JPH0548499A - Automatic adaptive equalizer - Google Patents

Automatic adaptive equalizer

Info

Publication number
JPH0548499A
JPH0548499A JP19944391A JP19944391A JPH0548499A JP H0548499 A JPH0548499 A JP H0548499A JP 19944391 A JP19944391 A JP 19944391A JP 19944391 A JP19944391 A JP 19944391A JP H0548499 A JPH0548499 A JP H0548499A
Authority
JP
Japan
Prior art keywords
circuit
signal
equalizer
control signal
distortion equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19944391A
Other languages
Japanese (ja)
Inventor
Toru Matsuura
松浦徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19944391A priority Critical patent/JPH0548499A/en
Publication of JPH0548499A publication Critical patent/JPH0548499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To enhance the compensation capability sufficiently even when the arrangement of signal points of the modulation system is specific in the automatic adaptive equalizer compensating distortion of a propagation line waveform of the digital microwave communication. CONSTITUTION:The part with specific signal point arrangement with respect to QAM modulation is subjected to area designation in advance, and an area discrimination circuit 26 discriminates whether or not a reception data is within the designated area and a discrimination signal D is generated, and the discrimination signal D is used to select the state of either output inhibition or output permission for each amplitude of the automatic adaptive equalizer 2 and a correlation signal of a control signal generating circuit 25 of delay distortion equalization circuits 21-24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多値ディジタルマイク
ロ波無線通信方式に利用する。特に、自動適応型等化器
に関する。
The present invention is used in a multilevel digital microwave radio communication system. In particular, it relates to an automatic adaptive equalizer.

【0002】[0002]

【従来の技術】近年、ディジタルマイクロ波無線通信方
式では、周波数有効利用のために変復調技術も多値化傾
向にある(16QAMから64QAM、256QAMな
ど)、このように多値化が進むと送信機等で発生する歪
みおよび伝搬路で発生する歪み等の補償技術が重要な問
題になってくる。そこで、送信機等で発生する歪みを軽
減するために例えば文献「A STEPPED SQU
AR256QAM FOR DIGITAL RADI
O SYSTEM」(TOSHIHIKO RYU他.
1986 IEEE P1477−1481)に示され
るようにSS−QAM(Stepped−Squar
QAM)方式が提案されている。また、伝搬路で発生す
る歪みの補償技術に関しては自動適応型等化器やトラン
スバーサル型等化器を利用した様々な補償技術が提案さ
れている。
2. Description of the Related Art In recent years, in the digital microwave radio communication system, the modulation / demodulation technology tends to be multi-valued for effective frequency utilization (16QAM to 64QAM, 256QAM, etc.). Compensation technology for distortions generated in the same manner and distortions generated in the propagation path becomes an important issue. Therefore, in order to reduce the distortion generated in the transmitter or the like, for example, the document “A STEPPED SQUA” is used.
AR256QAM FOR DIGITAL RADI
O SYSTEM "(TOSHIHIKO RYU et al.
1986 IEEE P1477-1481), as shown in SS-QAM (Stepped-Squar).
The QAM method has been proposed. As for the compensation technique for the distortion generated in the propagation path, various compensation techniques using an automatic adaptive equalizer or a transversal equalizer have been proposed.

