JPS5824259B2 - Seizouhouhou - Google Patents

Seizouhouhou

Info

Publication number
JPS5824259B2
JPS5824259B2 JP49073064A JP7306474A JPS5824259B2 JP S5824259 B2 JPS5824259 B2 JP S5824259B2 JP 49073064 A JP49073064 A JP 49073064A JP 7306474 A JP7306474 A JP 7306474A JP S5824259 B2 JPS5824259 B2 JP S5824259B2
Authority
JP
Japan
Prior art keywords
gas
foam
foaming
heating
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49073064A
Other languages
Japanese (ja)
Other versions
JPS511570A (en
Inventor
上野英世
沢崎隆
中江博之
椎名直礼
並木勇
野尻昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP49073064A priority Critical patent/JPS5824259B2/en
Publication of JPS511570A publication Critical patent/JPS511570A/ja
Publication of JPS5824259B2 publication Critical patent/JPS5824259B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は均一にして微細な気泡を有する熱可塑性樹脂発
泡体の製造方法に関するものであり、更に詳しくは化学
架橋発泡方法又は放射線架橋発泡方法により気泡径が平
均0.4W以下にしてバラツキの少ない気泡からなる発
泡体を得んとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thermoplastic resin foam having uniform and fine cells, and more specifically, the present invention relates to a method for producing a thermoplastic resin foam having uniform and fine cells, and more specifically, the cell size is made to have an average cell diameter of 0. The aim is to obtain a foam made of cells with less variation in the power of 4W or less.

従来熱可塑性樹脂発泡体を得る方法としてはいくつかの
方法がある例えば樹脂に化学発泡剤及び該発泡剤より低
い分解温度を有する有機過酸化物を混合し該有機過酸化
物を分解せしめて架橋結合を形成し次いで発泡剤を分解
せしめて発泡体を得る方法、又は樹脂の発泡剤を添加混
練した後成型し電子線を照射して架橋結合を形成し、こ
れを加熱することにより発泡剤を分解せしめて発泡体を
得る方法がある。
Conventionally, there are several methods for obtaining thermoplastic resin foams. For example, a chemical blowing agent and an organic peroxide having a lower decomposition temperature than the blowing agent are mixed with the resin, and the organic peroxide is decomposed and crosslinked. A method of forming bonds and then decomposing the blowing agent to obtain a foam, or adding and kneading a resin blowing agent, molding it, irradiating it with electron beams to form a crosslinking bond, and heating it to remove the blowing agent. There is a method of obtaining a foam by decomposing it.

然るに前者の方法においては架橋と発泡とを一段加熱工
程により行えば連続的に発泡体をうることかできるが、
その場合気泡は粗大であり且つ発泡剤の有効利用率も低
い、又架橋と発泡とを二段の加熱工程により行えば架橋
が終了して発泡が行われるため気泡は微細化するが発泡
剤からの初期分解ガス或は架橋剤からの分解ガスが気泡
化するのを防止するために架橋処理は加圧下で行わなけ
ればならず非能率的である。
However, in the former method, if crosslinking and foaming are performed in a single heating step, a foam can be obtained continuously;
In that case, the bubbles are coarse and the effective utilization rate of the blowing agent is low.Also, if crosslinking and foaming are performed in a two-stage heating process, the bubbles become finer because the crosslinking is completed and foaming is performed, but the foaming agent is The crosslinking process must be carried out under pressure in order to prevent the initial decomposition gas or the decomposition gas from the crosslinking agent from forming bubbles, which is inefficient.

又、後者の方法においては比較的微細な気泡を有する発
泡体が得られるが照射後直ちに発泡せしめると気泡径が
粗大となるという欠点がある。
In addition, in the latter method, a foam having relatively fine cells can be obtained, but if foaming is performed immediately after irradiation, the cells have a drawback that the diameter of the cells becomes coarse.

