JPH054826B2 - - Google Patents

Info

Publication number
JPH054826B2
JPH054826B2 JP62222317A JP22231787A JPH054826B2 JP H054826 B2 JPH054826 B2 JP H054826B2 JP 62222317 A JP62222317 A JP 62222317A JP 22231787 A JP22231787 A JP 22231787A JP H054826 B2 JPH054826 B2 JP H054826B2
Authority
JP
Japan
Prior art keywords
film
cadmium telluride
compound semiconductor
cdte
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62222317A
Other languages
Japanese (ja)
Other versions
JPS6464370A (en
Inventor
Naoki Suyama
Noryuki Ueno
Kunyoshi Omura
Hiroyuki Kitamura
Takeshi Hibino
Mikio Murozono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62222317A priority Critical patent/JPS6464370A/en
Publication of JPS6464370A publication Critical patent/JPS6464370A/en
Publication of JPH054826B2 publication Critical patent/JPH054826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、太陽電池及びフオトセンサー等の光
起電力素子に利用可能なテルル化カドミウム薄膜
の製造方法に関するものである。 従来の技術 近年、−族を中心とした多結晶薄膜太陽電
池は、低価化を目指す太陽電池の一つの方向とし
て注目を浴びている。一方、高効率化という観点
からはタンデム型太陽電池という新しい構成法に
重点を移しつつある(例えばJ.D.Meakin、etal、
Solar、Cells 16(1986)477)。 以下図面を参照しながら、上述した従来の
CdTe薄膜の一例について説明する。タンデム型
太陽電池というのは、第2図に示すCdTe1と
CuInSe23といつた禁制帯幅の異なる半導体を組
合せて、一方で短波長の光、他方で長波長の光を
効率よく吸収すると共に、積層構造にあるため発
生する起電圧を両者の和として高効率化をはかろ
うとするものである。第3図にCdTe膜厚の各波
長の光の透過率を示すが、膜厚が増すと透過率は
大幅に低下することがわかる。したがつてタンデ
ム構造では、数μm以下のCdTe薄膜形成は重要
であり、現在蒸着や近接昇華法によつて形成され
ている(例えばY.S.Tyan etal、Proc−16th
IEEE PVSC(1982)794)。 発明が解決しようとする問題点 しかしながら上記のような、蒸着や近接昇華法
では、基板面積が限定されると同時に量産性にか
ける。すなわち、大面積CdTe薄膜を安価に製造
できないという問題点を有していた。一方、大面
積化が容易な方法としてスクリーン印刷焼結法
(例えば、H.Matsumoto etal、Japan.J.Appl.
Phys.22−5(1983)891)があるが、印刷条件を
いかに変えても10μm以下のCdTe薄膜は形成で
きない。 本発明は上記問題点に鑑み、タンデム型太陽電
池の上部素子に利用可能な膜厚のテルル化カドミ
ウム薄膜を大面積でかつ量産性にすぐれ、低コス
ト化が可能な方法で製造する方法を提供するもの
である。 問題点を解決するための手段 上記問題点を解決するために本発明のテルル化
カドミウムの製造方法は、Cd、Te粉末を水中で
粉砕した混合物をペースト状にし塗布焼結するこ
とによつて形成される2層の膜のうち、容易に除
去できる多孔質膜を除去することによつて厚さ
0.5〜3μmのテルル化カドミウム薄膜を製造する
ものである。 作 用 本発明は上記した構成により、大面積化が容易
な印刷方式を利用できると同時に、多孔質膜を除
去することによつて10μm以上の厚膜しか形成で
きないという印刷焼結方式の問題点を解決するこ
とになる。 実施例 以下本発明の一実施例のテルル化カドミウム薄
膜の製造方法について、図面を参照にしながら説
明する。 CdS粉末に融剤としてCdCl2を10重量%加え、
それに粘結剤としてプロピレングリコールを加え
ペースト状にしたものを、第1図aの断面図に示
すようにガラス基板1上に塗布した後、N2雰囲
気中において690℃60分間焼成することにより、
n型焼結膜8を形成した。この上にCd粉末とTe
粉末の重量比が1対1.05の混合物に水に加えて、
アルミナボールを用いた媒体撹拌ミルにより700
回転/分で1時間〜5時間粉砕することにより得
られた平均粒径1〜4μmのCdTe化合物を含む混
合物を100℃で48時間乾燥した乾燥粉にプロピレ
ングリコールを添加して混合したペースト状のも
のをスクリーン印刷した。続いて100℃で60分間
乾燥させプロピレングリコールを蒸発させる。乾
燥後、基板を第4図のアルミナ製の焼成ボート1
5の中に入れ、その上に第5図のアルミナ製の孔
16をもつた有孔蓋17を置く。この焼成ボート
を540℃〜650℃の範囲で温度を変えて約60分間焼
成する。焼成時における蓋17の孔16の効果を
調べるため、孔の径と数を変えたアルミナ製の蓋
を作製し、前述のCdTe印刷膜を焼成した。焼成
により第1図aに示す通りCdS焼結膜8に接して
CdS表面付近ではCdS中に残存するCdCl2によつ
て平均膜厚D(μm)の緻密なCdTe膜9とCd、
Teの蒸発により多孔質なCdTe膜10とが形成さ
れる。次に同膜を純水中で超音波を10分かける
と、多孔質CdTe膜10が除去され、第1図bの
様になる。表1にCdTe膜形成に使用した粉砕粉
の粒径と粉砕粉中のTeに対するCdTe組成比(以
後はCdTe化度と呼ぶ)を変化させたときの緻密
なCdTe膜9の膜厚D及び多孔質CdTe膜10の
除去前後の波長λ=750nmの透過率を示す。各
条件とも膜10を除去することによつて透過率が
向上することがわかる。焼成温度はすべて600℃、
蓋の孔の面積の被焼結膜面積に対する比率(以
後、孔面積率と呼ぶ)は1.0%で一定にした。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a cadmium telluride thin film that can be used in photovoltaic devices such as solar cells and photosensors. BACKGROUND OF THE INVENTION In recent years, polycrystalline thin film solar cells centered on - group members have been attracting attention as one direction for solar cells aiming at lower costs. On the other hand, from the perspective of increasing efficiency, emphasis is shifting to new construction methods such as tandem solar cells (for example, JDMeakin, etal,
Solar, Cells 16 (1986) 477). With reference to the drawings below, the conventional
An example of a CdTe thin film will be explained. A tandem solar cell consists of CdTe1 and CdTe1 shown in Figure 2.
By combining semiconductors with different forbidden band widths, such as CuInSe 2 3, it is possible to efficiently absorb short-wavelength light on one hand and long-wavelength light on the other. This is an attempt to improve efficiency. Figure 3 shows the transmittance of light at each wavelength depending on the thickness of the CdTe film, and it can be seen that as the film thickness increases, the transmittance decreases significantly. Therefore, in tandem structures, it is important to form a CdTe thin film with a thickness of several μm or less, and it is currently formed by vapor deposition or proximity sublimation (for example, YSTyan et al., Proc-16th
