JPH0313543A - Steel metal mold excellent in machinability - Google Patents
Steel metal mold excellent in machinabilityInfo
- Publication number
- JPH0313543A JPH0313543A JP14627589A JP14627589A JPH0313543A JP H0313543 A JPH0313543 A JP H0313543A JP 14627589 A JP14627589 A JP 14627589A JP 14627589 A JP14627589 A JP 14627589A JP H0313543 A JPH0313543 A JP H0313543A
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- steel
- metal mold
- hardness
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 41
- 239000010959 steel Substances 0.000 title claims abstract description 41
- 239000002184 metal Substances 0.000 title abstract 8
- 229910052751 metal Inorganic materials 0.000 title abstract 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 6
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000032683 aging Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000005242 forging Methods 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 2
- 229920003023 plastic Polymers 0.000 abstract 2
- 239000004033 plastic Substances 0.000 abstract 2
- 230000009977 dual effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 13
- 238000004881 precipitation hardening Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000010137 moulding (plastic) Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
(産業上の利用分野)
本発明は金型用鋼に係り、特にプラスチック成形用に適
する金型用鋼に関する。
(従来の技術)
プラスチック成形用の金型用鋼として、高寿命が要求さ
れる場合には、Hv300前後の硬さが必要とされてい
る。このようなHv300前後の硬さを有する材料とし
ては、例えば、特開昭63−38557号が提案されて
いる。この提案に係る鋼は、Cu、Ni、AMの析出硬
化を利用し、且つ焼入性向上を目的としてMoを添加す
ることにより、Hv300レベルを確保している。
しかし、その母地組織は、焼入性向上のために添加した
Moが存在するため、ベイナイト組織が形成される。そ
して、このベイナイト組織は一般的に被削性を悪くする
傾向にある。
一方、近年、コストダウンを目的とした機械加工費の削
減が重要視され−Hv300レベルの材料においても良
好な被削性を備えることが要求されている。
本発明は、かNる要請に応えるべくなされたものであっ
て、Hv300レベルの硬さを有すると共に優れた被削
性を兼ね備えている金型用鋼を提供することを目的とす
るものである。
(課題を解決するための手段)
本発明者は、前述の従来鋼が必要な硬さを有するものの
、被削性を劣化させるベイナイト組織を有することに鑑
みて、成分及び組織について鋭意研究を重ねた結果、特
定の成分調整をすることにより、通常の溶体化1時効処
理の状態で必然的にフェライト・パーライトの2相組織
になり、Cu、Ni、AQの析出硬化により、Hv30
0レベルの硬さを確保し、被削性を改善できることを見
い出し、ここに本発明をなしたものである。
すなわち1本発明は、C:0.05〜0.20%、Si
:0.10〜0.50%、Mn:0.30〜2.00%
、P量0.1%、Cu:0.9〜1.5%、Ni:2゜
1〜3.0%及びAfi:0.5〜1.5%を含有し、
好ましくは、Ni/Cu≧2.0の関係を満たし、必要
に応じて更に、Ss0.25%、Ca≦0.004%、
Ss≦0.5%及びTe≦0.5%のうちの1種又は2
種以上を含有し、残部がFeと不可避的不純物からなり
、フェライト・パーライトの2相組織を有することを特
徴とする被削性の優れた金型用鋼を要旨とするものであ
る。
以下に本発明を更に詳細に説明する。
(作用)
まず、本発明における化学成分の限定理由を説明する。
C:
Cは、鋼の焼入性を向上させ、金型用鋼として必要な硬
さを確保するために、少なくとも0.05%以上が必要
である。しかし、必要以上に含有させると炭化物が増加
して被削性に悪影響を及ぼすので、上限を0.20%と
する。
Si:
Siは脱酸元素として用いられ、そのためには0.10
%以上が必要である。しかし、過度に含有させると靭性
を劣化するので、上限を0.50%とする。
Mn:
Mnは焼入性を向上させ、金型用鋼として必要な硬さを
確保するのに必要な元素である。しかし、0.30%未
満ではその効果が不充分であり、また2、00%を超え
て含有させると被削性を劣化させる。したがって、Mn
量は0.30〜2.00%の範囲とする。
P:
Pは被削性を向上させるのに有益な元素であるが、0.