本発明にかかる欠点を改善するため人手を要せず連続的
な架橋発泡工程において均一微細な気泡を有する発泡体
の製造方法について鋭意研究を行った結果、成形中又は
成形後の発泡性組成物中に溶解しているガス量と、発泡
体の気泡径とが密接な関係を有することを見出し本発明
に至ったものである。
In order to improve the drawbacks of the present invention, we conducted extensive research on a method for producing foams with uniform fine cells in a continuous cross-linking and foaming process that does not require manual labor. The present invention was based on the discovery that there is a close relationship between the amount of gas dissolved in the foam and the cell diameter of the foam.

即ち本発明は熱可塑性樹脂に熱分解型発泡剤を混合した
発泡性組成物を加熱して発泡体を製造する方法において
、該組成物の成形中或は成形後加熱発泡処理に先立って
ガス抜きを発泡組成物1g当りのガス量が0.06CG
以下になるまで行うものである。
That is, the present invention provides a method for producing a foam by heating a foamable composition in which a thermoplastic resin is mixed with a pyrolyzable blowing agent. The amount of gas per 1g of foaming composition is 0.06CG
This is done until the following is achieved.

本発明においてガス抜の処理を行うことにより微細気泡
を有する発泡体が得られる理由については明らかではな
いが、発泡組成物中にガス成分が存在すると該ガスは発
泡工程において発生する発泡剤からの分解ガスとともに
発泡の極めて初期に核気泡を形成する。
Although it is not clear why a foam having fine cells is obtained by performing the degassing process in the present invention, if a gas component is present in the foaming composition, the gas is released from the foaming agent generated during the foaming process. Together with decomposed gas, nuclear bubbles are formed at the very early stage of foaming.

このように発泡の初期に少数の核気泡を形成するような
発泡プロセスにおいては、それ以後の発泡剤の分解ガス
が、核気泡に集中し、その結果粗大な気泡を形成するも
のと推考される。
In this way, in a foaming process where a small number of core bubbles are formed at the beginning of foaming, it is assumed that the decomposed gas of the blowing agent thereafter concentrates on the core bubbles, resulting in the formation of coarse bubbles. .

本発明においてガス抜きとは発泡体の成形中或は成形後
において組成物中に含まれている何等かのガス成分或い
は揮発性低沸点の液体成分を組成。
In the present invention, degassing refers to removing any gas components or volatile low-boiling liquid components contained in the composition during or after molding the foam.

物中から除去するものであり、含有するガス量を出来う
る限り減することにより気泡を微細化にすることができ
るものである。
It is something that is removed from a substance, and by reducing the amount of gas it contains as much as possible, it is possible to make the bubbles finer.

而して加熱発泡前の成形体中に含まれるガス量は次の如
き測定法により求めたガス量が1 grの発泡性組成物
当り0.060CC以下望ましくは0.055峠下更に
望ましくは0.0450C以下になるまで除去するもの
であり、0.06CCを越えた場合には気泡径が粗大と
なり物性即ち断熱性、風合が劣るものである。
The amount of gas contained in the molded article before heating and foaming is determined by the following measuring method: 0.060 cc or less per 1 gram of foamable composition, preferably 0.055 cc or less, and more preferably 0. The temperature is removed until the temperature reaches 0.0450C or less.If the temperature exceeds 0.06CC, the bubble diameter becomes coarse and the physical properties, that is, the heat insulation properties and texture are poor.

即ちガス量を測定するにはガスを導入するためのガラス
管付容器内を十分に真空にしておき、発泡組成物を80
〜100℃に30分加熱しながら真空下でほぼ完全に脱
着させ、これを拡散ポンプによって定容積系に導くもの
である。
That is, to measure the amount of gas, the inside of the container with a glass tube for introducing the gas is sufficiently evacuated, and the foamed composition is heated to 80%
Almost complete desorption is performed under vacuum while heating to ~100°C for 30 minutes, and this is introduced into a constant volume system using a diffusion pump.

なお容器内の圧力は例えばマクレオド真空計で続みとる
ことができる。
Note that the pressure inside the container can be monitored using, for example, a MacLeod vacuum gauge.

