rate of the foam after treatment was 53.3%, and when the CFR combustion test was conducted, it failed. Comparative Example 4 All treatments were performed under the same conditions as in Example 1, except that the brominated aromatic compound in Example 1 was not added and the concentration of the methanol solution of the vinyl phosphonate compound was changed to 75% by weight. . The weight increase rate of the foam after treatment was 80.9%, and it passed the CFR combustion test. Although the treated foam has excellent flame retardancy, it consumes a large amount of vinyl phosphonate compound, which poses an economic problem. Comparative Example 5 Except that 16 parts by weight of the brominated aromatic compound in Example 1 was replaced with 16 parts by weight of red phosphorus (trade name: NOVALETS #120, manufactured by Rin Kagaku Kogyo Co., Ltd.),
Open-cell molding was carried out in exactly the same manner as in Example 1 under the same conditions. The resulting open cell foam was processed without impregnation with a vinyl phosphonate compound.
A combustion test was conducted on the CFR, but it failed. Examples 6 to 10 In Example 1, SAYTEX BT-93 manufactured by SAITECH lnc. was used as the halogen flame retardant,
The number of parts added to the polyolefin composition was changed as shown in Table 1 below, and the impregnation ratio of vinyl phosphonate into the resulting open cells (expressed as the weight increase rate of the cells after polymerization and drying) A flame-retardant open cell was produced in exactly the same manner as in Example 1, except that the conditions were changed as shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の方法によれば、ハロゲ
ン系難燃剤を添加した架橋ポリオレフイン連続気
泡体を得、次いでこれにリン系難燃剤を含浸、重
合させて難燃化処理するため、気泡膜中に存在す
るハロゲン系難燃剤と気泡膜表面及び気泡体表面
に結合付着しているリン系難燃剤の2種類の難燃
剤の相乗効果によつて、優れた難燃性を付与で
き、さらに、ハロゲン系難燃剤とリン系難燃剤を
併用することによつて、高価なリン系難燃剤の使
用量を減らし、製造コストを低減できる。したが
つて、本発明の方法によれば、難燃性に優れた架
橋ポリオレフイン連続気泡体を安価に製造でき
る。本発明の方法によつて製造された難燃性架橋
ポリオレフイン連続気泡体は、安価であり、航空
機内の材料、床材、壁材等、その他各種の分野に
おいて、クツシヨン材、吸着材、エアーフイルタ
ー等の素材等として極めて有用である。
As described above, according to the method of the present invention, a crosslinked polyolefin open cell to which a halogen-based flame retardant is added is obtained, which is then impregnated with a phosphorus-based flame retardant and polymerized for flame retardant treatment. Excellent flame retardancy can be imparted through the synergistic effect of two types of flame retardants: the halogen flame retardant present in the foam and the phosphorus flame retardant bonded and attached to the surface of the cell membrane and the surface of the cell. By using a halogen-based flame retardant and a phosphorus-based flame retardant in combination, the amount of expensive phosphorus-based flame retardant used can be reduced, and manufacturing costs can be reduced. Therefore, according to the method of the present invention, a crosslinked polyolefin open cell having excellent flame retardancy can be produced at low cost. The flame-retardant cross-linked polyolefin open-cell foam produced by the method of the present invention is inexpensive and is used in various fields such as aircraft interior materials, flooring materials, wall materials, cushion materials, adsorbents, and air filters. It is extremely useful as a material for etc.

Claims (1)

【特許請求の範囲】 1 ポリオレフインにハロゲン系難燃剤を配合し
た発泡性架橋性組成物を発泡させて気泡体を生成
させ、次いで機械的変形を加えて気泡を連通化さ
せて架橋ポリオレフイン連続気泡体を得る工程
と、得られた架橋ポレオレフイン連続気泡体にリ
ン系難燃剤を含浸させ、次いで電子線を照射し、
該連続気泡体の内部および表面に不溶性の重合物
を生ぜしめる工程とからなる難燃性架橋ポリオレ
フイン連続気泡体の製造方法。 2 ポリオレフイン100重量部に対しハロゲン系
難燃剤10〜30重量部を配合した発泡性架橋性組成
物を用いる請求項1記載の方法。 3 ハロゲン系難燃剤が臭素系難燃剤である請求
項1又は2記載の方法。 4 リン系難燃剤がビニルフオスフオネート化合
物である請求項1記載の方法。
[Scope of Claims] 1. A foamable crosslinkable composition containing a halogenated flame retardant blended with polyolefin is foamed to generate cells, and then mechanical deformation is applied to make the cells open to create a crosslinked polyolefin open cell foam. impregnating the obtained crosslinked polyolefin open cell with a phosphorus-based flame retardant, and then irradiating it with an electron beam,
A method for producing a flame-retardant crosslinked polyolefin open cell body, which comprises the step of producing an insoluble polymer inside and on the surface of the open cell body. 2. The method according to claim 1, which uses a foamable crosslinkable composition containing 10 to 30 parts by weight of a halogen flame retardant to 100 parts by weight of polyolefin. 3. The method according to claim 1 or 2, wherein the halogen flame retardant is a bromine flame retardant. 4. The method according to claim 1, wherein the phosphorus flame retardant is a vinyl phosphonate compound.
JP3638689A 1989-02-17 1989-02-17 Preparation of flame-retardant crosslinked polyolefin open-cell foam Granted JPH02215844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3638689A JPH02215844A (en) 1989-02-17 1989-02-17 Preparation of flame-retardant crosslinked polyolefin open-cell foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3638689A JPH02215844A (en) 1989-02-17 1989-02-17 Preparation of flame-retardant crosslinked polyolefin open-cell foam