1%を超えて含有させると熱間加工性。
靭性を害するので好ましくない。したがって、P量は0
.1%以下とする。
Cu:
Cuは析出硬化させて硬さを確保するために必要な元素
であるが、そのためには0.9%以上が必要である。し
かし、多量に添加すると熱間加工性を劣化させるので、
上限を1.5%とする。
Ni:
Niは、AQと結合して金属間化合物を生成し、硬さを
確保するために2.1%以上が必要である。
しかし、過度に添加すると必要以上に硬さが高くなり、
かえって被削性に悪影響を及ぼすので、上限を3.0%
とする。
AΩ:
AQは、Niと結合して金属間化合物を生成し。
硬さを確保するために0.5%以上が必要である。
しかし、過度に添加すると、硬さが必要以上に高くなり
、また、酸化物系の非金属介在物が増加して被削性に悪
影響を及ぼすので、上限を1.5%とする。
以上の元素を必須成分とするが、特に、Cuによる熱間
加工性の劣化を防止するためには、Ni/Cuの比率を
2.0以上に規制するのが好ましい。
また、本発明は以下に示す元素の1種又は2種以上を必
要に応じて適量で含有させることができる。
すなわち、S、Ca、Ss、Teはいずれも被削性を向
上させる元素であり、その性能を発揮させるためには、
Sは0.25%以下、Caは0.004%以下、Seと
Teはそれぞれ0.5%以下で添加する必要がある。し
かし、Sが0.25%を超えると偏析が著しくなり、均
質性を失ってしまう。
また、被削性改善効果も添加量はど望むことはできない
ため、0.25%以下とする。また、Ca。
Sa、Teがそれぞれ上限を超えた場合、被削性改善効
果は添加量はど望むことができないため、それぞれCa
≦0.004%、Se≦0.5%、Te≦0.45%と
する。
以上の化学成分を有する本発明鋼は、通常の溶体化、時
効処理の状態で必然的にフェライト・パーライトの2相
組織になり、Cu、Ni、Aflの析出硬化により、H
v300レベルの硬さを確保しつつ、被削性を顕著に改
善できる。また、本発明鋼の成分系は、低Cであり、且
つCr、Mo等の焼入性向上元素を含有していないので
、焼入による硬さ向上が少なく、したがって、溶接時に
溶接割れ等が発生し難い利点もある。
次に本発明の実施例を示す。
(実施例)
第1表に示す化学成分を有する鋼を常法により溶製し、
3001111厚さに熱間鍛造した後、放冷した。更に
、890℃に加熱保持後、空冷し、その後、525℃で
5hrの焼戻し処理(時効処理)を施した。
得られた試料について硬さを調べると共に、第2表に示
す条件で被削性試験を行って工具寿命までの切削長さを
調べて被削性を評価した。それらの結果を第1表に併記
する。
第1表において、Il!n1〜&5と415〜Na21
は本発明鋼で、Nα6〜Nα14は比較鋼であり、以下
の如く考察される。
各本発明鋼とも、通常の焼増、焼戻しの熱処理でHv3
00レベルの硬さを確保することができ、しかも、比較
鋼に比べて、工具寿命までの切削長さが1.3倍以上に
伸びるという優れた被削性を有している。なお、いずれ
の本発明鋼もフェライト・パーライトの2相組織を有し
ていた。
一方、以下に説明するとおり、比較鋼はいずれも、必要
な硬さレベルと被削性を同時に満足していない。なお、
比較鋼のうち、Na7、&9、&11、Nα13はHy
300レベルの硬さを確保することができなかったため
、またHa 10は熱間加工時に割れが発生したため、
被削性試験を行わなかった・
まず、比較鋼l!16は、焼入性向上のためにM。
を添加した従来鋼であり、Mo添加のため、ベイナイト
組織を有し、被削性が悪くなっている。
比較鋼&7は、低Cの例であり、本発明の目的とするH
V300レベルの硬さを確保することができない。
比較mNct8は、C量が多く、硬さが高くなりすぎて
被削性が悪くなっている。
比較鋼面9は、Cu量が少ないため、Cuの析出硬化が
少なく、HV300レベルを確保することができない。
比較鋼虱1oは、Cu量が多すぎ、Ni/Cu≧2.0
を満足していないため、熱間鍛造時に割れが発生し、金
型用鋼としては不向きである。
比較鋼Nα11は、Ni量が少ないため、N1−AQの
析出硬化が充分でなく、Hv300レベルの硬さを確保
することができない。
比較鋼&12は、Ni量が多く、N1−Aflの析出硬
化が大きく、硬くなりすぎて被削性が悪くなっている。
比較鋼Nn13は、AQ量が少ない例であり、N1−A
Qの析出硬化が充分でないため、Hv300レベルを確
保することができない。
比較鋼Na14は、AQ量が多いため、Ni−Al2の
析出硬化が大きく、硬くなりすぎて被削性が悪化してい
る。また、Afiの酸化物系非金属介在物も被削性に悪
影響を及ぼしている。(Industrial Application Field) The present invention relates to mold steel, and particularly to mold steel suitable for plastic molding. (Prior Art) When long life is required as steel for molds for plastic molding, hardness of around Hv300 is required. As a material having a hardness of around Hv300, for example, Japanese Patent Application Laid-Open No. 63-38557 has been proposed. The steel according to this proposal utilizes precipitation hardening of Cu, Ni, and AM, and by adding Mo for the purpose of improving hardenability, the Hv300 level is secured. However, in the parent structure, a bainite structure is formed due to the presence of Mo added to improve hardenability. This bainite structure generally tends to deteriorate machinability. On the other hand, in recent years, emphasis has been placed on reducing machining costs for the purpose