JPH0570579B2 - - Google Patents

Info

Publication number
JPH0570579B2
JPH0570579B2 JP60175971A JP17597185A JPH0570579B2 JP H0570579 B2 JPH0570579 B2 JP H0570579B2 JP 60175971 A JP60175971 A JP 60175971A JP 17597185 A JP17597185 A JP 17597185A JP H0570579 B2 JPH0570579 B2 JP H0570579B2
Authority
JP
Japan
Prior art keywords
foaming
foam
composition
weight
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60175971A
Other languages
Japanese (ja)
Other versions
JPS6155125A (en
Inventor
Fuuruman Horusuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Kako Co Ltd
Original Assignee
Sanwa Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Kako Co Ltd filed Critical Sanwa Kako Co Ltd
Publication of JPS6155125A publication Critical patent/JPS6155125A/en
Publication of JPH0570579B2 publication Critical patent/JPH0570579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/18Cross-linking a thermoplastic linear foam during molding

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、架橋ポリオレフイン独立気泡体の製
造方法に関する。
The present invention relates to a method for producing a crosslinked polyolefin closed cell cell.

【従来の技術】[Conventional technology]

従来、低密度の架橋ポリオレフイン発泡体を製
造する方法としては、たとえば電離性放射線を照
射して架橋させた後、加熱発泡せしめる発泡体の
製造方法、又は化学架橋した後、加圧下又は常圧
下加熱発泡させる製造方法が周知である。これら
のうち、後者の方法の改良として、ポリオレフイ
ンに架橋剤及び発泡剤を混合した組成物を一定時
間加圧下加熱して配合した架橋剤及び発泡剤を部
分的に分解させて中間発泡体を得る第一工程と、
該中間発泡体を更に常圧下で一定時間加熱して第
一工程で未分解の架橋剤及び発泡剤を分解させる
第二工程とからなる製造方法が提案されている
(特公昭45−29381号公報、特公平2−42649号公
報等参照)。
Conventionally, methods for producing low-density crosslinked polyolefin foams include, for example, methods for producing foams by crosslinking by irradiating ionizing radiation and then heating and foaming, or chemically crosslinking and then heating under pressure or normal pressure. Foaming manufacturing methods are well known. Among these, as an improvement on the latter method, a composition in which polyolefin is mixed with a crosslinking agent and a blowing agent is heated under pressure for a certain period of time to partially decompose the blended crosslinking agent and blowing agent to obtain an intermediate foam. The first step,
A production method has been proposed which includes a second step of further heating the intermediate foam under normal pressure for a certain period of time to decompose the crosslinking agent and blowing agent that were not decomposed in the first step (Japanese Patent Publication No. 45-29381). , Japanese Patent Publication No. 2-42649, etc.).

【発明が解決しようとする課題】[Problem to be solved by the invention]

この方法によれば、均一微細な独立気泡を有す
る低密度かつ厚物の架橋ポリオレフイン発泡体が
得られるが、第一工程において側面にテーパがつ
いている金型を使用する必要がある。というの
は、仮にテーパなしの金型を使用すれば、中間発
泡体の取り出しがスムーズにいかないからであ
る。従つて、第一工程において側面にテーパがつ
いている金型を使用し、除圧時に膨張したポリマ
ーを金型から飛び出させて発泡体を得るが、飛び
出す過程では金型形状と相似形に膨張する。この
中間発泡体をそのまま常圧下にて密閉系でない直
方体の型内で加熱発泡せしめると、テーパ部分で
巻き込み減少を引き起こす。そのため、予め中間
発泡体のテーパ部分を切り取つておかなければな
らない。従つて、材料効率が悪く、かつ作業性が
悪いという問題がある。 従つて、本発明の目的は、材料効率及び作業性
良く、優れた物性を有する架橋ポリオレフイン独
立気泡体を製造できる方法を提供することにあ
る。
According to this method, a low-density, thick crosslinked polyolefin foam having uniform, fine closed cells can be obtained, but it is necessary to use a mold with tapered sides in the first step. This is because if a mold without a taper were used, the intermediate foam would not be removed smoothly. Therefore, in the first step, a mold with tapered sides is used, and when the pressure is removed, the expanded polymer pops out of the mold to obtain a foam, but during the popping process, it expands into a shape similar to the shape of the mold. . If this intermediate foam is heated and foamed as it is in a rectangular parallelepiped mold that is not a closed system under normal pressure, it will cause a reduction in entrainment at the tapered portion. Therefore, the tapered portion of the intermediate foam must be cut out in advance. Therefore, there are problems of poor material efficiency and poor workability. Therefore, an object of the present invention is to provide a method for producing a crosslinked polyolefin closed cell having excellent material efficiency and workability, and excellent physical properties.

【課題を解決するための手段】[Means to solve the problem]