IEEE PVSC (1982) 794). Problems to be Solved by the Invention However, the above-mentioned vapor deposition and proximity sublimation methods limit the substrate area and at the same time hinder mass production. That is, there was a problem in that a large area CdTe thin film could not be manufactured at low cost. On the other hand, screen printing sintering is a method that can easily produce large areas (for example, H.Matsumoto etal, Japan.J.Appl.
Phys. 22-5 (1983) 891), but no matter how you change the printing conditions, a CdTe thin film of 10 μm or less cannot be formed. In view of the above-mentioned problems, the present invention provides a method for manufacturing a cadmium telluride thin film in a large area with a thickness that can be used for the upper element of a tandem solar cell, with excellent mass productivity and low cost. It is something to do. Means for Solving the Problems In order to solve the above problems, the method for producing cadmium telluride of the present invention involves forming a paste by pulverizing Cd and Te powders in water and applying and sintering the mixture. The thickness can be reduced by removing the easily removable porous film of the two layers
This method produces a cadmium telluride thin film of 0.5 to 3 μm. Effects The present invention has the above-described configuration, which makes it possible to use a printing method that can easily produce a large area, and at the same time, the problem with the printing and sintering method is that it is only possible to form a thick film of 10 μm or more by removing the porous film. will be solved. EXAMPLE A method for manufacturing a cadmium telluride thin film according to an example of the present invention will be described below with reference to the drawings. Add 10% by weight of CdCl2 as a flux to CdS powder,
By adding propylene glycol as a binder to the paste and applying it on the glass substrate 1 as shown in the cross-sectional view of FIG .
An n-type sintered film 8 was formed. On top of this, Cd powder and Te
Add water to a mixture with a powder weight ratio of 1:1.05.
700 by medium stirring mill using alumina balls
A paste-like mixture is obtained by adding propylene glycol to a dry powder obtained by drying a mixture containing a CdTe compound with an average particle size of 1 to 4 μm at 100°C for 48 hours by grinding at a rotation speed of 1 to 5 hours per minute. I screen printed things. Subsequently, it is dried at 100°C for 60 minutes to evaporate the propylene glycol. After drying, the substrate is placed in the alumina firing boat 1 shown in Figure 4.
5, and a perforated lid 17 with holes 16 made of alumina as shown in FIG. 5 is placed on top of it. This firing boat is fired for about 60 minutes at varying temperatures in the range of 540°C to 650°C. In order to investigate the effect of the holes 16 in the lid 17 during firing, lids made of alumina with different hole diameters and numbers were made, and the above-mentioned CdTe printed film was fired. As shown in Figure 1a, the sintered CdS film 8 is exposed to
Near the CdS surface, CdCl 2 remaining in CdS forms a dense CdTe film 9 with an average thickness of D (μm) and Cd,
A porous CdTe film 10 is formed by evaporation of Te. Next, when the same membrane is subjected to ultrasonic waves in pure water for 10 minutes, the porous CdTe membrane 10 is removed and the membrane becomes as shown in FIG. 1b. Table 1 shows the film thickness D and porosity of the dense CdTe film 9 when the particle size of the pulverized powder used to form the CdTe film and the CdTe composition ratio to Te in the pulverized powder (hereinafter referred to as CdTe degree) are varied. The transmittance at wavelength λ=750 nm before and after removal of the CdTe film 10 is shown. It can be seen that under each condition, the transmittance is improved by removing the film 10. The firing temperature is all 600℃.
The ratio of the area of the holes in the lid to the area of the film to be sintered (hereinafter referred to as pore area ratio) was kept constant at 1.0%.