of cost reduction, and there is a demand for good machinability even in Hv300 level materials. The present invention was made in response to these demands, and aims to provide a steel for molds that has a hardness of Hv300 level and has excellent machinability. . (Means for Solving the Problems) The present inventor has conducted intensive research on the composition and structure, considering that the conventional steel described above has the necessary hardness but has a bainite structure that deteriorates machinability. As a result, by adjusting specific components, a two-phase structure of ferrite and pearlite is inevitably formed under the condition of normal solution treatment and aging treatment, and precipitation hardening of Cu, Ni, and AQ results in a Hv30
We have discovered that it is possible to ensure zero-level hardness and improve machinability, and have hereby created the present invention. That is, 1 the present invention has C: 0.05 to 0.20%, Si
:0.10~0.50%, Mn:0.30~2.00%
, P amount 0.1%, Cu: 0.9-1.5%, Ni: 2°1-3.0% and Afi: 0.5-1.5%,
Preferably, the relationship Ni/Cu≧2.0 is satisfied, and if necessary, Ss0.25%, Ca≦0.004%,
One or two of Ss≦0.5% and Te≦0.5%
The gist of this invention is a mold steel with excellent machinability, which is characterized by containing at least 100% of Fe, the remainder consisting of Fe and unavoidable impurities, and having a two-phase structure of ferrite and pearlite. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. C: C is required to be at least 0.05% in order to improve the hardenability of the steel and ensure the hardness required as a mold steel. However, if it is contained in an amount more than necessary, carbides will increase and have a negative effect on machinability, so the upper limit is set at 0.20%. Si: Si is used as a deoxidizing element, for which 0.10
% or more is required. However, since excessive content deteriorates toughness, the upper limit is set at 0.50%. Mn: Mn is an element necessary to improve hardenability and ensure the hardness required as mold steel. However, if the content is less than 0.30%, the effect is insufficient, and if the content exceeds 2,00%, machinability deteriorates. Therefore, Mn
The amount should be in the range of 0.30-2.00%. P: P is an element useful for improving machinability, but 0.
If the content exceeds 1%, hot workability will be affected. This is not preferable because it impairs toughness. Therefore, the amount of P is 0
.. 1% or less. Cu: Cu is an element necessary for precipitation hardening to ensure hardness, and for this purpose, 0.9% or more is required. However, if added in large amounts, hot workability deteriorates, so
The upper limit is set at 1.5%. Ni: Ni is required to be 2.1% or more in order to combine with AQ to form an intermetallic compound and ensure hardness. However, adding too much will make the hardness higher than necessary.