真空度(ガス圧)とその容積から標準状態でのガス量を
求めることができる。
The amount of gas under standard conditions can be determined from the degree of vacuum (gas pressure) and its volume.

又本発明における発泡組成物中からガス成分或いは低沸
点液体成分を除去する方法については如何なる方法でも
よいが、通常は発泡組成物成形体を減圧ゾーン中に保つ
方法或はポリマーが軟化する温度以上の加熱ゾーン中に
保つ方法により行うものである。
Further, any method may be used to remove the gas component or low-boiling liquid component from the foamed composition of the present invention, but it is usually a method of keeping the foamed composition molded product in a reduced pressure zone or a method of removing the gas component or low-boiling point liquid component from the foamed composition. This is done by keeping the temperature within the heating zone.

減圧ゾーンによる方法については成形体を5007ta
Hg以下望ましくは300MHg以下に保つものであり
、加熱による方法についてはガス成分等の拡散を促進す
ることから温度は高い程望ましく、通常は成形体を樹脂
の軟化温度より10℃以上高いことが望ましい。
For the method using a reduced pressure zone, the molded body is 5007 ta
Hg or less, preferably 300 MHg or less, and in the case of heating methods, the higher the temperature is, the better, as it promotes the diffusion of gas components, etc., and it is usually desirable to keep the molded body at least 10°C higher than the softening temperature of the resin. .

しかし架橋剤、発泡剤の分解温度以下に保持することが
必要である、例えば低密度ポリエチレン発泡体を製造す
る場合には90〜150℃特に望ましくは100〜13
0℃に加熱するものである。
However, it is necessary to maintain the temperature below the decomposition temperature of the crosslinking agent and blowing agent, for example, when producing low density polyethylene foam, it is preferably 90 to 150 degrees Celsius, preferably 100 to 13 degrees Celsius.
It is heated to 0°C.

又加熱時間は使用する樹脂、含有するガス成分、加熱温
度、成形体シートの厚さ等により異なるものであるが、
通常2〜30分特に5〜20分の範囲で行うことが望ま
しい。
In addition, the heating time varies depending on the resin used, the gas components contained, the heating temperature, the thickness of the molded sheet, etc.
It is generally desirable to carry out the heating for 2 to 30 minutes, particularly for 5 to 20 minutes.

父上記の減圧ゾーンによる方法と加熱ゾーンによる方法
とを併用することにより処理時間を短縮することができ
る。
Processing time can be shortened by using the above-mentioned method using a reduced pressure zone and method using a heating zone in combination.

又ガス抜を行う時点については熱可塑性樹脂に発泡剤又
は発泡剤と架橋剤とを混合し押出機にてシートに成形後
冷却せしめることなく連続的にガス抜工程を行い、直ち
に連続的発泡工程を行うことによりガス抜きの処理時間
が短縮され且作業能率よく極めて微細な気泡の発泡体を
うろことができる。
Regarding the point of degassing, the thermoplastic resin is mixed with a blowing agent or a blowing agent and a crosslinking agent, and after being formed into a sheet using an extruder, the degassing process is performed continuously without cooling, and immediately the continuous foaming process is performed. By doing this, the processing time for degassing is shortened, and the foamed material with extremely fine bubbles can be processed efficiently.

本発明における熱可塑性樹脂とは例えば高密度、低密度
ポリエチレン、ポリプロピレン、ポリブテン−1等のオ
レフィン系重合体、エチレン−プロピレン共重合体、エ
チレン−ブテン共重合体、エチレン−酢酸ビニル共重合
体、エチレン−アクリル酸共重合体、エチレン−アクリ
ル酸エステル共重合体等のオレフィン系共重合体、ポリ
塩化ビニル、塩化ビニル−酢酸ビニル共重合体等のポリ
ビニル系重合体、ポリアクリル酸、ポリメタクリル酸等
を指すものである。
Thermoplastic resins in the present invention include, for example, olefinic polymers such as high-density and low-density polyethylene, polypropylene, and polybutene-1, ethylene-propylene copolymers, ethylene-butene copolymers, ethylene-vinyl acetate copolymers, Olefin copolymers such as ethylene-acrylic acid copolymer and ethylene-acrylic ester copolymer, polyvinyl chloride, polyvinyl polymer such as vinyl chloride-vinyl acetate copolymer, polyacrylic acid, polymethacrylic acid etc.