【表】 次に焼成温度と孔面積率を変えた場合のD値及
び透過率の関係を表2にまとめて示す。 粉砕条件は粉砕時間を3時間で一定にした。前
述と同様の各条件とも除去することにより透過率
が向上する。ただし焼成過度が650℃になると多
孔質膜10の強度が増し、超音波処理では除去で
きなくなる。そのため穴面積率が下がると除去処
理後も透過率がかわらないものがある。穴面積率
が上がると印刷膜中のCd、Teの蒸発量が増加し
多孔質層がより気孔率の高い多孔質になるものと
思われる。 多孔質CdTe膜10の除去方法として、ブラシ
洗浄や希硝酸によるエツチング処理等でも同様な
結果が得られた。
[Table] Next, Table 2 summarizes the relationship between the D value and the transmittance when the firing temperature and pore area ratio are changed. The grinding conditions were such that the grinding time was constant at 3 hours. Transmittance is improved by eliminating all of the same conditions as described above. However, when the firing temperature reaches 650° C., the strength of the porous membrane 10 increases and cannot be removed by ultrasonic treatment. Therefore, when the hole area ratio decreases, the transmittance may remain unchanged even after removal treatment. It is thought that as the hole area ratio increases, the amount of evaporation of Cd and Te in the printed film increases, making the porous layer more porous. Similar results were obtained when the porous CdTe film 10 was removed by brush cleaning or etching with dilute nitric acid.