Publications (2)

Publication Number Publication Date
JPH02215844A JPH02215844A (en) 1990-08-28
JPH0548776B2 true JPH0548776B2 (en) 1993-07-22

Family

ID=41258550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3638689A Granted JPH02215844A (en) 1989-02-17 1989-02-17 Preparation of flame-retardant crosslinked polyolefin open-cell foam

Country Status (1)

Country Link
JP (1) JPH02215844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279991A1 (en) 2022-05-17 2023-11-22 Shin-Etsu Chemical Co., Ltd. Novel sulfonium salt, resist composition, and patterning process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234742A (en) * 1990-02-13 1991-10-18 Yukiko Yoshikawa Method and apparatus for producing flame-retardant open-cell polyethylene foam
JPH0465443A (en) * 1990-07-06 1992-03-02 Sanwa Kako Kk Flame-retardant cross-linked polyolefin open-cell foam and its production
EP1404747B1 (en) * 2001-06-01 2019-11-27 Sealed Air Corporation (US) Fire resistant acoustic foam
CN107799776B (en) * 2017-09-26 2020-08-07 西安华为技术有限公司 Flame-retardant structural body for lithium ion battery and preparation method thereof, and lithium ion battery and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279991A1 (en) 2022-05-17 2023-11-22 Shin-Etsu Chemical Co., Ltd. Novel sulfonium salt, resist composition, and patterning process

Also Published As

Publication number Publication date
JPH02215844A (en) 1990-08-28

Similar Documents

Publication Publication Date Title
US5132171A (en) Non-flammable open-cell cross-linked polyolefin foam and method for production thereof
US4434251A (en) Cross-linked polyvinyl chloride resin foam and method of manufacturing the same
KR101468135B1 (en) Deodorant polyolefin resin foam, manufacturing method of the same and mat formed therefrom
JPH0570579B2 (en)
JPH0548776B2 (en)
JP3551449B2 (en) Flame retardant polyolefin resin foam
JP7017722B2 (en) Non-halogen flame-retardant polyolefin foam and its manufacturing method
JP4774199B2 (en) Method for producing flame retardant conductive cross-linked polyolefin foam
JP3354674B2 (en) Method for producing polyolefin resin foam
JP4468029B2 (en) Method for producing flame retardant crosslinked polyolefin foam
JPH0222317A (en) Modification of open cell foam of polyolefin
JP4468030B2 (en) Flame-retardant cross-linked polyolefin-based open cell body and method for producing the same
JP2001059038A (en) Production of flame-retardant crosslinked polyethylene- based foam
JP2772977B2 (en) Method for producing polyolefin foam having coarse cell diameter
JPH11269293A (en) Preparation of flame retardant crosslinked polyolefin open-cell foam
JPS636032A (en) Production of polypropylene foam
JPH0892406A (en) Flame-retardant polyolefinic resin foam
JP3766838B2 (en) Method for producing polyolefin open cell
JP3276169B2 (en) Foamable polyolefin resin composition and flame-retardant polyolefin resin foam
JPS581729A (en) Crosslinked vinyl chloride resin foam and production thereof
JPH0455440A (en) Production of flame retardant resin-crosslinked foam
JP2005330417A (en) Antistatic crosslinked polyolefin foam and its manufacturing method
JPS5849566B2 (en) Manufacturing method of polyolefin resin foam
JPH10251430A (en) Production of plastic foam
JPS63251438A (en) Production of flame-retarding foam