又本発明における熱分解型発泡剤とは分解温度が樹脂の
軟化点以上のものでなければならず例えばアゾシカ−ボ
ンアミド、ジニトロペンタメチレンテトラミン、PP′
オキシビニ・、ベンゼンスルフォニルヒドラジド、アゾ
ビスイソブチロニトリル、パラトルエンスルフオニルセ
ミカルバザイド等である。
The thermally decomposable blowing agent used in the present invention must have a decomposition temperature higher than the softening point of the resin, such as azocabonamide, dinitropentamethylenetetramine, PP'
These include oxyvinylhydrazide, benzenesulfonyl hydrazide, azobisisobutyronitrile, and paratoluenesulfonyl semicarbazide.

又本発明における架橋剤とはジターシャリブチルパーオ
キサイド、1.3ビス(ターシャリ−ブチルパーオキシ
イソプロピル)ベンゼン、2,5ジメチル2−5ジ(ク
ーシャリ−ブチルパーオキシ)ヘキサン、ジクミルパー
オキサイドの如き有機過酸化物、I −9ノナンビスス
ルフオンアザイドの如きアジド化合物、オクタクロルシ
クロペンテンの如き有機塩化物等であって、加熱によっ
て分解し、樹脂に架橋結合を生成せしめるものである。
In addition, the crosslinking agent in the present invention includes ditertiary butyl peroxide, 1,3bis(tertiarybutylperoxyisopropyl)benzene, 2,5dimethyl 2-5di(tertiarybutylperoxy)hexane, and dicumylperoxide. These include organic peroxides such as I-9 nonanubisulfonazide, azide compounds such as octachlorocyclopentene, and organic chlorides such as octachlorocyclopentene, which are decomposed by heating to form crosslinks in the resin.

さらに上記の架橋剤と共にトリアリルシアヌレート、ト
リアリルイソシアヌレート、トリメチロールプロパン、
トリメタクリートの如きガストラップ剤を用いると架橋
剤から発生する分解ガスを著しく減少させることができ
る。
Furthermore, along with the above crosslinking agents, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane,
The use of gas trapping agents such as trimethacrylate can significantly reduce decomposition gases generated from crosslinking agents.

一般に発泡組成物を得る際及びその成形時に極めて僅か
ではあるが架橋剤が微量に分解してガスが発生する。
Generally, when a foamed composition is obtained and when it is molded, the crosslinking agent decomposes to a very small extent and gas is generated.

しかし上記ガストラップ剤を混入しておくと架橋剤から
の分解ガスを捕捉してそれだけ残存ガスが少なくなる。
However, if the gas trapping agent is mixed in, the decomposition gas from the crosslinking agent will be captured, and the amount of residual gas will be reduced accordingly.

従って架橋前にガス抜き工程を行えば、それだけ短時間
で発泡組成物はガスのない状態となる。
Therefore, if a degassing step is performed before crosslinking, the foamed composition will become gas-free in a shorter time.

架橋時においてもガストラップ剤の同様な作用によりガ
スの完全にない状態となり発泡はもはや核気泡のない状
態で開始されるから、超微細の気泡からなる発泡体をう
ろことができる。
During crosslinking, a similar effect of the gas trapping agent creates a completely gas-free state, and foaming begins in a state where there are no more nuclear bubbles, so it is possible to create a foam made of ultrafine bubbles.

又本発明における混練工程とは放射線架橋を行う場合に
は樹脂に発泡剤を、化学架橋の場合には樹脂に発泡剤と
化学架橋剤とを混練すればよく、通常はミキシング吊−
ル、加圧ニーダ−、バンバリーミキサ−1押出機等によ
り行うものであるが、何れの場合においても発泡剤及び
架橋剤を分解せしめないことが必要である。
In addition, the kneading step in the present invention involves kneading a foaming agent into the resin in the case of radiation crosslinking, and kneading the foaming agent and the chemical crosslinking agent into the resin in the case of chemical crosslinking.
The foaming agent and the crosslinking agent must not be decomposed in any case.

