JPH0548289B2 - - Google Patents

Info

Publication number
JPH0548289B2
JPH0548289B2 JP63332577A JP33257788A JPH0548289B2 JP H0548289 B2 JPH0548289 B2 JP H0548289B2 JP 63332577 A JP63332577 A JP 63332577A JP 33257788 A JP33257788 A JP 33257788A JP H0548289 B2 JPH0548289 B2 JP H0548289B2
Authority
JP
Japan
Prior art keywords
steel
machinability
hardness
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63332577A
Other languages
Japanese (ja)
Other versions
JPH02179845A (en
Inventor
Masayoshi Takano
Tsutomu Shibata
Shinsuke Haneda
Osamu Ishama
Shigeki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33257788A priority Critical patent/JPH02179845A/en
Publication of JPH02179845A publication Critical patent/JPH02179845A/en
Publication of JPH0548289B2 publication Critical patent/JPH0548289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は快削鋼に係り、特にプラスチツク製品
成形のための金属用鋼に適する快削鋼に関する。 (従来の技術及び発明が解決しようとする課題) 現在、自動車、家電等の分野で使用されている
機械構造用鋼及び金型用鋼としては、コストダウ
ンを目的とした機械加工費の削減のために、快削
鋼の使用が増加している。しかし、最近、より一
層のコウトダウンの要求が高まつており、それを
達成するためには、現用のJIS規格快削鋼(JIS
G 4804“硫黄及び硫黄複合快削鋼材”)では限界
に近づいている。 すなわち、被削性として従来鋼(SUM43系)
よりも優れた特性を有し、更に所定の強度を有し
ている快削鋼が望まれている。 本発明は、かゝる要請に応えるべくなされたも
のであつて、優れた被削性を有し、必要な強度も
有するプラスチツク成形金型用快削鋼を提供する
ことを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、ハイス
工具や超硬工具の使用において従来鋼(SUM43
系)よりも優れた被削性を有し、通常の焼準、焼
戻し熱処理でプラスチツク成形金型用鋼として或
る程度の強度を確保する、すなわち、強度の指標
として硬さHB150以上220以下を可能にする方策
について鋭意研究を重ねた結果、本発明をなした
ものである。 すなわち、本発明は、C:0.05〜0.30%、Si:
0.15〜0.50%、Mn:0.30〜2.00%、P≦0.1%、S
≦0.25%、Cu:0.3〜0.8%、Ni:0.5〜2.0%及び
Al:0.3〜1.0%を含有し、残部がFe及び不可避的
不純物からなり、熱間鍛造、連続した焼準及び焼
戻しの熱処理後の組織がパーライトと60%以上の
フエライトからなる2相組織で、硬さがHBで150
〜220で優れた被削性を有することを特徴とする
プラスチツク成形金型用快削鋼を要旨としてい
る。 要するに、本発明は、フエライト率60%以上
を、熱間鍛造後、通常の焼準及び焼戻しの熱処理
での冷却速度約10℃/min以下の冷却速度で得る
が、フエライト率60%以上としたことにより硬さ
が低くなるのを最低限のCu、Ni、Al量の添加に
より補完し、目標とする強度(HB150〜220)ま
で引き上げて、被削性を改善したものである。 以下に本発明を更に詳述する。 (作用) 本発明における化学成分の限定理由は次のとお
りである。 C:0.05〜0.30% HB150以上の所望の硬さを得るには、少なくと
も0.05%以上含有させる必要がある。しかし、必
要以上に添加すると炭化物が増加して被削性に悪
影響を及ぼすので、0.30%までに止めるべきであ
る。したがつて、C量は0.05〜0.30%の範囲とす
る。 Si:0.15〜0.50% Siは脱酸元素として添加するが、そのためには
0.15%以上が必要である。しかし、0.50%を越え
て過度に添加すると靱性を劣化させる。したがつ
て、Si量は0.15〜0.50%の範囲とする。 Mn:0.30〜2.00% Mnは焼入れ性を増加し、熱処理後の硬さを確
保するに必要な元素であるが、0.30%未満ではそ
の効果が不十分である。また、2.00%を超えて含
有させると被削性を劣化させるので好ましくな
い。したがつて、Mn量は0.30〜2.00%の範囲と
する。 P≦0.1% Pは被削性を向上させるのに有益な元素である
が、0.1%を超えて含有させると熱間加工性、靱
性を害するので好ましくない。したがつて、Pは
0.1%以下とする。 S≦0.25% Sは優れた被削性を確保するために有効な元素
であるが、必要以上に添加すると延靱性を劣化さ
せるので好ましくなく、その上限は0.25%であ
る。したがつて、Sは0.25%以下とする。 Cu:0.3〜0.8% Cuは折出硬化させて硬さを確保するために0.3
%以上が必要である。しかし、0.8%を超えて多
量に添加すると熱間加工性を劣化させるので好ま
しくない。したがつて、Cu量は0.3〜0.8%の範囲
とする。 Ni:0.5〜2.0% NiはAlと結合して金属間化合物を生成し、被
削性に悪影響を及ぼすことなく硬さを確保する効
果があり、そのために0.5%以上が必要である。
しかし、2.0%を超えて過剰に添加すると硬さ
(強度)は得られるものの、被削性が悪くなるの
で好ましくない。したがつて、Ni量は0.5〜2.0%
の範囲とする。 Al:0.3〜1.0% Niと結合して金属間化合物を生成し、被削性
に悪影響を及ぼすことなく硬さを確保し、また、
溶製時の脱酸効果、結晶粒の調整効果のために
0.3%以上が必要である。しかし、必要以上に添
加すると酸化物系非金属介在物が増加し、被削性
に悪影響を及ぼすので好ましくなく、その上限は
1.0%である。したがつて、Al量は0.3〜1.0%の範
囲とする。 なお、上記鋼は、熱間鍛造後、通常の焼準(加
熱→空冷)及び焼戻し(加熱→空冷)(時効処理)
の連続熱処理(一般に厚さ100mm以上の厚板にお
ける空冷の冷却速度は約10℃/min以下である)
を施すことにより、パーライトと60%以上のフエ
ライトとからなる2相組織が得られ、プラスチツ