【0003】従来の技術(32QAM)について説明す
る。図3に自動適応型等化器を用いたディジタル復調装
置の一実施例、図4に自動適応型等化器の制御信号発生
回路の一実施例を示す。1はディジタル変調信号の入力
端子、2は自動適応型等化器、3は復調回路、4はトラ
ンスバーサル型等化器、21は二次遅延歪等化回路、2
2は一次遅延歪等化回路、23は一次振幅歪等化回路、
24は二次振幅歪等化回路、25は制御信号発生回路を
示す。また、101〜108は1ビット遅延回路、11
3〜115および117〜119は排他的論理和(EX
−OR)回路、116および120は排他的論理和否定
(EX−NOR)回路、125および126は加算回
路、127および128は減算回路、129〜132は
平均化回路を示す。また、図中のNはN(Nはある整
数)ビットのディジタル信号であることを示す。入力端
子1から入力されたディジタル変調信号は自動適応型等
化器2に入力され、二次遅延歪等化回路21で二次遅延
歪が補償され、この出力が一次遅延歪等化回路22に入
力されて一次遅延歪が補償され、以下同様に一次振幅歪
等化回路23および二次振幅歪等化回路4でそれぞれ一
次振幅歪および二次振幅歪が補償された信号が自動適応
型等化器2から出力される。この自動適応型等化器の動
作および制御に関しては、例えば特開昭58−0686
35「自動適応型等化器」または整理番号511−04
51P0「自動適応型等化器」に詳しく述べられてい
る。この自動適応型等化器2の出力は復調回路3に入力
され、この復調回路3では送信側で変調した搬送波に同
期した搬送波で入力ディジタル変調信号の直交同期検波
を行い、アナログディジタル変換回路で送信側で送られ
たP、Qチャンネルのディジタル信号が識別再生され、
復調回路3の出力信号になる。復調回路3の出力のP、
Qチャンネルのそれぞれのディジタル信号のMSB(M
ost Significant Bit)は象限判定
信号Dp、Dqとして、また、ディジタル信号のうちデ
ータ信号の次位ビット(32QAMの場合、第4ビッ
ト)は誤差信号Ep、Eqとして自動適応型等化器2
(制御信号発生回路25)に入力される。さらに、復調
回路3の出力はトランスバーサル型等化器4に入力され
る。このトランスバーサル型等化器4は伝搬路で発生す
る歪みによる符号間干渉が補償されたデータ信号を出力
する。以上のトランスバーサル型等化器の動作は例えば
整理番号511−2185P0「ディジタル復調装置」
に詳しく述べられている。
A conventional technique (32QAM) will be described. FIG. 3 shows an embodiment of a digital demodulator using an automatic adaptive equalizer, and FIG. 4 shows an embodiment of a control signal generating circuit of the automatic adaptive equalizer. 1 is an input terminal for a digital modulation signal, 2 is an automatic adaptive equalizer, 3 is a demodulation circuit, 4 is a transversal type equalizer, 21 is a second-order delay distortion equalization circuit, 2
2 is a first-order delay distortion equalization circuit, 23 is a first-order amplitude distortion equalization circuit,
Reference numeral 24 represents a secondary amplitude distortion equalization circuit, and 25 represents a control signal generation circuit. Further, 101 to 108 are 1-bit delay circuits, 11
3 to 115 and 117 to 119 are exclusive ORs (EX
-OR) circuit, 116 and 120 are exclusive OR negation (EX-NOR) circuits, 125 and 126 are addition circuits, 127 and 128 are subtraction circuits, and 129 to 132 are averaging circuits. Further, N in the figure indicates that it is an N (N is a certain integer) bit digital signal. The digital modulation signal input from the input terminal 1 is input to the automatic adaptive equalizer 2, the secondary delay distortion equalization circuit 21 compensates the secondary delay distortion, and this output is input to the primary delay distortion equalization circuit 22. The signals that have been input and are compensated for the first-order delay distortion, and then similarly the signals whose first-order amplitude distortion and second-order amplitude distortion have been compensated by the first-order amplitude distortion equalization circuit 23 and the second-order amplitude distortion equalization circuit 4, respectively, are automatically adaptive equalized. It is output from the device 2. Regarding the operation and control of this automatic adaptive equalizer, for example, Japanese Patent Laid-Open No. 58-0686.
35 "Automatic adaptive equalizer" or reference number 511-04
51P0 "Automatic Adaptive Equalizer". The output of the automatic adaptive equalizer 2 is input to the demodulation circuit 3, and the demodulation circuit 3 performs quadrature coherent detection of the input digital modulated signal on the carrier synchronized with the carrier modulated on the transmitting side, and the analog-digital conversion circuit The digital signals of P and Q channels sent from the transmitting side are identified and reproduced,
It becomes the output signal of the demodulation circuit 3. P of the output of the demodulation circuit 3,
MSB of each digital signal of Q channel (M
Ost Significant Bit) is used as the quadrant determination signals Dp and Dq, and the next significant bit (4th bit in the case of 32QAM) of the data signal of the digital signal is used as error signals Ep and Eq.
(Control signal generation circuit 25). Further, the output of the demodulation circuit 3 is input to the transversal type equalizer 4. The transversal type equalizer 4 outputs a data signal in which intersymbol interference due to distortion generated in the propagation path is compensated. The operation of the above transversal type equalizer is, for example, reference number 511-2185P0 "digital demodulator".
In detail.

【0004】[0004]

【発明が解決しようとする課題】このような従来例で
は、復調回路のアナログディジタル変換回路出力からそ
のまま象限判定信号および誤差信号を抽出し、かつ自動
適応型等化器では通常のQAM信号として振幅歪等化回
路および遅延歪等化回路を制御しているので、実際の信
号点配置に信号が無いのにもかかわらず信号がその点に
在るがごとく制御を行い、誤動作する欠点がある。
In such a conventional example, the quadrant decision signal and the error signal are directly extracted from the output of the analog-digital conversion circuit of the demodulation circuit, and the amplitude is converted into a normal QAM signal by the automatic adaptive equalizer. Since the distortion equalization circuit and the delay distortion equalization circuit are controlled, there is a drawback that the control is performed as if the signal is at that point even though there is no signal in the actual signal point arrangement, resulting in malfunction.