又本発明における成形工程とは押出機或はプレス成型等
により板状、シート状、粒状等に成形することでありこ
の場合においても発泡剤及び架橋剤を分解させないこと
が必要である。
Further, the molding step in the present invention means molding into a plate shape, sheet shape, granule shape, etc. using an extruder or press molding, and even in this case, it is necessary that the blowing agent and the crosslinking agent are not decomposed.

本発明における加熱はガス抜きされた発泡組成物を発泡
するために発泡剤の分解温度以上の温度に加熱する。
In the present invention, heating is performed to a temperature higher than the decomposition temperature of the blowing agent in order to foam the degassed foam composition.

加熱の手段は赤外線ヒーター、熱風加熱炉、塩浴等倒れ
の方法でもよい。
The heating means may be an infrared heater, a hot air heating furnace, a salt bath, or other methods.

なお本発明は発泡性組成物中に難燃剤、架橋促進剤、発
泡助剤等を適宜添加してもよい。
In the present invention, a flame retardant, a crosslinking accelerator, a foaming aid, etc. may be appropriately added to the foamable composition.

次に本発明の実施例をあげて説明する(以下部とあるは
何れも重量部を示す)。
Next, the present invention will be described with reference to Examples (all parts hereinafter indicate parts by weight).

実施例 1 メルトインデックス1.0の低密度ポリエチレン100
.0部に発泡剤としてアゾシカ−ボンアミド100部、
及び架橋剤としてジクミルパーオキサイド1.0部を夫
々添加し、押出機にて厚さ2■のシート状に押出成形し
た。
Example 1 Low density polyethylene 100 with melt index 1.0
.. 0 parts and 100 parts of azosica-bonamide as a blowing agent,
and 1.0 part of dicumyl peroxide as a crosslinking agent were added, and the mixture was extruded into a sheet having a thickness of 2 cm using an extruder.

かくして得られたシート中のガス含有量は、すでに述べ
た測定方法で測定した結果シート1g中0.088σで
あった。
The gas content in the sheet thus obtained was determined to be 0.088σ in 1 g of the sheet as measured by the measuring method described above.

このシートを3cm角に切りとり、真空デシケータ−に
入れ、ロータリーポンプにて10011#!Hgの真空
度において5時間処理したところこの試片1.!i’中
のガス含有量は0.041CCであった。
Cut this sheet into 3cm squares, put them in a vacuum desiccator, and use a rotary pump to remove 10011#. After processing for 5 hours in Hg vacuum, this sample 1. ! The gas content in i' was 0.041 CC.

これを200℃のメタルバスにて加熱発泡させたところ
均一微細な気泡(0,4M)を有する発泡体をえた。
When this was heated and foamed in a metal bath at 200° C., a foam having uniform fine cells (0.4M) was obtained.

なお比較のために上記の如きシート(シート1g中のガ
ス含有量6.088cc)から同一寸法の小片をそのま
ま200℃のメタルバスにて加熱発泡せしめたところ粗
大な気泡(0,65M)にして且つやや均一性に欠ける
発泡体を得た。
For comparison, a small piece of the same size from the above sheet (gas content 6.088cc in 1g of sheet) was heated and foamed in a metal bath at 200°C, resulting in coarse bubbles (0.65M). In addition, a foam was obtained which was somewhat lacking in uniformity.