ク成形金型用鋼として必要な強度(HB150〜220)
が確保されるので、被削性に優れている。なお、
硬さがHB220より高いと被削性が劣る。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分の鋼を溶製し、1180℃に
加熱後、鍛錬比4.5sで熱間鍛造(厚さ:300mm)
し、放冷した。 次いで、焼準(890℃に加熱保持後、空冷(冷
却速度2℃/min))、時効処理(510℃に加熱保
持後、空冷)の熱処理を施して、硬さ及び組織
(フエライト率)を調べた。更に、所定の硬さ
(目標の硬さHB150以上)が得られたものについ
てのみ、切削試験を行つて被削性を調査した。そ
れらの結果を第1表に併記する。また、試験材の
フエライト率と工具摩耗幅の関係を第1図に示
す。 なお、硬さはブリネル測定で求め、フエライト
率(F率)は100倍×60視野の測定における平均
フエライト率で表わした。 また、切削試験は、第2表に示すように2通り
の切削試験を行い、所定長さの切削時の逃面摩耗
幅を求めた。 第1表及び第1図より明らかなように、本発明
鋼(No.1〜No.7)においては、通常の焼準、焼戻
しの熱処理で必然的にフエライト率が60%以上に
なつており、比較鋼よりも工具寿命が20%以上伸
びるという優れた被削性を有し、しかも、必要な
硬さ(強度)も得られている。 なお、第1図中、No.4′、No.5′は本発明鋼のNo.
4、No.5の焼準時の冷却速度を意識的に早くし、
フエライト率を60%以下に減少させた例である
が、この場合、工具摩耗幅が増加し、被削性が悪
くなつている。 一方、No.8〜No.16は比較鋼である。これらのう
ち、No.8とNo.12は熱間鍛造時、割れが発生したの
で被削試験は行わなかつた。 比較鋼No.8は、本発明鋼No.1と比べ、Cu量が
高いため、熱間鍛造時に表面割れを生じ、プラス
チツク成形金型用鋼としては不適当である。 比較鋼No.9は、本発明鋼No.5と比較してC量が
高い例であつて、フエライト率が減少し、パーラ
イトが増加するため、被削性に悪影響を及ぼして
いる。また、Cが高いために炭化物の生成量が増
大する傾向にあり、このことも被削性に悪影響を
与えている。 比較鋼No.10は、低Cの例であり、本発明鋼の指
標であるHB150以上の硬さ(強度)を確保するこ
とができない。 比較鋼No.11は、Ni量が多く、Ni−Alの折出硬
化の影響が大きいため、硬さ(強度)は得られて
いるものの、工具摩耗幅が多くなつている。すな
わち、被削性が悪くなつている。 比較鋼No.12は、Ni量が本発明範囲より少ない
例であり、熱間加工性を悪化させるCuを安定化
させる効果をもつNi量が十分でないため、熱間
鍛造時の表面割れが大きく、プラスチツク成形金
型用鋼として実用上適さない。 比較鋼No.13は、Al量が少ない例であつて、Ni
−Alの析出硬化が十分でないため、HB150の硬さ
(強度)を確保することができない。 比較鋼No.14は、Al量が高く、Ni−Alの折出硬
化が大きく、硬さ(強度)は得られているもの
の、被削性が悪くなつている。また、Al酸化物
の増大も被削性に悪影響を及ぼしている。 比較鋼No.15は、Cu量が低い例であり、本発明
鋼No.3と比較してCuの折出硬化が不充分となり、
所定の硬さ(強度)を確保することができない。 比較鋼No.16は、従来の快削鋼であり、C量が高
いために硬さが高いものの、フエライト率が低
く、被削性が悪い。 一方、本発明鋼は更に溶接性及び放電加工性に
も優れていることが実験により確認された。 すなわち、本発明鋼No.4を対象材としてTIG溶
接法によりすみ肉(3層盛り)溶接試験を行なつ
た結果、溶接熱影響部の硬さが低く、−20℃の条
件下でも割れが発生せず、低温溶接性が良いこと
が確認された。また、本発明鋼No.4について放電
加工試験を行なつたところ、高速で加工でき、し
かも加工後の硬化層が殆ど認められないことが確
認された。
(Industrial Application Field) The present invention relates to a free-cutting steel, and more particularly to a free-cutting steel suitable as a metal steel for forming plastic products. (Problems to be solved by the prior art and the invention) Steels for machine structures and molds currently used in the fields of automobiles, home appliances, etc. are used to reduce machining costs for the purpose of cost reduction. Therefore, the use of free-cutting steel is increasing. However, recently there has been an increasing demand for even more knock-down, and in order to achieve this, the current JIS standard free-cutting steel (JIS
G 4804 “Sulfur and sulfur composite free-cutting steel”) is approaching its limit. In other words, in terms of machinability, conventional steel (SUM43 series)
There is a desire for a free-cutting steel that has properties superior to that of steel and also has a certain strength. The present invention was made in response to such demands, and aims to provide a free-cutting steel for plastic molds that has excellent machinability and the necessary strength. be. (Means for Solving the Problem) In order to achieve the above object, the present inventor has developed a method using conventional steel (SUM43