本発明に係る架橋ポリオレフイン独立気泡体の
製造方法は、ポリオレフインに架橋剤、発泡剤及
び発泡助剤を添加混練して得られる架橋性発泡性
樹脂組成物を押圧して密閉系型内に充填し、加圧
下に加熱して架橋未発泡樹脂組成物を得、 該組成物を、1対の金属板の間で加熱し、発泡
剤を部分的に分解して金属板によつて限定された
範囲内で該組成物を二軸膨張させて板状形態を有
する中間発泡体を得、 該中間発泡体を加熱して残存する発泡剤を分解
する。 ことから成ることを特徴とするものである。 本発明において、第1段階では、離型を容易に
するために、未発泡状態で、架橋反応のみが行わ
れる。引き続く発泡工程では、まず、発泡が二軸
膨張に限定されて行われ、次に常圧下で三次元方
向に膨張する。 前記方法によつて、独立気泡構造を有する発泡
倍率20〜70倍の極めて均一な発泡体が得られる。 本発明において使用されるポリオレフインと
は、低密度、中密度及び高密度ポリエチレン、エ
チレンビニルアセテートコポリマー、ポリー1,
2−ブタジエン、エチレンプロピレンコポリマ
ー、エチレンと最高45%までのメチル−、エチル
−、プロピル−又はブチルアクリレート又はメタ
クリレートとのコポリマー、最高60量%までの塩
素分を有する前記ホモポリマー又はコポリマーの
塩素化生成物、前記ポリマーの2種以上からなる
混合物及び前記ポリマーとアイソタクチツク又は
アタクチツクポリプロピレンとの混合物である。 本発明において使用される発泡剤は、使用され
たポリオレフインの融点よりも高い分解温度を有
する化学発泡剤である。このような化学発泡剤
は、アゾ化合物、例えばアゾジカルボンアミド及
びバリウムアゾジカルボキシレート、ニトロソ化
合物、例えばジニトロソペンタメチレンテトラミ
ン及びトリニトロソトリメチルトリアミン、ヒド
ラジド化合物p,p′−オキシビス(ベンゾールス
ルホニルヒドラジド)、スルホニルセミカルバジ
ド化合物、例えばp,p′−オキシビス(ベンゾー
ルスルホニルセミカルバジツド)及びトルオール
スルホニルセミカルバジツド等である。これらの
発泡剤のうちアゾジカルボンアミドが好ましい。
なぜなら、アゾジカルボンアミドは、高い窒素含
有量を有し、分解ガス量及び分解温度が容易に適
合されかつ商業的に安価に入手できるからであ
る。発泡剤は通常ポリオレフイン100重量部当た
り10〜25重量部の量で使用され、この際、発泡倍
率20〜50倍の発泡体が得られる。 本発明において、発泡助剤の添加によつて、発
泡剤の分解ガス量及び分解温度を変化させること
ができる。このような発泡助剤の例は、尿素を主
成分として含有する化合物、酸加亜鉛及び酸化鉛
のような金属酸化物、主成分としてサリチル酸、
ステアリン酸等、すなわち高級脂肪酸を含有する
化合物、高級脂肪酸の金属化合物等である。発泡
助剤は、発泡剤と適合して選択されなければなら
ない。 本発明の場合にはポリオレフイン中で使用され
る発泡剤よりも低い分解温度を有する架橋剤が使
用される。その結果、該組成物の加熱時にはま
ず、架橋剤の分解、ひいては架橋反応が進行する
ことができる。その後引き続き加熱すると発泡剤
の分解が生起する。即ち、架橋剤の分解温度は、
発泡剤又は発泡剤の混合物及び発泡助剤の分解温
度よりも低くなければならず、その結果第一段階
で密閉金型での架橋反応が発泡反応なしに確実に
進行しうるものである。 架橋剤としては、加熱時に分解して分子間又は
分子内架橋をもたらすことのできるラジカルを形
成する有機過酸化物が用いられる。このような有
機過酸化物の例は、ジクミルパーオキサイド、
1,1−ジ−t−ブチルパーオキシ−3,3,5
−トリメチルシクロヘキサン、2,5−ジメチル
−2,5−ジ−t−ブチルパーオキシヘキサン、
2,5−ジメチル−2,5−ジ−t−ブチルペル
オキシヘキシン、α,α−t−ジブチルパーオキ
シジイソプロピルベンゾール、t−ブチルペルオ
キシケトン、t−ブチル−オキシベンゾエート等
である。ポリオレフインの種類に最も良く適合し
たパーオキサイドが選択されなければならない。
架橋剤は好ましくは、ポリオレフイン100重量部
に対して0.3〜1.5重量部、好ましくは0.5〜1.0重
量部の量で使用される。 本発明に使用する組成物に物性の改良、あるい
は価格の低下を目的に、架橋結合に著しい悪影響
を与えない配合剤(充填剤)、例えば、カーボン
ブラツク、亜鉛華、酸化チタン、酸化カルシウ
ム、酸化マグネシウム、酸化ケイ素等の金属酸化
物、炭酸マグネシウム、炭酸カルシウム等の炭酸
塩、あるいはパルプ等の繊維物質及び各種染料、
顔料並びに蛍光物質、その他常用のゴム配合剤等
を必要に応じて添加することができる。 発泡性架橋性組成物は、例えば適当な加熱ミキ
シングロール、押出機等を用いて配合剤を混練し
て得られる。 次に本発明による好ましい発泡性架橋性組成物
を記載する。 組成物 A 発泡倍率30倍の発泡体を製造するためには、 低密度ポリエチレン 100重量部 アゾジカルボンアミド 14〜17重量部 亜鉛華又は活性亜鉛華 0〜0.4重量部 又はステアリン酸亜鉛 0〜0.6重量部 ジクミルパーオキサイド 0.5〜0.8重量部 から成る混合物を混練りする。 組成物 B 発泡倍率30倍の発泡体を製造するためには、 5〜20重量%の酢酸ビニルを含有するエチレン−
酢酸ビニル共重合体 100重量部 アゾジカルボンアミド 14〜17重量部 亜鉛華又は活性亜鉛華 0〜0.4重量部 又はステアリン酸亜鉛 0〜0.6重量部 ジクミルパーオキサイド 0.5〜1.0重量部 から成る混合物を混練りしても良い。 組成物 C 発泡倍率40倍の発泡体を製造するためには、 低密度ポリエチレン 100重量部 アゾジカルボンアミド 18〜22重量部 亜鉛華又は活性亜鉛華 0〜0.3重量部 ジクミルパーオキサイド 0.5〜1.0重量部 から成る混合物を混練りする。 組成物 D 発泡倍率40倍の発泡体を製造するためには、 5〜20重量%部の酢酸ビニルを含有するエチレン
−酢酸ビニル共重合体 100重量部 アゾジカルボンアミド 18〜22重量部 亜鉛華又は活性亜鉛華 0〜0.3重量部 又はステアリン酸亜鉛 0〜0.6重量部 ジクミルパーオキサイド 0.5〜1.2重量部 から成る混合物を混練りしても良い。 次に本発明による架橋発泡法を詳説する: 第1工程段階では、前記のようにして得られた
架橋性発泡性樹脂組成物を、所望の形状を有する
密閉金型中に充填し、加圧下で加熱する。「加圧
下」とは、金型中の架橋性発泡性樹脂組成物に適
当なプレス、例えば油圧プレスによつて10Kg/cm2
を超える圧力、好ましくは20〜200Kg/cm2の範囲
の圧力をかけることを意味する。10Kg/cm2未満の
圧力の場合には、発泡体中に過渡に粗大で、不均
一な気泡が形成される。 加熱は、架橋剤を分解するのに十分な温度で行
われる。また該温度は架橋剤の分解温度より高く
ても良い。しかし、発泡剤が実質的に分解しない
温度以下でなければならない。このような温度範
囲は通常は20〜160℃の範囲、好ましくは135〜
155℃の範囲にある。加圧下で、好ましくは135〜
155℃の範囲での加熱下の密閉金型で十分に架橋
するためには、金型の大きさに応じて20〜60分の
加熱時間を選択する。これによつて、第1段階で
は、その外形が金型の形状に相当する架橋未発泡
樹脂組成物が得られる。 この第1工程段階では、架橋未発泡樹脂組成物
のゲル分率が、1〜70%の範囲で得られる。この
ゲル分率が70%を超えると、架橋未発泡樹脂組成
物が後続段階で十分には膨張できない。つまり発
泡され得ない。しかし、ゲル分率が1%よりも少
ない場合には、気泡構造が十分な強度を有さず、
発泡剤の分解ガスが逃出してしまう。 ゲル分率とは、40〜50μのガラスフイルターを
用いて、ソツクスレー還流抽出器により溶媒トリ
クロルエチレン(トリクレン)還流下で24時間抽
出を行つた後の、抽出前試料(ポリオレフイン組
成物)に対する抽出後試料の重量比(%で示す)
である。架橋度はゲル分率の増大に比例する。 第1工程段階が終了すると、架橋未発泡樹脂組
成物が密閉金型から離型される。架橋未発泡樹脂
組成物は金型から容易に取り出すことができる。
まだ発泡が行われておらず、組成物は発泡圧によ
つて金型壁に押し付けられて粘着され得なかつた
からである。第1工程段階での架橋反応の実施の
間には極めて少量の発泡剤の初期分解は不可避で
ある。このような発泡剤の分解は架橋未発泡樹脂
組成物を金型から取り出した後、原容積のせいぜ
い2倍まで膨張するにすぎない。しかし発泡工程
にとつて極めて小さいこのよう膨張は本発明にお
いて発泡とは見做されない。したがつて、架橋
“未発泡”樹脂組成物という表現で表わした。該
組成物は容易に金型から取り出せるので、前記し
た従来方法のようにテーパ付の金型を使用する必
要はない。金型から取り出された架橋未発泡樹脂
組成物は、そのまま次工程で用いられる。除去さ
れなければならないテーパ部分は存在しない。 次に架橋未発泡樹脂組成物は、発泡温度に調節
された略平行な1対の金属板の間で組成物中に含
有された発泡剤が部分的に分解されるように加熱
される。この場合組成物は両金属板の間〓として
限定された平面で二軸方向に膨張して、両金属板
の間〓に相応した板状形態を有する中間発泡体が
得られる。この工程段階にとつて必要な発泡温度
は、使用された発泡剤の種類及び混合割合に依存
し、150〜190℃、好ましくは160〜180℃の間で選
択される。この際組成物の発泡は、加熱金属板か
ら該組成物への均一な伝熱により徐々に行われ
る。この第2段階での該組成物の加熱時間は該組
成物の大きさ及び組成に応じて15〜45分の間で選
択される。第2段階で得られた中間発泡体は、好
ましくは、発泡倍率6〜10倍であり、15〜60重量
%の範囲の発泡剤の分解が残つている。 第3工程段階では、両金属板から取り出した中
間発泡体を前記のような発泡温度、好ましくはこ
れを超える温度、特に好ましくは160〜200℃の範
囲の温度に加熱される。加熱時間は好ましくは20
〜60分であり、この間に中間発泡体に残存する発
泡剤が完全に分解され、中間発泡体が全方向に自
由に膨張して最終的な発泡体となる。第3工程段
階では中間発泡体の加熱及び発泡は、窒素雰囲気
中又は熱媒、例えばローズ合金、ウツド合金など
を含有する金属浴、塩浴中又は1種以上の塩、例
えば硝酸ナトリウム、硝酸カリウム、亜硝酸カリ