【0005】図6を用いて詳細な説明を行う。図6は3
2QAM変調信号の位相平面上の各信号点を示してい
る。伝搬路の周波数特性の1次振幅歪が生じると、デー
タ信号は直交干渉を受けるようになり、すなわちPチャ
ンネルのデータがQチャンネルのデータに、またQチャ
ンネルのデータがPチャンネルのデータに干渉を与える
ようになる。これは、図6の信号点配置図でいうと相対
的にP軸(Q軸)が右方向または左方向に回転したこと
と等価であり、自動適応型等化器の制御が正常だとこの
軸を逆方向へ回転させようと制御を行う。そこで、さら
に周波数特性の一次振幅歪が厳しくなり図6のA点に位
置した信号点がB点にまで回転したとすると、実際には
A点が回転してB点に行ったのかC点が回転してB点に
行ったのか区別がつかないが、自動適応型等化器はD点
が小さくなったと判断して制御を行うため誤動作にな
る。この現象は二次振幅歪、一次遅延歪および二次振幅
歪の場合も制御が誤動作になることがある。
A detailed description will be given with reference to FIG. 6 is 3
Each signal point on the phase plane of the 2QAM modulated signal is shown. When the first-order amplitude distortion of the frequency characteristic of the propagation path occurs, the data signal receives orthogonal interference, that is, the P channel data interferes with the Q channel data and the Q channel data interferes with the P channel data. To give. This is equivalent to the relative rotation of the P-axis (Q-axis) to the right or left in the signal point arrangement diagram of FIG. 6, and it can be said that the control of the automatic adaptive equalizer is normal. Controls to rotate the shaft in the opposite direction. Therefore, assuming that the first-order amplitude distortion of the frequency characteristic becomes more severe and the signal point located at the point A in FIG. 6 rotates to the point B, whether the point A actually rotates to the point B or not. Although it is indistinguishable whether or not it is rotated to the point B, the automatic adaptive equalizer determines that the point D has become smaller and performs control, resulting in a malfunction. This phenomenon may cause malfunction of control even in the case of secondary amplitude distortion, primary delay distortion, and secondary amplitude distortion.

【0006】本発明は、このような欠点を除去するもの
で、変調方式の信号点配置が特異な場合でも伝搬路波形
歪みを補償する能力を充分に発揮できる自動適応型等化
器を提供することを目的とする。
The present invention eliminates such drawbacks, and provides an automatic adaptive equalizer capable of sufficiently exerting the ability to compensate for channel waveform distortion even when the signal points of the modulation method are unique. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明は、復調回路と2
N+1タップ(Nは正の整数)のトランスバーサル型等
化器とが後段に従属接続され、一次振幅歪等化回路およ
び二次振幅歪等化回路ならびに一次遅延歪等化回路およ
び二次遅延歪等化回路を含む適応型等化手段と、復調さ
れたベースバンド信号から生成された誤差信号、象限判
定信号およびクロック信号に応じて上記トランスバーサ
ル型等化器に対応する同相制御信号Re(−N)〜Re
(+N)のうちからRe(−1)およびRe(+1)を
抽出するとともに上記トランスバーサル型等化器に対応
する直交制御信号Im(−N)〜Im(+N)のうちか
らIm(−1)およびIm(+1)を抽出する制御信号
発生手段と、上記制御信号発生手段で抽出された信号R
e(−1)、Re(+1)、Im(−1)およびIm
(+1)を入力して上記一次振幅歪等化回路を制御する
制御信号Im(−1)−Im(+1)を発生する第一減
算回路および第一平均化回路と、上記二次振幅歪等化回
路を制御する制御信号Re(−1)+Re(+1)を発
生する第二加算回路および第二平均化回路と、上記一次
遅延歪等化回路を制御する制御信号Im(−1)+Im
(+1)を発生する第三加算回路および第三平均化回路
と、上記二次遅延歪等化回路を制御する制御信号Re
(−1)−Re(+1)を発生する第四加算回路および
第四平均化回路とを含む加減算手段とを備えた自動適応
型等化器において、多値ディジタル変調信号の各信号の
位相平面上の存在位置がこの位相平面上にあらかじめ設
定された信号配置領域外の領域に在るか否かを判別する
領域判別回路と、上記制御信号発生手段と上記加減算手
段との間の経路に挿入され、上記領域判別回路の出力信
号に応じて上記同相制御信号Re(−1)およびRe
(+1)ならびに上記直交制御信号Im(−1)および
Im(+1)の通過を禁止する切替手段とを備えたこと
を特徴とする。
The present invention includes a demodulation circuit and a demodulation circuit.
An N + 1 tap (N is a positive integer) transversal type equalizer is connected in a subsequent stage in a cascade manner, and a primary amplitude distortion equalization circuit, a secondary amplitude distortion equalization circuit, a primary delay distortion equalization circuit and a secondary delay distortion An adaptive equalizer including an equalizer circuit, and an in-phase control signal Re (−) corresponding to the transversal equalizer according to the error signal generated from the demodulated baseband signal, the quadrant decision signal, and the clock signal. N) ~ Re
Re (-1) and Re (+1) are extracted from (+ N) and Im (-1) is extracted from the orthogonal control signals Im (-N) to Im (+ N) corresponding to the transversal equalizer. ) And Im (+1), and a signal R extracted by the control signal generating means.
e (-1), Re (+1), Im (-1) and Im
A first subtraction circuit and a first averaging circuit for inputting (+1) to generate a control signal Im (-1) -Im (+1) for controlling the first-order amplitude distortion equalization circuit, the second-order amplitude distortion etc. Second adder circuit and second averaging circuit for generating a control signal Re (-1) + Re (+1) for controlling the equalizer circuit, and control signal Im (-1) + Im for controlling the first-order delay distortion equalizer circuit.
A third adder circuit and a third averaging circuit that generate (+1), and a control signal Re that controls the second-order delay distortion equalization circuit.
In an automatic adaptive equalizer having a fourth adder circuit for generating (-1) -Re (+1) and a fourth averaging circuit, a phase plane of each signal of a multilevel digital modulation signal. An area discriminating circuit for discriminating whether or not the existing position on the phase plane is outside a preset signal arrangement area, and is inserted in a path between the control signal generating means and the adding / subtracting means. The in-phase control signals Re (-1) and Re (1) and Re (7) according to the output signal of the area discrimination circuit.
(+1) and switching means for prohibiting passage of the orthogonal control signals Im (-1) and Im (+1).