実施例 2 メルトインデックス1,0の低密度ポリエチレン100
.0部に発泡剤としてアゾシカ−ボンアミド10.0部
、架橋剤としてジクミルパーオキサイド0.7部及びガ
ストラップ剤としてトリアリルシアヌレ−t−0,2部
を夫々添加し、ロールにて混練りし厚さ3m 、 23
.5CrrLx 13. Ocmのシートにプレス成型
した。
Example 2 Low density polyethylene 100 with melt index 1.0
.. To 0 parts, 10.0 parts of azosicabonamide as a blowing agent, 0.7 parts of dicumyl peroxide as a crosslinking agent, and 0.2 parts of triallyl cyanuride as a gas trapping agent were added, and mixed on a roll. Kneaded thickness 3m, 23
.. 5CrrLx 13. It was press-molded into an Ocm sheet.

このシート(シート1g中のガス含有量0.085(f
、)を3儂角に切りとり恒温槽中にて120℃、20分
熱処理を行ったところこの試片1g中のガス含有量は0
.035CCであった。
This sheet (gas content in 1 g of sheet 0.085 (f
) was cut into 3 square pieces and heat treated at 120℃ for 20 minutes in a constant temperature bath.The gas content in 1g of this specimen was 0.
.. It was 035CC.

これを200℃のメタルバスにて加熱発泡させたところ
均一微細な気泡(0,207部gl)を有する発泡体を
得た。
When this was heated and foamed in a metal bath at 200° C., a foam having uniform fine cells (0.207 parts gl) was obtained.

実施例 3 タルトインデックス1.0の低密度ポリエチレン100
.0部に発泡剤としてアゾシカ−ボンアミド15.0部
、加橋剤としてジクミルパーオキサイド0.6部及びガ
ストラップ剤としてトリアリルシアヌレ−)0.39部
を夫々添加し押出機にて厚さ2麿のシート状に押出成形
した。
Example 3 Low density polyethylene 100 with tart index 1.0
.. 15.0 parts of azosicabonamide as a foaming agent, 0.6 parts of dicumyl peroxide as a crosslinking agent, and 0.39 parts of triallyl cyanuride as a gas trapping agent were added to 0 parts, and the mixture was thickened using an extruder. It was extruded into a two-dimensional sheet.

このシート(シート1g中のガス含有量0.090CC
,、)を連続的に120°Cの熱風炉中を通過せしめ、
約10分間ガス抜の熱処理を行ったところシーhIF中
のガス含有量はo、os3ccであった。
This sheet (gas content in 1g of sheet is 0.090CC)
,,) are continuously passed through a hot air oven at 120°C,
When heat treatment for degassing was performed for about 10 minutes, the gas content in the sea hIF was 3 cc.

この熱処理後これを直ちに220℃の発泡炉において加
熱発泡させたところ均一微細な気泡(0,33m)を有
する発泡体を得た。
Immediately after this heat treatment, this was heated and foamed in a foaming furnace at 220°C to obtain a foam having uniform fine cells (0.33 m).

実施例 4 タルトインデックス2.0の低密度ポリエチレン100
.0部に発泡剤としてアゾシカ−ボンアミド10.0部
を添加し、押出機にて厚さ17#!のシートに押出した
Example 4 Low density polyethylene 100 with tart index 2.0
.. Add 10.0 parts of Azocicabonamide as a foaming agent to 0 parts, and use an extruder to achieve a thickness of 17#! extruded into a sheet.

このシートを直ちに線型加速機により空気中において6
Mrad照射した後、直ちに120℃にて6分間熱処
理を行い(標準状態で発泡組成物1g当りのガス量0.
04CC)、そのままコンベアを有する発泡炉(温度2
40℃)中を通じて発泡せしめたところ密度0.052
.9/7と小さく、平均気泡径0.43Mの均一気泡か
らなる発泡体を得た。
This sheet is immediately placed in the air using a linear accelerator for 6
Immediately after the Mrad irradiation, heat treatment was performed at 120°C for 6 minutes (under standard conditions, the amount of gas per 1 g of the foaming composition was 0.
04CC), a foaming furnace with a conveyor (temperature 2
The density was 0.052 when foamed in 40℃).
.. A foam consisting of uniform cells as small as 9/7 and having an average cell diameter of 0.43M was obtained.

上記熱処理後のシート1g中のガス含有量は0.052
CCであった。
The gas content in 1g of the sheet after the above heat treatment is 0.052
It was CC.