ウム等を含有する塩浴中で実施される。 中間発泡体は、気密でない開放式金型中に入れ
られ、適当な発泡温度に保たれている熱媒中で該
金型と一緒に加熱される。金型は、その外表面に
電気的加熱装置又は熱媒、例えば蒸気、加熱油な
どがその中を循環する加熱ジヤケツトを備えてい
ることが好ましい。金型の加熱によつてその中に
入れた中間発泡体は壁を介して間接的に加熱され
る。又中間発泡体を、上下可動の1個以上の加熱
金属板で被うこともできる。所定の時間該中間発
泡体を加熱し、次いで冷却した後発泡体が得られ
る。加熱時間は、10〜50分である。この様にし
て、強靭な気泡壁を有する均一微細気泡構造を有
する発泡体が得られ、該発泡体は添加した発泡剤
の量に応じて原容積のほぼ70倍までの高い発泡倍
率を有する。気泡の大きさは20〜150μの範囲に
あり、ゲル分率約75%の架橋度が得られる。 次に本発明を実施例により詳述する。 実施例 例 1 0.920g/cm3の低密度のポリエチレン
(MFR1.5)、ポリエチレン100重量部に対して17
重量部のアゾジカルボンアミド0.1重量部の亜鉛
華及び0.6重量部のジクミルパーオキサイドを含
有する組成物を、ミキシングロールを用いて110
℃で均質に十分に混練した。得られた混練物を、
150℃の温度に調節されたプレス中の金型(サイ
ズ:750×360×28mm)に入れ、100Kg/cm2の加圧
下で40分間加熱して、架橋未発泡樹脂組成物を得
た。該組成物のゲル分率は42%であつた。 次に該組成物を、28mmの間隔を有する1対の金
属板の間で、170℃の温度で30分間加熱した。こ
の際、アゾジカルボンアミドは部分的に分解さ
れ、両金属板によつて限定された間〓で二軸方向
に膨張した。得られた中間発泡体を両金属板の間
から取り出した。この中間発泡体は原容積の8倍
に膨張しており、アゾジカルボンアミドの約27重
量%がすでに分解していた。次にこの中間発泡体
を、2080×1060×95mm寸法の気密に閉鎖されてい
ない開放式金型中に入れた。同金型は、蒸気がそ
の中を循環する加熱ジヤケツトを有しており、
175℃で30分間加熱された。冷却後に発泡体を金
型から取り出した。第2工程段階後に残存したア
ゾジカルボンアミドは完全に分解され、発泡倍率
は30倍であることがわかつた。ゲル分率は70%で
あつた。 このようにして製造された発泡体は、高い強靭
性を有する均一な微細気泡構造を有しており、気
泡の大きさは、約50μであつた。最終発泡体の熱
さは90mm、みかけ密度は0.030g/cm3であつた。
全体が発泡材料として使用可能であつて、製造の
この時までに廃物はなかつた。 例 2 酢酸ビニル14重量%を含有する密度0.937/cm3
のエチレン−酢酸ビニル共重合体(MFR1.5)
100重量部に対して、17重量部のアゾジカルボン
アミド、0.05重量部の亜鉛華、0.8重量部のジク
ミルパーオキサイドを含有する組成物をミキシン
グロールを用いて90℃で均質に混練した。得られ
た混練物を145℃の温度に調節されたプレス中の
金型(サイズ:750×360×28mm)に充填して密閉
し、100Kg/cm2の加圧下にて40分間加熱して架橋
未発泡樹脂組成物を形成した。次いで、このよう
にして得られた架橋未発泡樹脂組成物を金型から
取り出した。この組成物のゲル分率を測定すると
35%であつた。 次に該組成物を、例1記載のように2枚の金属
板の間で予備発泡した。得られた中間発泡体の発
泡倍率は6倍であり、アゾジカルボンアミドの約
20%が分解していた。 次いで、例1記載の同じ方法と同じ条件で発泡
した。発泡体は、ゲル分率は75%で発泡倍率30倍
であつた。この発泡体も強靭性を有する均一微細
独立気泡構造を有しており、気泡の大きさは、約
50μであつた。発泡体の厚さ90mm、みかけ密度
0.030g/cm3であつた。
The method for producing a crosslinked polyolefin closed-cell foam according to the present invention is to press a crosslinkable foamable resin composition obtained by adding and kneading a crosslinking agent, a blowing agent, and a blowing aid to a polyolefin and filling it into a closed mold. , heating under pressure to obtain a cross-linked unfoamed resin composition, heating the composition between a pair of metal plates to partially decompose the blowing agent within an area limited by the metal plates; The composition is biaxially expanded to obtain an intermediate foam having a plate-like morphology, and the intermediate foam is heated to decompose the remaining blowing agent. It is characterized by consisting of the following. In the present invention, in the first step, only the crosslinking reaction is performed in an unfoamed state in order to facilitate mold release. In the subsequent foaming step, foaming is first limited to biaxial expansion and then three-dimensional expansion under normal pressure. By the method described above, an extremely uniform foam having a closed cell structure and a foaming ratio of 20 to 70 times can be obtained. The polyolefins used in the present invention include low density, medium density and high density polyethylene, ethylene vinyl acetate copolymer, poly 1,
2-Butadiene, ethylene propylene copolymers, copolymers of ethylene with up to 45% of methyl, ethyl, propyl or butyl acrylate or methacrylate, chlorination of said homopolymers or copolymers with a chlorine content of up to 60% by weight products, mixtures of two or more of the aforementioned polymers, and mixtures of the aforementioned polymers with isotactic or atactic polypropylene. The blowing agent used in the present invention is a chemical blowing agent having a decomposition temperature higher than the melting point of the polyolefin used. Such chemical blowing agents include azo compounds such as azodicarbonamide and barium azodicarboxylate, nitroso compounds such as dinitrosopentamethylenetetramine and trinitrosotrimethyltriamine, hydrazide compounds p,p'-oxybis(benzenesulfonylhydrazide) , sulfonyl semicarbazide compounds such as p,p'-oxybis(benzenesulfonyl semicarbazide) and toluolsulfonyl semicarbazide. Among these blowing agents, azodicarbonamide is preferred.
This is because azodicarbonamide has a high nitrogen content, the decomposition gas amount and decomposition temperature are easily matched, and it is commercially available at low cost. The blowing agent is usually used in an amount of 10 to 25 parts by weight per 100 parts by weight of the polyolefin, resulting in a foam with an expansion ratio of 20 to 50 times. In the present invention, the amount of decomposed gas and the decomposition temperature of the blowing agent can be changed by adding a blowing aid. Examples of such blowing aids are compounds containing urea as a main component, metal oxides such as acidified zinc and lead oxide, salicylic acid as a main component,