【0008】ここで、上記適応型等化手段が上記一次振
幅歪等化回路、二次振幅歪等化回路、一次遅延歪等化回
路および二次遅延歪等化回路のうちの少なくとも一つを
備えても良い。
Here, the adaptive equalization means includes at least one of the primary amplitude distortion equalization circuit, the secondary amplitude distortion equalization circuit, the primary delay distortion equalization circuit, and the secondary delay distortion equalization circuit. You may prepare.

【0009】[0009]

【作用】領域判定回路で受信データが指定領域内にある
か否かを判別し、この判別結果に応じて自動適応型等化
器の各振幅および遅延歪等化回路に対する制御信号発生
回路からの相関信号の出力を禁止または許可する。これ
により、変調方式の信号点配置が特異な場合でも補償能
力を充分に発揮することができる。
The area judgment circuit judges whether or not the received data is within the specified area, and the amplitude of the automatic adaptive equalizer and the delay distortion equalizer circuit from the control signal generator circuit are judged according to the judgment result. Prohibits or permits the output of correlation signals. As a result, the compensation capability can be sufficiently exerted even when the signal points of the modulation method are unique.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1に本発明による自動適応型等化器を用いたデ
ィジタル復調装置の一実施例、図2に本発明による自動
適応型等化器の制御信号発生回路の一実施例を示す。1
はディジタル変調信号の入力端子、2′は自動適応型等
化器、3は復調回路、4はトランスバーサル型等化器、
21は二次遅延歪等化回路、22は一次遅延歪等化回
路、23は一次振幅歪等化回路、24は二次振幅歪等化
回路、25は制御信号発生回路、26は領域判別回路を
示す。また、101〜110は1ビット遅延回路、11
1および112は論理積(AND)回路、113〜11
5および117〜119は排他的論理和(EX−OR)
回路、116および120は排他的論理和否定(EX−
NOR)回路、125および126は加算回路、127
および128は減算回路、129〜132は平均化回
路、133〜136はシフトレジスタ回路を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a digital demodulator using an automatic adaptive equalizer according to the present invention, and FIG. 2 shows an embodiment of a control signal generating circuit of the automatic adaptive equalizer according to the present invention. 1
Is a digital modulation signal input terminal, 2'is an automatic adaptive equalizer, 3 is a demodulation circuit, 4 is a transversal type equalizer,
Reference numeral 21 is a secondary delay distortion equalization circuit, 22 is a primary delay distortion equalization circuit, 23 is a primary amplitude distortion equalization circuit, 24 is a secondary amplitude distortion equalization circuit, 25 is a control signal generation circuit, and 26 is a region discrimination circuit. Indicates. Further, 101 to 110 are 1-bit delay circuits, 11
1 and 112 are AND circuits, 113 to 11
5 and 117 to 119 are exclusive OR (EX-OR)
Circuits 116 and 120 are exclusive-or negated (EX-
NOR circuit, 125 and 126 are addition circuits, 127
And 128 are subtraction circuits, 129 to 132 are averaging circuits, and 133 to 136 are shift register circuits.