It has better machinability than steel (type 1), and secures a certain degree of strength as a steel for plastic molds through normal normalizing and tempering heat treatment.In other words, as an indicator of strength, the hardness is H B 150 or more 220 The present invention was made as a result of extensive research into measures that would enable the following. That is, in the present invention, C: 0.05 to 0.30%, Si:
0.15-0.50%, Mn: 0.30-2.00%, P≦0.1%, S
≦0.25%, Cu: 0.3-0.8%, Ni: 0.5-2.0% and
Contains Al: 0.3 to 1.0%, the remainder consists of Fe and unavoidable impurities, and the structure after hot forging, continuous normalizing and tempering heat treatment is a two-phase structure consisting of pearlite and 60% or more ferrite, Hardness is H B 150
The gist is a free-cutting steel for plastic molds that is characterized by excellent machinability of ~220. In short, the present invention obtains a ferrite percentage of 60% or more at a cooling rate of about 10°C/min or less in normal normalizing and tempering heat treatment after hot forging, but achieves a ferrite percentage of 60% or more. The resulting reduction in hardness is compensated for by adding a minimum amount of Cu, Ni, and Al, increasing the target strength (H B 150 to 220) and improving machinability. The present invention will be explained in further detail below. (Function) The reasons for limiting the chemical components in the present invention are as follows. C: 0.05-0.30% To obtain the desired hardness of H B 150 or more, it is necessary to contain at least 0.05% or more. However, adding more than necessary increases carbides and adversely affects machinability, so it should be limited to 0.30% or less. Therefore, the amount of C is set in the range of 0.05 to 0.30%. Si: 0.15-0.50% Si is added as a deoxidizing element, but for that purpose
0.15% or more is required. However, excessive addition of more than 0.50% deteriorates toughness. Therefore, the amount of Si is in the range of 0.15 to 0.50%. Mn: 0.30-2.00% Mn is an element necessary to increase hardenability and ensure hardness after heat treatment, but if it is less than 0.30%, its effect is insufficient. Further, if the content exceeds 2.00%, machinability deteriorates, which is not preferable. Therefore, the Mn content should be in the range of 0.30 to 2.00%. P≦0.1% P is a useful element for improving machinability, but if it is contained in an amount exceeding 0.1%, it is not preferable because it impairs hot workability and toughness. Therefore, P is
0.1% or less. S≦0.25% S is an effective element for ensuring excellent machinability, but adding more than necessary deteriorates ductility and toughness, which is not preferable, and the upper limit is 0.25%. Therefore, S should be 0.25% or less. Cu: 0.3~0.8% Cu is 0.3 to ensure hardness by precipitation hardening.
% or more is required. However, adding a large amount exceeding 0.8% is not preferable because hot workability deteriorates. Therefore, the amount of Cu is set in the range of 0.3 to 0.8%. Ni: 0.5-2.0% Ni combines with Al to form an intermetallic compound, which has the effect of ensuring hardness without adversely affecting machinability, and for this reason, 0.5% or more is required.