These include stearic acid and the like, that is, compounds containing higher fatty acids, metal compounds of higher fatty acids, and the like. The blowing aid must be selected to be compatible with the blowing agent. In the case of the present invention, crosslinking agents are used which have a lower decomposition temperature than the blowing agents used in the polyolefins. As a result, when the composition is heated, the decomposition of the crosslinking agent and, ultimately, the crosslinking reaction can proceed. Subsequent heating causes decomposition of the blowing agent. That is, the decomposition temperature of the crosslinking agent is
It must be lower than the decomposition temperature of the blowing agent or mixture of blowing agents and of the blowing aid, so that the crosslinking reaction in the closed mold can proceed reliably in the first stage without a blowing reaction. As a crosslinking agent, an organic peroxide is used which decomposes upon heating to form radicals capable of bringing about intermolecular or intramolecular crosslinking. Examples of such organic peroxides are dicumyl peroxide,
1,1-di-t-butylperoxy-3,3,5
-trimethylcyclohexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexane,
These include 2,5-dimethyl-2,5-di-t-butylperoxyhexine, α,α-t-dibutylperoxydiisopropylbenzole, t-butylperoxyketone, t-butyl-oxybenzoate, and the like. The peroxide that best matches the type of polyolefin must be selected.
The crosslinking agent is preferably used in an amount of 0.3 to 1.5 parts by weight, preferably 0.5 to 1.0 parts by weight, based on 100 parts by weight of the polyolefin. For the purpose of improving the physical properties or lowering the price of the composition used in the present invention, compounding agents (fillers) that do not have a significant adverse effect on crosslinking, such as carbon black, zinc white, titanium oxide, calcium oxide, etc. Metal oxides such as magnesium and silicon oxide, carbonates such as magnesium carbonate and calcium carbonate, fiber materials such as pulp, and various dyes,
Pigments, fluorescent substances, and other commonly used rubber compounding agents can be added as necessary. The foamable crosslinkable composition is obtained by kneading the ingredients using, for example, a suitable heated mixing roll, extruder, or the like. Next, preferred foamable crosslinkable compositions according to the present invention will be described. Composition A In order to produce a foam with an expansion ratio of 30 times, 100 parts by weight of low density polyethylene, 14 to 17 parts by weight of azodicarbonamide, 0 to 0.4 parts by weight of zinc white or activated zinc white, or 0 to 0.6 parts by weight of zinc stearate. 0.5 to 0.8 parts by weight of dicumyl peroxide are kneaded. Composition B In order to produce a foam with an expansion ratio of 30 times, ethylene containing 5 to 20% by weight of vinyl acetate is used.
A mixture consisting of 100 parts by weight of vinyl acetate copolymer, 14 to 17 parts by weight of azodicarbonamide, 0 to 0.4 parts by weight of zinc white or activated zinc white, or 0 to 0.6 parts by weight of zinc stearate, and 0.5 to 1.0 parts by weight of dicumyl peroxide is mixed. You can also practice it. Composition C In order to produce a foam with an expansion ratio of 40 times: Low density polyethylene 100 parts by weight Azodicarbonamide 18-22 parts by weight Zinc white or activated zinc white 0-0.3 parts by weight Dicumyl peroxide 0.5-1.0 parts by weight Knead the mixture consisting of parts. Composition D In order to produce a foam with an expansion ratio of 40 times, 100 parts by weight of an ethylene-vinyl acetate copolymer containing 5 to 20 parts by weight of vinyl acetate, 18 to 22 parts by weight of azodicarbonamide, or A mixture consisting of 0 to 0.3 parts by weight of activated zinc white or 0 to 0.6 parts by weight of zinc stearate and 0.5 to 1.2 parts by weight of dicumyl peroxide may be kneaded. Next, the crosslinking foaming method according to the present invention will be explained in detail: In the first process step, the crosslinkable foamable resin composition obtained as described above is filled into a closed mold having a desired shape, and under pressure. Heat it up. "Under pressure" means that the crosslinkable foamable resin composition in the mold is pressed at 10 kg/cm 2 by a suitable press, for example a hydraulic press.