【0011】この実施例は、図1に示すように、復調回
路3と2N+1タップ(Nは正の整数)のトランスバー
サル型等化器4とが後段に従属接続され、一次振幅歪等
化回路23および二次振幅歪等化回路24ならびに一次
遅延歪等化回路21および二次遅延歪等化回路22を含
む適応型等化手段と、復調されたベースバンド信号から
生成された誤差信号、象限判定信号およびクロック信号
に応じてトランスバーサル型等化器4に対応する同相制
御信号Re(−N)〜Re(+N)のうちからRe(−
1)およびRe(+1)を抽出するとともに上記トラン
スバーサル型等化器4に対応する直交制御信号Im(−
N)〜Im(+N)のうちからIm(−1)およびIm
(+1)を抽出する制御信号発生手段であるシフトレジ
スタ133〜136、1ビット遅延回路101〜108
および排他的論理和回路113〜120と、上記制御信
号発生手段で抽出された信号Re(−1)、Re(+
1)、Im(−1)およびIm(+1)を入力して一次
振幅歪等化回路23を制御する制御信号Im(−1)−
Im(+1)を発生する減算回路128および平均化回
路132と、二次振幅歪等化回路24を制御する制御信
号Re(−1)+Re(+1)を発生する加算回路12
5および平均化回路129と、一次遅延歪等化回路22
を制御する制御信号Im(−1)+Im(+1)を発生
する加算回路126および平均化回路130と、二次遅
延歪等化回路21を制御する制御信号Re(−1)−R
e(+1)を発生する加算回路127および平均化回路
131とを含む加減算手段とを備え、さらに、本発明の
特徴とする手段として、多値ディジタル変調信号の各信
号の位相平面上の存在位置がこの位相平面上にあらかじ
め設定された信号配置領域外の領域に在るか否かを判別
する領域判別回路26と、上記制御信号発生手段と上記
加減算手段との間の経路に挿入され、領域判別回路26
の出力信号に応じて上記同相制御信号Re(−1)およ
びRe(+1)ならびに上記直交制御信号Im(−1)
およびIm(+1)の通過を禁止する切替手段である1
ビット遅延回路109および110、論理積回路111
および112ならびにフリップフロップ回路121〜1
24とを備える。
In this embodiment, as shown in FIG. 1, a demodulation circuit 3 and a transversal type equalizer 4 of 2N + 1 taps (N is a positive integer) are connected in a subsequent stage, and a primary amplitude distortion equalization circuit. 23 and a second-order amplitude distortion equalization circuit 24 and an adaptive equalization means including a first-order delay distortion equalization circuit 21 and a second-order delay distortion equalization circuit 22, an error signal generated from a demodulated baseband signal, and a quadrant. Re (-N) is selected from among the in-phase control signals Re (-N) to Re (+ N) corresponding to the transversal equalizer 4 according to the determination signal and the clock signal.
1) and Re (+1) are extracted and the quadrature control signal Im (−) corresponding to the transversal type equalizer 4 is extracted.
Im (-1) and Im among N) to Im (+ N)
Shift registers 133 to 136, which are control signal generating means for extracting (+1), 1-bit delay circuits 101 to 108
And exclusive OR circuits 113 to 120 and the signals Re (-1) and Re (+) extracted by the control signal generating means.
1), Im (-1) and Im (+1) are input to control the first-order amplitude distortion equalization circuit 23. Control signal Im (-1)-
The subtraction circuit 128 and the averaging circuit 132 that generate Im (+1), and the addition circuit 12 that generates the control signal Re (−1) + Re (+1) that controls the secondary amplitude distortion equalization circuit 24.
5 and the averaging circuit 129 and the first-order delay distortion equalizing circuit 22.
Control circuit Im (-1) + Im (+1) for generating the control signal and control signal Re (-1) -R for controlling the quadratic delay distortion equalization circuit 21.
and an adder / subtractor including an adder circuit 127 and an averaging circuit 131 for generating e (+1). Further, as a feature of the present invention, the position of each signal of the multilevel digital modulated signal on the phase plane is present. Is inserted into a path between the control signal generating means and the adding / subtracting means, and the area discriminating circuit 26 for discriminating whether or not the area is outside the preset signal arrangement area on the phase plane. Discrimination circuit 26
Of the in-phase control signals Re (-1) and Re (+1) and the quadrature control signal Im (-1) according to the output signal of
And 1 which is a switching means for prohibiting the passage of Im (+1).
Bit delay circuits 109 and 110, AND circuit 111
And 112 and flip-flop circuits 121 to 1
24 and.