However, if it is added in excess of 2.0%, although hardness (strength) can be obtained, machinability deteriorates, which is not preferable. Therefore, the amount of Ni is 0.5 to 2.0%
The range shall be . Al: 0.3-1.0% Combines with Ni to form an intermetallic compound, ensuring hardness without adversely affecting machinability, and
For deoxidizing effect during melting and adjusting effect on crystal grains
0.3% or more is required. However, adding more than necessary is undesirable as it increases the number of oxide-based nonmetallic inclusions and has a negative effect on machinability, so the upper limit is
It is 1.0%. Therefore, the amount of Al should be in the range of 0.3 to 1.0%. The above steel is subjected to normal normalizing (heating → air cooling) and tempering (heating → air cooling) (aging treatment) after hot forging.
Continuous heat treatment (generally, the cooling rate of air cooling for plates with a thickness of 100 mm or more is approximately 10°C/min or less)
By applying this process, a two-phase structure consisting of pearlite and 60% or more ferrite is obtained, which has the strength (H B 150 to 220) required for steel for plastic molds.
is ensured, resulting in excellent machinability. In addition,
If the hardness is higher than H B 220, machinability is poor. Next, examples of the present invention will be shown. (Example) Steel with the chemical composition shown in Table 1 was melted, heated to 1180℃, and then hot forged at a forging ratio of 4.5s (thickness: 300mm)
and left to cool. Next, heat treatment was performed to normalize (heat and hold at 890°C, then air cool (cooling rate 2°C/min)) and aging treatment (heat and hold at 510°C, then air cool) to improve hardness and structure (ferrite ratio). Examined. Furthermore, cutting tests were conducted to investigate machinability only for those samples that had a predetermined hardness (target hardness H B 150 or higher). The results are also listed in Table 1. Moreover, the relationship between the ferrite percentage of the test material and the tool wear width is shown in FIG. The hardness was determined by Brinell measurement, and the ferrite rate (F rate) was expressed as the average ferrite rate in measurements of 100x x 60 visual fields. In addition, two types of cutting tests were conducted as shown in Table 2, and the width of flank wear during cutting of a predetermined length was determined. As is clear from Table 1 and Figure 1, in the steels of the present invention (No. 1 to No. 7), the ferrite percentage inevitably reaches 60% or more through normal normalizing and tempering heat treatments. It has excellent machinability, with tool life extended by more than 20% compared to comparative steels, and also has the necessary hardness (strength). In Fig. 1, No. 4' and No. 5' are No. 4' and No. 5' of the steel of the present invention.
4. Intentionally increase the cooling rate during normalization of No. 5,