, preferably in the range of 20 to 200 Kg/cm 2 . At pressures below 10 Kg/cm 2 , excessively coarse and non-uniform cells are formed in the foam. Heating is performed at a temperature sufficient to decompose the crosslinking agent. Further, the temperature may be higher than the decomposition temperature of the crosslinking agent. However, the temperature must be below that at which the blowing agent does not substantially decompose. Such a temperature range is typically between 20 and 160°C, preferably between 135°C and
In the range of 155℃. Under pressure, preferably 135~
For sufficient crosslinking in closed molds under heating in the range of 155 °C, choose a heating time of 20 to 60 minutes, depending on the size of the mold. As a result, in the first step, a crosslinked, unfoamed resin composition whose external shape corresponds to the shape of the mold is obtained. In this first process step, the gel fraction of the crosslinked, unfoamed resin composition is obtained in the range of 1 to 70%. If this gel fraction exceeds 70%, the crosslinked, unfoamed resin composition cannot be sufficiently expanded in the subsequent step. In other words, it cannot be foamed. However, when the gel fraction is less than 1%, the cell structure does not have sufficient strength,
Decomposed gas from the blowing agent escapes. Gel fraction refers to the after-extraction value for the pre-extraction sample (polyolefin composition) after extraction for 24 hours under refluxing solvent trichlorethylene (triclene) using a Soxhlet reflux extractor using a 40-50μ glass filter. Sample weight ratio (in %)
It is. The degree of crosslinking is proportional to the increase in gel fraction. Upon completion of the first process step, the crosslinked, unfoamed resin composition is released from the closed mold. The crosslinked, unfoamed resin composition can be easily removed from the mold.
This is because foaming had not yet taken place and the composition could not be pressed and stuck to the mold wall by the foaming pressure. During the performance of the crosslinking reaction in the first process step, an initial decomposition of a very small amount of blowing agent is unavoidable. Such decomposition of the blowing agent causes the crosslinked unfoamed resin composition to expand to at most twice its original volume after being taken out of the mold. However, such expansion, which is extremely small for the foaming process, is not considered foaming in the present invention. Therefore, it was expressed as a crosslinked "unfoamed" resin composition. Since the composition can be easily removed from the mold, there is no need to use a tapered mold as in the conventional method described above. The crosslinked unfoamed resin composition taken out from the mold is used as it is in the next step. There are no tapered sections that have to be removed. Next, the crosslinked unfoamed resin composition is heated between a pair of substantially parallel metal plates adjusted to a foaming temperature so that the foaming agent contained in the composition is partially decomposed. In this case, the composition expands biaxially in a plane defined between the two metal plates, and an intermediate foam having a plate-like shape corresponding to the area between the two metal plates is obtained. The necessary foaming temperature for this process step depends on the type of blowing agent used and the mixing proportions and is selected between 150 and 190°C, preferably between 160 and 180°C. In this case, the composition is gradually foamed by uniform heat transfer from the heated metal plate to the composition. The heating time of the composition in this second stage is selected between 15 and 45 minutes depending on the size and composition of the composition. The intermediate foam obtained in the second stage preferably has an expansion ratio of 6 to 10 times and has a remaining blowing agent decomposition in the range of 15 to 60% by weight. In a third process step, the intermediate foam removed from both metal plates is heated to the above-mentioned foaming temperature, preferably to a temperature above this, particularly preferably to a temperature in the range from 160 to 200°C. Heating time is preferably 20