【0012】次に、この実施例の動作を説明する。ここ
で、ディジタル変調信号入力端子から自動適応型等化器
2′、復調回路3、トランスバーサル型等化器4を通っ
て出力されるディジタル信号の流れ、また復調回路3の
出力から象限判定信号Dp、Dqおよび誤差信号Ep、
Eqが自動適応型等化器2に入力されるまでの信号の流
れは従来例と同じである。領域判別回路26は、トラン
スバーサル型等化器4の出力データ信号を入力して、信
号点配置が図5に示す信号点配置の斜線部にあるかどう
かを判別し、例えば斜線部内の領域にある場合は判別信
号Dとして「0」を制御信号発生回路25に出力する。
制御信号発生回路25では象限判定信号Dp、Dqおよ
び誤差信号Ep、Eqがそれぞれシフトレジスタ回路1
17〜119に入力され、判別信号Dがトランスバーサ
ル型等化器4を通ったことによるビット遅延は補償さ
れ、1ビット遅延回路101〜108に入力される。1
ビット遅延回路101〜108では、それぞれの時間関
係が1ビットずつ異なるDp(0)とDp(+1)、D
q(0)とDq(+1)、Ep(0)とEp(+1)お
よびEq(0)とEq(+1)とを出力する。また、1
ビット遅延回路109〜110は誤差信号Ep(0)と
Ep(+1)、またはEq(0)とEq(+1)と同じ
時間的関係にある判別信号D(0)およびD(+1)を
出力する。この判別信号D(0)およびD(+1)は論
理和回路111および112に入力され、論理が「0」
のときには論理積回路111および112の他の入力で
あるクロック信号の出力を禁止する。この論理積回路1
11および112の出力はフリップフロップ回路121
〜124のクロック信号に接続されているので、フリッ
プフロップ回路121〜124の入力である同相干渉用
制御信号Re(−1)、Re(+1)または直交干渉用
制御信号Im(−1)、Im(+1)のうち論理が
「0」である判別信号D(0)またはD(+1)と同じ
時間的関係にある場合にのみ出力されない。
Next, the operation of this embodiment will be described. Here, the flow of the digital signal output from the digital modulation signal input terminal through the automatic adaptive equalizer 2 ', the demodulation circuit 3 and the transversal equalizer 4, and the quadrant determination signal from the output of the demodulation circuit 3 Dp, Dq and error signal Ep,
The signal flow until Eq is input to the automatic adaptive equalizer 2 is the same as in the conventional example. The area discriminating circuit 26 inputs the output data signal of the transversal equalizer 4 and discriminates whether or not the signal point arrangement is in the hatched portion of the signal point arrangement shown in FIG. 5, for example, in the area in the hatched portion. If there is, "0" is output to the control signal generation circuit 25 as the discrimination signal D.
In the control signal generation circuit 25, the quadrant determination signals Dp and Dq and the error signals Ep and Eq are respectively generated in the shift register circuit 1.
The bit delay due to the discrimination signal D having been inputted to 17 to 119 and having passed through the transversal type equalizer 4 is compensated and inputted to the 1-bit delay circuits 101 to 108. 1
In the bit delay circuits 101 to 108, Dp (0), Dp (+1), D
It outputs q (0) and Dq (+1), Ep (0) and Ep (+1), and Eq (0) and Eq (+1). Also, 1
The bit delay circuits 109 to 110 output the determination signals D (0) and D (+1) having the same temporal relationship as the error signals Ep (0) and Ep (+1) or Eq (0) and Eq (+1). .. The discrimination signals D (0) and D (+1) are input to the OR circuits 111 and 112, and the logic is "0".
In the case of, the output of the clock signal which is the other input of the AND circuits 111 and 112 is prohibited. This AND circuit 1
The outputs of 11 and 112 are flip-flop circuits 121.
To 124 clock signals, the in-phase interference control signals Re (-1), Re (+1) or the quadrature interference control signals Im (-1), Im input to the flip-flop circuits 121 to 124 are input. It is not output only when it has the same temporal relationship as the discrimination signal D (0) or D (+1) whose logic is "0" in (+1).

【0013】[0013]

【発明の効果】本発明は、以上説明したように、領域判
別回路を設け実際に存在しない信号点位置の制御信号を
用いていないので、ある伝搬路の周波数特性の劣化に伴
う自動適応型等化器の制御が誤動作することを防止でき
る効果がある。
As described above, the present invention does not use the control signal of the signal point position which does not actually exist by providing the area discriminating circuit, so that the automatic adaptive type or the like accompanying the deterioration of the frequency characteristic of a certain propagation path can be obtained. This has the effect of preventing malfunction of the control of the chemical converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の全体構成を示すブロック構成
図。
FIG. 1 is a block configuration diagram showing an overall configuration of an embodiment of the present invention.