なお上記の放射線照射のシート(シート1g中のガス含
有量0.094CC,)を熱処理することなく加熱発泡
せしめたところ密度0.050 g/Crflと小さい
が、平均気泡径は0.6Mとかなり大きい発泡体を得た
When the above-mentioned radiation-irradiated sheet (gas content in 1 g of sheet 0.094 CC) was heated and foamed without heat treatment, the density was as small as 0.050 g/Crfl, but the average cell diameter was 0.6 M, which was quite large. A large foam was obtained.

以上詳述した如く本発明方法は簡単な操作により均一微
細な発泡径を有する発泡体を得る等顕著な効果を有する
As detailed above, the method of the present invention has remarkable effects such as obtaining a foam having a uniform and fine foam diameter through simple operations.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性樹脂に熱分解型発泡剤を混合した発泡性組
成物を加熱して発泡体を製造する方法において、該組成
物の成形中或は成形後、加熱発泡処理に先立ってガス抜
きを該組成物1g当りのガス量が0.06CC以下にな
るまで行うことを特徴とする熱可塑性樹脂発泡体の製造
方法。
1. In a method of manufacturing a foam by heating a foamable composition in which a thermoplastic resin is mixed with a pyrolytic foaming agent, degassing is performed during or after molding the composition, prior to heating and foaming treatment. A method for producing a thermoplastic resin foam, characterized in that the process is carried out until the amount of gas per gram of the composition becomes 0.06 CC or less.
JP49073064A 1974-06-26 1974-06-26 Seizouhouhou Expired JPS5824259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49073064A JPS5824259B2 (en) 1974-06-26 1974-06-26 Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49073064A JPS5824259B2 (en) 1974-06-26 1974-06-26 Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS511570A JPS511570A (en) 1976-01-08
JPS5824259B2 true JPS5824259B2 (en) 1983-05-20

Family

ID=13507530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49073064A Expired JPS5824259B2 (en) 1974-06-26 1974-06-26 Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5824259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415196B2 (en) 2017-12-18 2022-08-16 Daido Kogyo Co., Ltd. Roller chain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415196B2 (en) 2017-12-18 2022-08-16 Daido Kogyo Co., Ltd. Roller chain

Also Published As

Publication number Publication date
JPS511570A (en) 1976-01-08

Similar Documents

Publication Publication Date Title
US4702868A (en) Moldable silane-crosslinked polyolefin foam beads
US4870111A (en) Moldable silane-crosslinked polyolefin foam beads
JPH0238100B2 (en)
JPH0570579B2 (en)
JPS5824259B2 (en) Seizouhouhou
US3640915A (en) Production of foamed polyethylene
JPS63254142A (en) Production of polypropylene foam
EP0280993B1 (en) Moldable silane-crosslinked polyolefin foam beads
JPS6040975B2 (en) Method for manufacturing thermoplastic resin foam
JPH0710934B2 (en) Method for producing flame-retardant resin crosslinked foam
EP0367409A2 (en) Method of producing a foamed polymer
JP2663559B2 (en) Radiation-crosslinked polyolefin resin foam and method for producing the same
JP2663598B2 (en) Method for producing polyolefin resin foam
JPH08239501A (en) Production of polyolefin resin foamed product
JPH11279315A (en) Polyolefinic resin foamed body and preparation thereof
JPS636032A (en) Production of polypropylene foam
JPS5831100B2 (en) Manufacturing method of polyolefin resin foam
JP2708496B2 (en) Method for producing cross-linked olefin resin foam
JPS5857452B2 (en) Method for producing crosslinked polyolefin foam
JPH0280436A (en) Production of crosslinked olefin resin foam
JPH10235670A (en) Production of polyolefin resin interconnecting cell foam
JPH0730196B2 (en) Method for producing crosslinked polyolefin resin foam
JPH0539378A (en) Production of crosslinked olefinic resin foam
JPH073037A (en) Production of synthetic resin molded body
JPH0415234A (en) Production of crosslikned polyolefin resin foam