~60 minutes, during which time the blowing agent remaining in the intermediate foam is completely decomposed and the intermediate foam is free to expand in all directions to form the final foam. In the third process step, the intermediate foam is heated and foamed in a nitrogen atmosphere or in a metal or salt bath containing a heating medium such as a rose alloy, a wood alloy, or one or more salts, such as sodium nitrate, potassium nitrate, etc. It is carried out in a salt bath containing potassium nitrite, etc. The intermediate foam is placed in a non-airtight open mold and heated together with the mold in a heating medium maintained at the appropriate foaming temperature. Preferably, the mold is equipped on its outer surface with an electrical heating device or a heating jacket through which a heating medium, such as steam, heating oil, etc., circulates. By heating the mold, the intermediate foam placed therein is heated indirectly through the walls. The intermediate foam can also be covered with one or more heated metal plates that are movable up and down. After heating the intermediate foam for a predetermined period of time and then cooling, a foam is obtained. Heating time is 10 to 50 minutes. In this way, a foam with a homogeneous microcellular structure with strong cell walls is obtained, which foam has a high expansion ratio of up to approximately 70 times the original volume, depending on the amount of blowing agent added. The size of the bubbles is in the range of 20 to 150μ, and a degree of crosslinking with a gel fraction of about 75% is obtained. Next, the present invention will be explained in detail with reference to Examples. Example 1 Low density polyethylene (MFR1.5) of 0.920g/ cm3 , 17% per 100 parts by weight of polyethylene
A composition containing parts by weight of azodicarbonamide, 0.1 parts by weight of zinc white, and 0.6 parts by weight of dicumyl peroxide was heated to 110 parts by weight using a mixing roll.
The mixture was thoroughly kneaded homogeneously at ℃. The obtained kneaded material,
The mixture was placed in a mold (size: 750 x 360 x 28 mm) in a press controlled at a temperature of 150°C and heated for 40 minutes under a pressure of 100 Kg/cm 2 to obtain a crosslinked unfoamed resin composition. The gel fraction of the composition was 42%. The composition was then heated for 30 minutes at a temperature of 170° C. between a pair of metal plates with a spacing of 28 mm. At this time, the azodicarbonamide was partially decomposed and expanded biaxially within the space defined by both metal plates. The resulting intermediate foam was taken out from between both metal plates. The intermediate foam had expanded to 8 times its original volume and approximately 27% by weight of the azodicarbonamide had already decomposed. This intermediate foam was then placed into an open, non-hermetically closed mold with dimensions 2080 x 1060 x 95 mm. The mold has a heating jacket through which steam circulates;
Heated at 175°C for 30 minutes. After cooling, the foam was removed from the mold. It was found that the azodicarbonamide remaining after the second process step was completely decomposed and the expansion ratio was 30 times. The gel fraction was 70%. The foam produced in this way had a uniform fine cell structure with high toughness, and the cell size was about 50μ. The final foam had a heat of 90 mm and an apparent density of 0.030 g/cm 3 .
The whole was usable as a foam material and there was no waste up to this point in production. Example 2 Density 0.937/cm 3 containing 14% by weight of vinyl acetate
Ethylene-vinyl acetate copolymer (MFR1.5)
A composition containing 17 parts by weight of azodicarbonamide, 0.05 parts by weight of zinc white, and 0.8 parts by weight of dicumyl peroxide was homogeneously kneaded at 90°C using a mixing roll based on 100 parts by weight. The obtained kneaded product was filled into a mold (size: 750 x 360 x 28 mm) in a press controlled at a temperature of 145°C, sealed, and heated for 40 minutes under a pressure of 100 kg/cm 2 to crosslink it. An unfoamed resin composition was formed. The crosslinked unfoamed resin composition thus obtained was then taken out from the mold. When measuring the gel fraction of this composition,
It was 35%. The composition was then prefoamed between two metal plates as described in Example 1. The foaming ratio of the obtained intermediate foam was 6 times, which was about 6 times that of azodicarbonamide.
20% had decomposed. It was then foamed in the same manner and under the same conditions as described in Example 1. The foam had a gel fraction of 75% and a foaming ratio of 30 times. This foam also has a tough, uniform fine closed cell structure, and the size of the cells is approximately
It was 50μ. Foam thickness 90mm, apparent density
It was 0.030g/ cm3 .