【図2】本発明実施例の部分構成を示すブロック構成
図。
FIG. 2 is a block configuration diagram showing a partial configuration of an embodiment of the present invention.

【図3】従来例の全体構成を示すブロック構成図。FIG. 3 is a block configuration diagram showing an overall configuration of a conventional example.

【図4】従来例の部分構成を示すブロック構成図。FIG. 4 is a block configuration diagram showing a partial configuration of a conventional example.

【図5】領域指定図。FIG. 5 is an area designation diagram.

【図6】信号点配置図。FIG. 6 is a signal point arrangement diagram.

【符号の説明】[Explanation of symbols]

1 ディジタル変調信号入力端子 2、2′ 自動適応型等化器 3 復調回路 4 トランスバーサル型等化器 21 二次遅延歪等化回路 22 一次遅延歪等化回路化器 23 一次振幅歪等化回路 24 二次振幅歪等化回路 25 制御信号発生回路 26 領域判別回路 101〜110 1ビット遅延回路 111、112 論理積(AND)回路 113〜115、117〜119 排他的論理和(EX
−OR)回路 116、120 排他的論理和否定(EX−NOR)回
路 121〜124 フリップフロップ回路 125、126 加算回路 127、128 減算回路 129〜132 平均化回路 133〜136 シフトレジスタ回路
1 Digital Modulation Signal Input Terminal 2 2'Automatic Adaptive Equalizer 3 Demodulator 4 Transversal Equalizer 21 Secondary Delay Distortion Equalizer 22 Primary Delay Distortion Equalizer 23 Primary Amplitude Distortion Equalizer 24 Secondary Amplitude Distortion Equalization Circuit 25 Control Signal Generation Circuit 26 Region Discrimination Circuit 101-110 1-bit Delay Circuit 111, 112 Logical Product (AND) Circuit 113-115, 117-119 Exclusive OR (EX
-OR) circuit 116, 120 Exclusive OR NOT (EX-NOR) circuit 121-124 Flip-flop circuit 125, 126 Adder circuit 127, 128 Subtractor circuit 129-132 Averaging circuit 133-136 Shift register circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 復調回路と2N+1タップ(Nは正の整
数)のトランスバーサル型等化器とが後段に従属接続さ
れ、 一次振幅歪等化回路および二次振幅歪等化回路ならびに
一次遅延歪等化回路および二次遅延歪等化回路を含む適
応型等化手段と、 上記復調回路で復調されたベースバンド信号から生成さ
れた誤差信号、象限判定信号およびクロック信号に応じ
て上記トランスバーサル型等化器に対応する同相制御信
号Re(−N)〜Re(+N)のうちからRe(−1)
およびRe(+1)を抽出するとともに上記トランスバ
ーサル型等化器4に対応する直交制御信号Im(−N)
〜Im(+N)のうちからIm(−1)およびIm(+
1)を抽出する制御信号発生手段と、 上記制御信号発生手段で抽出された信号Re(−1)、
Re(+1)、Im(−1)およびIm(+1)を入力
して上記一次振幅歪等化回路を制御する制御信号Im
(−1)−Im(+1)を発生する第一減算回路および
第一平均化回路と、上記二次振幅歪等化回路を制御する
制御信号Re(−1)+Re(+1)を発生する第二加
算回路および第二平均化回路と、上記一次遅延歪等化回
路を制御する制御信号Im(−1)+Im(+1)を発
生する第三加算回路および第三平均化回路と、上記二次
遅延歪等化回路を制御する制御信号Re(−1)−Re
(+1)を発生する第四加算回路および第四平均化回路
とを含む加減算手段とを備えた自動適応型等化器におい
て、 多値ディジタル変調信号の各信号の位相平面上の存在位
置がこの位相平面上にあらかじめ設定された信号配置領
域外の領域に在るか否かを判別する領域判別回路と、 上記制御信号発生手段と上記加減算手段との間の経路に
挿入され、上記領域判別回路の出力信号に応じて上記同
相制御信号Re(−1)およびRe(+1)ならびに上記直
交制御信号Im(−1)およびIm(+1)の通過を禁
止する切替手段とを備えたことを特徴とする自動適応型
等化器。
1. A demodulation circuit and a 2N + 1-tap (N is a positive integer) transversal type equalizer are connected in a subsequent stage, and a first-order amplitude distortion equalization circuit, a second-order amplitude distortion equalization circuit, and a first-order delay distortion are provided. An adaptive equalizer including an equalizer circuit and a second-order delay distortion equalizer circuit, and the transversal type according to an error signal generated from a baseband signal demodulated by the demodulation circuit, a quadrant determination signal, and a clock signal. Re (-1) out of the in-phase control signals Re (-N) to Re (+ N) corresponding to the equalizer
And Re (+1) are extracted and the orthogonal control signal Im (-N) corresponding to the transversal type equalizer 4 is extracted.
~ Im (+ N) out of Im (-1) and Im (+
1) extracting control signal generating means, and the signal Re (-1) extracted by the control signal generating means,
A control signal Im for inputting Re (+1), Im (-1) and Im (+1) to control the first-order amplitude distortion equalization circuit.
A first subtraction circuit and a first averaging circuit for generating (-1) -Im (+1), and a control signal Re (-1) + Re (+1) for controlling the second-order amplitude distortion equalization circuit. A second addition circuit and a second averaging circuit, a third addition circuit and a third averaging circuit that generate a control signal Im (-1) + Im (+1) for controlling the first-order delay distortion equalization circuit, and the second order Control signal Re (-1) -Re for controlling the delay distortion equalization circuit
In an automatic adaptive equalizer provided with a fourth addition circuit for generating (+1) and an addition / subtraction means including a fourth averaging circuit, the existence position of each signal of the multilevel digital modulation signal on the phase plane is A region discriminating circuit for discriminating whether or not the region is outside the preset signal arrangement region on the phase plane, and the region discriminating circuit inserted in the path between the control signal generating means and the adding / subtracting means. Switching means for inhibiting passage of the in-phase control signals Re (-1) and Re (+1) and the quadrature control signals Im (-1) and Im (+1) according to the output signal of Automatic adaptive equalizer.
【請求項2】 上記適応型等化手段が上記一次振幅歪等
化回路、二次振幅歪等化回路、一次遅延歪等化回路およ
び二次遅延歪等化回路のうちの少なくとも一つを備えた
請求項1記載の自動適応型等化器。
2. The adaptive equalizing means comprises at least one of the primary amplitude distortion equalization circuit, the secondary amplitude distortion equalization circuit, the primary delay distortion equalization circuit and the secondary delay distortion equalization circuit. The automatic adaptive equalizer according to claim 1.
JP19944391A 1991-08-08 1991-08-08 Automatic adaptive equalizer Pending JPH0548499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19944391A JPH0548499A (en) 1991-08-08 1991-08-08 Automatic adaptive equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19944391A JPH0548499A (en) 1991-08-08 1991-08-08 Automatic adaptive equalizer