This is an example in which the ferrite ratio was reduced to 60% or less, but in this case, the tool wear width increased and machinability deteriorated. On the other hand, No. 8 to No. 16 are comparative steels. Of these, No. 8 and No. 12 were not subjected to machining tests because cracks occurred during hot forging. Comparative steel No. 8 has a higher Cu content than inventive steel No. 1, so surface cracks occur during hot forging, making it unsuitable as a steel for plastic molds. Comparative steel No. 9 has a higher C content than inventive steel No. 5, and the ferrite ratio decreases and pearlite increases, which adversely affects machinability. Furthermore, due to the high C content, the amount of carbides produced tends to increase, which also has an adverse effect on machinability. Comparative steel No. 10 is an example of low C, and cannot ensure a hardness (strength) of H B 150 or higher, which is an index for the steel of the present invention. Comparative steel No. 11 has a large amount of Ni and is greatly affected by precipitation hardening of Ni-Al, so although hardness (strength) is obtained, the tool wear width is large. In other words, the machinability is getting worse. Comparative steel No. 12 is an example in which the amount of Ni is lower than the range of the present invention, and the amount of Ni, which has the effect of stabilizing Cu, which deteriorates hot workability, is not sufficient, so surface cracks during hot forging are large. , it is not practically suitable as steel for plastic molds. Comparative steel No. 13 is an example with a small amount of Al and a small amount of Ni.
-Due to insufficient precipitation hardening of Al, hardness (strength) of H B 150 cannot be secured. Comparative steel No. 14 has a high Al content and large precipitation hardening of Ni-Al, and although it has good hardness (strength), its machinability is poor. In addition, an increase in Al oxide also has a negative effect on machinability. Comparative steel No. 15 is an example with a low Cu content, and compared to inventive steel No. 3, precipitation hardening of Cu is insufficient,
It is not possible to secure the specified hardness (strength). Comparative steel No. 16 is a conventional free-cutting steel, and although it has high hardness due to a high C content, it has a low ferrite percentage and has poor machinability. On the other hand, it was confirmed through experiments that the steel of the present invention also has excellent weldability and electrical discharge machinability. That is, as a result of performing a fillet (three-layer welding) welding test using the TIG welding method using Invention Steel No. 4 as a target material, the hardness of the weld heat affected zone was low and cracking occurred even under -20℃ conditions. This did not occur, confirming that low-temperature weldability is good. Further, when an electrical discharge machining test was conducted on the steel of the present invention No. 4, it was confirmed that it could be machined at high speed and that hardly any hardened layer was observed after processing.