【発明の効果】【Effect of the invention】

本発明による方法は、比較的短い作業時間及び
高い生産性を有する作業サイクルによつて、均一
微細な独立気泡を有する発泡体の製造を可能にす
る。本発明によれば、操作方法が容易で、高い収
率が得られると共に廃物が減少する。 本発明により得られた、架橋ポリオレフインか
ら成る独立気泡体は、椅子張り材料、断熱材料及
び被覆材料として有利に使用することができる。
The method according to the invention allows the production of foams with homogeneous, fine, closed cells with relatively short working times and working cycles with high productivity. According to the present invention, the operating method is easy, high yields are obtained, and waste is reduced. The closed-cell foams made of crosslinked polyolefins obtained according to the invention can be used advantageously as upholstery materials, insulation materials and coating materials.

Claims (1)

【特許請求の範囲】 1 ポリオレフインに架橋剤、発泡剤及び発泡助
剤を添加混練して得られる架橋性発泡性樹脂組成
物を押圧して密閉系型内に充填し、加圧下に加熱
して架橋未発泡樹脂組成物を得、 該組成物を、1対の金属板の間で発泡温度に加
熱し、発泡剤を部分的に分解させて、金属板によ
つて限定された範囲内で該組成物を二軸膨張させ
て板状形態を有する中間発泡体を得、 該中間発泡体を常圧下にて加熱して残存する発
泡剤を分解して、三次元方向に膨張させる ことから成ることを特徴とする架橋ポリオレフ
イン独立気泡体の製造方法。 2 架橋未発泡樹脂組成物の架橋度が、1〜70%
の範囲のゲル分である特許請求の範囲第1項記載
の方法。 3 中間発泡体の発泡倍率が、6〜10倍の範囲で
ある特許請求の範囲第1項又は第2項記載の方
法。 4 架橋反応が、20〜200Kg/cm2の範囲の圧力下、
最高160℃までの温度、好ましくは135〜155℃の
範囲の温度で行われ、かつ発泡が初めの段階では
160〜190℃、好ましくは160〜180℃の範囲の温度
で行われ、次の2番目の段階では160〜200℃の範
囲の温度で行われる特許請求の範囲第1項から第
3項までのいずれか1項に記載の方法。 5 架橋未発泡樹脂組成物が金型容積の1〜2倍
の範囲に膨張している特許請求の範囲第1項から
第4項までのいずれか1項に記載の方法。
[Claims] 1. A crosslinkable foamable resin composition obtained by adding and kneading a crosslinking agent, a blowing agent, and a blowing aid to a polyolefin is pressed and filled into a closed mold, and heated under pressure. A crosslinked unfoamed resin composition is obtained, and the composition is heated between a pair of metal plates to a foaming temperature to partially decompose the blowing agent, so that the composition is heated within an area defined by the metal plates. is biaxially expanded to obtain an intermediate foam having a plate-like shape, and the intermediate foam is heated under normal pressure to decompose the remaining foaming agent and expand in three dimensions. A method for producing a crosslinked polyolefin closed cell foam. 2 The degree of crosslinking of the crosslinked unfoamed resin composition is 1 to 70%
The method according to claim 1, wherein the gel content is in the range of . 3. The method according to claim 1 or 2, wherein the intermediate foam has a foaming ratio of 6 to 10 times. 4. The crosslinking reaction is carried out under a pressure in the range of 20 to 200 Kg/ cm2 ,
The foaming is carried out at temperatures up to 160°C, preferably in the range 135-155°C, and at the initial stage of foaming.
Claims 1 to 3 are carried out at a temperature in the range from 160 to 190°C, preferably from 160 to 180°C, and in a subsequent second stage at a temperature in the range from 160 to 200°C. The method described in any one of the above. 5. The method according to any one of claims 1 to 4, wherein the crosslinked unfoamed resin composition is expanded to a volume of 1 to 2 times the mold volume.
JP60175971A 1984-08-16 1985-08-12 Manufacture of formed body of independent bubble foaming material based on bridged polyolefin Granted JPS6155125A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3430108.9 1984-08-16
DE19843430108 DE3430108A1 (en) 1984-08-16 1984-08-16 METHOD FOR PRODUCING CLOSED-CELL-FOAMED MOLDED BODIES FROM CROSS-LINKED POLYOLEFINES

Publications (2)

Publication Number Publication Date
JPS6155125A JPS6155125A (en) 1986-03-19
JPH0570579B2 true JPH0570579B2 (en) 1993-10-05

Family

ID=6243169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60175971A Granted JPS6155125A (en) 1984-08-16 1985-08-12 Manufacture of formed body of independent bubble foaming material based on bridged polyolefin

Country Status (10)