Publications (1)

Publication Number Publication Date
JPH0548499A true JPH0548499A (en) 1993-02-26

Family

ID=16407904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19944391A Pending JPH0548499A (en) 1991-08-08 1991-08-08 Automatic adaptive equalizer

Country Status (1)

Country Link
JP (1) JPH0548499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781463A (en) * 1996-03-29 1998-07-14 Sharp Kabushiki Kaisha Adaptive digital filter with high speed and high precision coefficient sequence generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781463A (en) * 1996-03-29 1998-07-14 Sharp Kabushiki Kaisha Adaptive digital filter with high speed and high precision coefficient sequence generation

Similar Documents

Publication Publication Date Title
EP0609828B1 (en) Adaptive matched filter
CA1292525C (en) Digital demodulation system
JPH02131031A (en) Demodulator
EP0262644B1 (en) Qam demodulator with rapid resynchronization function
US5719907A (en) Phase jitter extraction circuit and phase jitter cancellation circuit
US4638495A (en) Automatic adaptive equalizer
US6175591B1 (en) Radio receiving apparatus
JP2005521305A (en) Slice algorithm for multilevel modulation equalization scheme
JP3636397B2 (en) Jitter suppression circuit
JPH07273827A (en) Signal processor and signal processing method
EP0212582B1 (en) Demodulation system capable of establishing synchronization in a transient state
CA1287383C (en) 8-phase phase-shift keying demodulator
CA1278347C (en) Correlation detecting circuit operable in a low frequency
JPH0548499A (en) Automatic adaptive equalizer
JP2560339B2 (en) Digital demodulator
JP3182878B2 (en) Control signal generation circuit
JP3442655B2 (en) Carrier recovery circuit and carrier recovery method
JP7102072B2 (en) Adaptive equalizer and carrier regenerative circuit
JP2616123B2 (en) Automatic adaptive equalizer
JP2564840B2 (en) Digital demodulator
JP3159324B2 (en) Digital demodulator
JPH04334210A (en) Digital demodulation device
JP3099867B2 (en) Amplitude equalizer
JPH06326741A (en) Data demodulator
JP2003134178A (en) Phase jitter extraction circuit and phase jitter cancellation circuit