【表】【table】

【表】 (発明の効果) 以上詳述したように、本発明によれば、従来の
快削鋼(SUM43系)比べて著しく被削性が改善
され、その効果は顕著である。更に、所定の強度
(最低硬さHB150〜220)を確保できるので、プラ
スチツク成形金型鋼として好適である。
[Table] (Effects of the Invention) As detailed above, according to the present invention, machinability is significantly improved compared to conventional free-cutting steel (SUM43 series), and the effect is remarkable. Furthermore, it is suitable as a mold steel for plastic molding because a predetermined strength (minimum hardness H B 150 to 220) can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた試験材におけるフエ
ライト率と工具の逃面摩耗幅の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the ferrite percentage and tool flank wear width in test materials obtained in Examples.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で(以下、同じ)、C:0.05〜0.30%、
Si:0.15〜0.50%、Mn:0.30〜2.00%、P≦0.1
%、S≦0.25%、Cu:0.3〜0.8%、Ni:0.5〜2.0
%及びAl:0.3〜1.0%を含有し、残部がFe及び不
可避的不純物からなり、熱間鍛造、連続した焼準
及び焼戻しの熱処理後の組織がパーライトと60%
以上のフエライトからなる2相組織で、硬さが
HBで150〜220で優れた被削性を有することを特
徴とするプラスチツク成形金型用快削鋼。
1% by weight (the same applies hereinafter), C: 0.05-0.30%,
Si: 0.15-0.50%, Mn: 0.30-2.00%, P≦0.1
%, S≦0.25%, Cu: 0.3-0.8%, Ni: 0.5-2.0
% and Al: 0.3 to 1.0%, the balance consists of Fe and unavoidable impurities, and the structure after hot forging, continuous normalizing and tempering heat treatment is 60% pearlite.
It has a two-phase structure consisting of the above ferrite, and has a hardness of
Free-cutting steel for plastic molds, characterized by excellent machinability with H B of 150 to 220.
JP33257788A 1988-12-30 1988-12-30 Free cutting steel Granted JPH02179845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33257788A JPH02179845A (en) 1988-12-30 1988-12-30 Free cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33257788A JPH02179845A (en) 1988-12-30 1988-12-30 Free cutting steel

Publications (2)

Publication Number Publication Date
JPH02179845A JPH02179845A (en) 1990-07-12
JPH0548289B2 true JPH0548289B2 (en) 1993-07-21

Family

ID=18256480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33257788A Granted JPH02179845A (en) 1988-12-30 1988-12-30 Free cutting steel

Country Status (1)

Country Link
JP (1) JPH02179845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669987A (en) * 2019-10-25 2020-01-10 安徽信息工程学院 Ceramic high-strength structural steel with yield strength of 520MPa and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624853A (en) * 1985-07-01 1987-01-10 Daido Steel Co Ltd Automotive parts having low strain
JPS6338557A (en) * 1986-08-01 1988-02-19 Kawasaki Steel Corp Age hardening structural steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624853A (en) * 1985-07-01 1987-01-10 Daido Steel Co Ltd Automotive parts having low strain
JPS6338557A (en) * 1986-08-01 1988-02-19 Kawasaki Steel Corp Age hardening structural steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669987A (en) * 2019-10-25 2020-01-10 安徽信息工程学院 Ceramic high-strength structural steel with yield strength of 520MPa and preparation method thereof

Also Published As

Publication number Publication date
JPH02179845A (en) 1990-07-12

Similar Documents

Publication Publication Date Title
AU2014243611B2 (en) High-toughness, low-alloy, wear-resistant steel sheet and method of manufacturing the same
EP2980256B1 (en) Low-alloy high-performance wear-resistant steel plate and manufacturing method therefor
EP2881486A1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
EP0165774B1 (en) Method for producing high-strength steel having improved weldability
CN111088417B (en) Ceq and Pcm high heat input welding normalizing EH36 extra-thick plate and manufacturing method thereof
JPH0548289B2 (en)
JPH0227407B2 (en) YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO
JPH03236445A (en) Cold tool steel
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JP2563164B2 (en) High strength non-tempered tough steel
JPS62260042A (en) High strength unrefined tough steel
JP3062275B2 (en) Steel for high strength shaft parts
JPS62214126A (en) Manufacture of high tensile steel superior in cod characteristic at weld zone
JPH04314825A (en) Production of 80kgf/mm2 class high tensile strength steel excellent in weldability
JPH02141556A (en) Nonmagnetic stainless steel having excellent cold workability
JPH04314842A (en) Steel material for shaft parts excellent in induction hardenability
JPH0547602B2 (en)
JPH0313543A (en) Steel metal mold excellent in machinability
JPS613834A (en) Manufacture of very high strength steel
JPH04341516A (en) Production of cu-added steel excellent in toughness at low temperature in weld zone