Country Link
US (1) US4671910A (en)
EP (1) EP0171598A1 (en)
JP (1) JPS6155125A (en)
CN (1) CN85107290A (en)
CA (1) CA1247817A (en)
DE (1) DE3430108A1 (en)
DK (1) DK371685A (en)
ES (1) ES8604808A1 (en)
FI (1) FI853135L (en)
NO (1) NO853222L (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976902A (en) * 1988-10-04 1990-12-11 Rubatex Corporation Molding method for producing expanded polyolefin foam
US5310513A (en) * 1990-09-17 1994-05-10 Furukawa Electric Co., Ltd. Method for manufacturing a cross-linked thermoplastic resin foam
CN1088422C (en) * 1994-10-10 2002-07-31 塔罗克尔·柯克第七有限公司 Two-stage process for making foam mouldings from tube blanks
CA2232389A1 (en) * 1995-09-29 1997-04-03 Seema V. Karande Cross-linked polyolefinic foams and process for their production
US5688454A (en) * 1996-10-17 1997-11-18 Chi; Kuan-Min Floating board fabrication method
GB2328638B (en) * 1997-08-28 1999-09-22 Sun Own Ind Co Ltd Method for making a surfboard
ES2157703B1 (en) * 1997-11-04 2002-02-16 Sun Own Ind Co Ltd METHOD FOR OBTAINING A SURF TABLE.
CZ302166B6 (en) * 2000-06-02 2010-11-24 Rieter Automotive (International) Ag Insert element for sealing cavities
EP2182063A3 (en) * 2003-09-18 2012-07-18 Isis Pharmaceuticals, Inc. Modulation of EIF4E expression
US7597382B2 (en) * 2005-06-07 2009-10-06 Zephyros, Inc. Noise reduction member and system
JP2007083477A (en) * 2005-09-21 2007-04-05 Sumitomo Chemical Co Ltd Method for producing foamed crosslinked polyolefin resin
AU2008202560A1 (en) * 2007-06-14 2009-01-08 Obie Products Limited Apparatus and Method for Expanding Foams and Formation of Expanded Foam Articles
EP2246172A3 (en) * 2009-03-16 2014-06-18 Lucobit AG Method for manufacturing light components from foamed plastic
US8048349B2 (en) * 2010-02-11 2011-11-01 Chun-Fu Kuo Method for the preparation of foamed and crosslinked rubber
GB201114958D0 (en) * 2011-08-31 2011-10-12 Univ Leuven Kath Complexly shaped anisotropic foam with customizable cellular structure and manufacture thereof
CN103075455A (en) * 2012-12-29 2013-05-01 泉州师范学院 Preformed shock-absorbing high-pressure gasbag and production process thereof
HUE056118T2 (en) * 2014-09-24 2022-01-28 Stefano Conte Method for manufacturing an object
US20180094111A1 (en) * 2016-09-30 2018-04-05 LCY Chemical Corp. Linear polypropylene specimen and foam and process of preparing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341481A (en) * 1963-08-27 1967-09-12 Hercules Inc Preparation of cellular polyolefins
GB1076873A (en) * 1964-03-31 1967-07-26 Furukawa Electric Co Ltd Method of manufacturing polyolefin composition foamed bodies
JPS5218232B1 (en) * 1966-02-05 1977-05-20
GB1115573A (en) * 1966-03-04 1968-05-29 Volcrepe Ltd Method of producing moulded articles in expanded cellular rubber
DE1919748A1 (en) * 1969-04-18 1970-11-05 Basf Ag Process for the production of foams from ethylene polymers
BE747863A (en) * 1969-10-04 1970-08-31 Sanwa Kako Co PROCESS FOR PREPARING A POLYOLEFIN FOAM
DE2654029B2 (en) * 1976-11-27 1980-01-31 Basf Ag, 6700 Ludwigshafen Continuous production of fine-cell, riveted polyolefin foams
JPS57191027A (en) * 1981-05-22 1982-11-24 Sanwa Kako Kk Manufacture of bridged polyolefin continuous foamed material

Also Published As

Publication number Publication date
NO853222L (en) 1986-02-17
DE3430108A1 (en) 1986-02-27
FI853135A0 (en) 1985-08-15
JPS6155125A (en) 1986-03-19
US4671910A (en) 1987-06-09
DE3430108C2 (en) 1987-03-12
CN85107290A (en) 1987-03-04
CA1247817A (en) 1989-01-03
FI853135L (en) 1986-02-17
EP0171598A1 (en) 1986-02-19
ES546148A0 (en) 1986-02-16
ES8604808A1 (en) 1986-02-16
DK371685A (en) 1986-02-17
DK371685D0 (en) 1985-08-15

Similar Documents

Publication Publication Date Title
JPH0570579B2 (en)
US3965054A (en) Foamable polyolefin composition and method for manufacturing foamed polyolefin
JPH0238100B2 (en)
US4146598A (en) Process for preparing suspension chlorinated crosslinked polyethylene foam
US4209473A (en) Crosslinked chlorinated polyethylene foam
JPH0318817B2 (en)
US4749725A (en) Production process of pre-foamed particles
JPS6219294B2 (en)
JPS61283633A (en) Production of polyolefin foam
JPS6330340B2 (en)
JPH11315161A (en) Crosslinked polyethylene-based resin foam with open cells and its production
JPH10251428A (en) Production of plastic foam
JP3225316B2 (en) Method for producing cross-linked polyolefin open cell
KR830001834B1 (en) Method of making crosslinked open cell polyole - fin foumed products
EP0367409A2 (en) Method of producing a foamed polymer
JP3308294B2 (en) Method for producing polyolefin foam
JP3242150B2 (en) Method for producing cross-linked polyolefin open cell
JPS636032A (en) Production of polypropylene foam
JPS6040975B2 (en) Method for manufacturing thermoplastic resin foam
JPH0511025B2 (en)
JPH02196638A (en) Manufacture of crosslinked polyolefin continuous foamed material
JPS6153015A (en) Manufacture of polyolefin cellular body
JPH0367613B2 (en)
JPH04363338A (en) Production of polyolefin-crosslinked foamed product
JPS5824259B2 (en) Seizouhouhou