The upper limit is set at 3.0% because it has a negative effect on machinability.
shall be. AΩ: AQ combines with Ni to form an intermetallic compound. 0.5% or more is required to ensure hardness. However, if excessively added, the hardness becomes higher than necessary and oxide-based nonmetallic inclusions increase, which adversely affects machinability, so the upper limit is set at 1.5%. Although the above elements are essential components, it is preferable to control the Ni/Cu ratio to 2.0 or more, especially in order to prevent deterioration of hot workability due to Cu. Further, in the present invention, one or more of the following elements can be contained in appropriate amounts as necessary. In other words, S, Ca, Ss, and Te are all elements that improve machinability, and in order to demonstrate their performance,
It is necessary to add S at 0.25% or less, Ca at 0.004% or less, and Se and Te at 0.5% or less each. However, when S exceeds 0.25%, segregation becomes significant and homogeneity is lost. Furthermore, since the amount added cannot be determined to improve machinability, it is set to 0.25% or less. Also, Ca. If Sa and Te each exceed the upper limit, the machinability improvement effect cannot be determined depending on the amount added, so Ca
≦0.004%, Se≦0.5%, and Te≦0.45%. The steel of the present invention having the above-mentioned chemical composition inevitably becomes a two-phase structure of ferrite and pearlite when subjected to normal solution treatment and aging treatment, and is hardened by precipitation of Cu, Ni, and Afl.
While maintaining v300 level hardness, machinability can be significantly improved. In addition, the composition system of the steel of the present invention is low in C and does not contain hardenability-improving elements such as Cr and Mo, so hardness does not improve much due to hardening, and therefore, weld cracking etc. occur during welding. There are also advantages that are unlikely to occur. Next, examples of the present invention will be shown. (Example) Steel having the chemical composition shown in Table 1 was melted by a conventional method,
After hot forging to a thickness of 3001111, it was allowed to cool. Furthermore, after heating and holding at 890°C, it was air cooled, and then tempered (aging treatment) at 525°C for 5 hours. The hardness of the obtained samples was examined, and the machinability was evaluated by conducting a machinability test under the conditions shown in Table 2 to examine the cutting length until the tool life. The results are also listed in Table 1. In Table 1, Il! n1~&5 and 415~Na21
is the steel of the present invention, and Nα6 to Nα14 are comparative steels, which are considered as follows. For each of the steels of the present invention, Hv3
00 level hardness can be ensured, and moreover, it has excellent machinability in that the cutting length up to the tool life is more than 1.3 times longer than that of comparative steels. Note that all of the steels of the present invention had a two-phase structure of ferrite and pearlite. On the other hand, as explained below, none of the comparative steels satisfy the required hardness level and machinability at the same time. In addition,
Among the comparative steels, Na7, &9, &11, and Nα13 are Hy
Because it was not possible to secure the hardness of 300 level, and because Ha 10 cracked during hot working,
No machinability test was conducted. First, comparative steel! 16 is M for improving hardenability. This is a conventional steel with addition of Mo, and due to the addition of Mo, it has a bainite structure and has poor machinability. Comparative steel &7 is an example of low C and H
Hardness at the V300 level cannot be ensured. Comparative mNct8 has a large amount of C and has too high hardness, resulting in poor machinability. Comparative steel surface 9 has a small amount of Cu, so precipitation hardening of Cu is small, and the HV300 level cannot be ensured. Comparative steel 1o has too much Cu, Ni/Cu≧2.0
Since this steel does not satisfy the above requirements, cracks occur during hot forging, making it unsuitable for use as mold steel. Comparative steel Nα11 has a small amount of Ni, so precipitation hardening of N1-AQ is not sufficient, and hardness at the Hv300 level cannot be ensured. Comparative steel &12 has a large amount of Ni, has large precipitation hardening of N1-Afl, becomes too hard, and has poor machinability. Comparative steel Nn13 is an example with a small amount of AQ, and N1-A
Since the precipitation hardening of Q is not sufficient, the Hv300 level cannot be secured. Comparative steel Na14 has a large amount of AQ, so precipitation hardening of Ni-Al2 is large, and the steel becomes too hard, resulting in poor machinability. In addition, oxide-based nonmetallic inclusions in Afi also have an adverse effect on machinability.
第
2
表
切削条件
(発明の効果)
以上詳述したように1本発明によれば、金型用鋼として
従来のものと同等の硬さ(Hv300レベル)を確保し
ながら、著しく被削性を改善できるので、その効果は顕
著である。Table 2 Cutting Conditions (Effects of the Invention) As detailed above, according to the present invention, machinability is significantly improved while ensuring the same hardness (Hv300 level) as conventional steel for molds. Since it can be improved, the effect is remarkable.
Claims (3)
0%、Si:0.10〜0.50%、Mn:0.30〜
2.00%、P≦0.1%、Cu:0.9〜1.5%、
Ni:2.1〜3.0%及びAl:0.5〜1.5%を
含有し、残部がFeと不可避的不純物からなり、フェラ
イト・パーライトの2相組織を有することを特徴とする
被削性の優れた金型用鋼。(1) In weight% (the same applies hereinafter), C: 0.05 to 0.2
0%, Si: 0.10~0.50%, Mn: 0.30~
2.00%, P≦0.1%, Cu: 0.9-1.5%,
A coating characterized by containing 2.1 to 3.0% Ni and 0.5 to 1.5% Al, with the remainder consisting of Fe and unavoidable impurities, and having a two-phase structure of ferrite and pearlite. Steel for molds with excellent machinability.
4%、Se≦0.5%及びTe≦0.5%のうちの1種
又は2種以上を含有するものである請求項1に記載の被
削性の優れた金型用鋼。(2) The steel further has S≦0.25%, Ca≦0.00
4%, Se≦0.5%, and Te≦0.5%. The mold steel with excellent machinability according to claim 1, which contains one or more of the following.
のものである請求項1又は2に記載の被削性の優れた金
型用鋼。(3) The steel for molds having excellent machinability according to claim 1 or 2, wherein the steel has a composition satisfying the relationship of Ni/Cu≧2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14627589A JPH0313543A (en) | 1989-06-08 | 1989-06-08 | Steel metal mold excellent in machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14627589A JPH0313543A (en) | 1989-06-08 | 1989-06-08 | Steel metal mold excellent in machinability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0313543A true JPH0313543A (en) | 1991-01-22 |
Family
ID=15404047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14627589A Pending JPH0313543A (en) | 1989-06-08 | 1989-06-08 | Steel metal mold excellent in machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0313543A (en) |
-
1989
- 1989-06-08 JP JP14627589A patent/JPH0313543A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3617337A1 (en) | HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR | |
JPS60215719A (en) | Manufacture of electric welded steel pipe for front fork of bicycle | |
JPH0253506B2 (en) | ||
JPH0253505B2 (en) | ||
JPS61213349A (en) | Alloy tool steel | |
JP3539250B2 (en) | 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same | |
JPH08283906A (en) | High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance | |
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP3220406B2 (en) | Manufacturing method of high strength welded joint with excellent crack resistance | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPH0313543A (en) | Steel metal mold excellent in machinability | |
JPH0718387A (en) | Precipitation hardening type stainless steel excellent in wear resistance and production of precipitation hardening type stainless steel | |
JPH09291344A (en) | Low hardness martensitic stainless steel | |
JPH04120249A (en) | Martensitic stainless steel and its production | |
JP2563164B2 (en) | High strength non-tempered tough steel | |
JPH0569884B2 (en) | ||
JPH0225969B2 (en) | ||
JPS62260042A (en) | High strength unrefined tough steel | |
JPH04297548A (en) | High strength and high toughness non-heat treated steel and its manufacture | |
JPH04354852A (en) | High hardness shank material or barrel material for high speed steel tool | |
JP2001158936A (en) | Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor | |
JPH0548289B2 (en) | ||
JP2861564B2 (en) | Age-hardened steel bars excellent in cold forgeability and method for producing the same | |
JP3099155B2 (en) | High strength martensitic stainless steel with excellent weldability and its manufacturing method | |
JPH0647709B2 (en) | Austenitic free-cutting stainless steel |