【表】【table】

【表】 以上のように本実施例によれば、Cd、Te、
CdTe粉を印刷焼結して形成された焼結膜のう
ち、容易に除去できる多孔質膜のみを除去するこ
とによつて大面積で厚さ0.5〜3μmのCdTe薄膜を
製造することができる。 以下本発明の第2の実施例について第1図cを
参照しながら説明する。第1の実施例で形成した
平均膜厚2μmのCdTe膜9上にCu11を厚さ50Å
で蒸着し、その上に酸化インジウムスズの薄膜1
2を形成した。次にCdSとオーミツクな電極14
を形成し、太陽電池素子を形成した。この素孔は
多孔質膜10の除去前と同等の変換効率をもち、
なおかつ、λ=750nmの透過率は12%であつた。
また光の入射方向はガラス側でもCdTe側でも可
能となつた。 以上のように、印刷焼成後の多孔質CdTe膜を
除去することによつて、タンデム型太陽電池の上
部素子に利用できる。 発明の効果 以上のように本発明は、粉砕によつて形成した
Cd、Te、CdTe粉の混合物を印刷焼結した後、
多孔質CdTe膜を除去することによつてタンデム
型太陽電池の上部素子として利用可能なCdTe薄
膜を大面積で安価に製造することができる。
[Table] As described above, according to this example, Cd, Te,
By removing only the easily removable porous film from the sintered film formed by printing and sintering CdTe powder, a CdTe thin film with a large area and a thickness of 0.5 to 3 μm can be manufactured. A second embodiment of the present invention will be described below with reference to FIG. 1c. Cu 11 is deposited to a thickness of 50 Å on the CdTe film 9 with an average thickness of 2 μm formed in the first embodiment.
on which a thin film of indium tin oxide 1 is deposited.
2 was formed. Next, CdS and ohmic electrode 14
was formed to form a solar cell element. These elementary pores have the same conversion efficiency as before removing the porous membrane 10,
Moreover, the transmittance at λ=750 nm was 12%.
In addition, the direction of light incidence can now be either the glass side or the CdTe side. As described above, by removing the porous CdTe film after printing and firing, it can be used as the upper element of a tandem solar cell. Effects of the Invention As described above, the present invention provides
After printing and sintering the mixture of Cd, Te, CdTe powder,
By removing the porous CdTe film, a large-area CdTe thin film that can be used as the upper element of a tandem solar cell can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の第1の実施例における
CdTe薄膜製造方法を示す図、第1図cは第2の
実施例を示す太陽電池の断面図、第2図は代表的
タンデム型太陽電池の断面図、第3図はCdTe膜
厚と光透過率との関係を示す図、第4図、第5図
はCdTe焼結時に使用する焼成容器のボートと蓋
を示す図である。 1……ガラス基板、2……モリブデン薄膜、3
……セレン化インジウム銅、4……硫化カドミウ
ム、5……酸化インジユウムスズ、6……テルル
化カドミウム、7……入射光、8……CdS焼結
膜、9……緻密なCdTe膜、10……多孔質な
CdTe膜、11……Cu薄膜、12……酸化インジ
ウムスズ、13……リード線、14……オーミツ
ク電極、15……焼成容器ボート、16……蓋の
孔、17……焼成容器の蓋。
FIGS. 1a and 1b show the first embodiment of the present invention.
A diagram showing the CdTe thin film manufacturing method, Figure 1c is a cross-sectional view of a solar cell showing the second embodiment, Figure 2 is a cross-sectional view of a typical tandem solar cell, and Figure 3 is a CdTe film thickness and light transmission. Figures 4 and 5, which show the relationship with the rate, are diagrams showing the boat and lid of the firing vessel used during CdTe sintering. 1...Glass substrate, 2...Molybdenum thin film, 3
... Indium copper selenide, 4 ... Cadmium sulfide, 5 ... Indium tin oxide, 6 ... Cadmium telluride, 7 ... Incident light, 8 ... CdS sintered film, 9 ... Dense CdTe film, 10 ... porous
CdTe film, 11... Cu thin film, 12... Indium tin oxide, 13... Lead wire, 14... Ohmic electrode, 15... Firing container boat, 16... Lid hole, 17... Firing container lid.

Claims (1)

【特許請求の範囲】 1 Cd粉末とTe粉末との混合物を水中であらか
じめ微粉末に粉砕させてCdTeを含むCd、Teの
混合物を形成させて乾燥した後、粘結剤を添加し
てペースト状にしたものを支持基板上に塗布し、
それを複数個の開孔を有する焼成容器内で焼結す
ることにより、支持基板に接して薄い緻密な
CdTeもしくはCd、Teを含む第1の化合物半導
体膜と、さらにその上に多孔質なCdTeもしくは
Cd、Teを含む第2の化合物半導体膜を形成し、
その後多孔質なCdTeもしくはCd、Teを含む第
2の化合物半導体膜を除去し、厚さ0.5〜3μmの
テルル化カドミウム薄膜を形成することを特徴と
するタンデム型太陽電池の上部素子用テルル化カ
ドミウム薄膜の製造方法。 2 支持基板として、ガラス基板上にCdS粉末も
しくはそれを含む粉末にCdCl2と粘結剤を加えた
ペーストを印刷焼結した粘結膜を使用することを
特徴とする特許請求の範囲第1項記載のテルル化
カドミウム薄膜の製造方法。 3 第1の化合物半導体膜厚を、この膜の焼結時
に使用する複数個の開孔を有する焼成容器の開孔
の面積の総和の焼成される被焼結膜面積に対する
比率で調節することを特徴とする特許請求の範囲
第1項記載のテルル化カドミウム薄膜の製造方
法。 4 第1の化合物半導体膜厚を、同膜焼結時の温
度で調節することを特徴とする特許請求の範囲第
1項記載のテルル化カドミウム薄膜の製造方法。 5 第2の化合物半導体膜を溶液中で超音波をあ
て除去することを特徴とする特許請求の範囲第1
項記載のテルル化カドミウム薄膜の製造方法。 6 第2の化合物半導体膜をブラシ洗浄を含む機
械的手法によつて除去することを特徴とする特許
請求の範囲第1項記載のテルル化カドミウム薄膜
の製造方法。 7 第2の化合物半導体膜を硝酸を含む化学的エ
ツチング法によつて除去することを特徴とする特
許請求の範囲第1項記載のテルル化カドミウム薄
膜の製造方法。
[Claims] 1. A mixture of Cd powder and Te powder is pre-pulverized into fine powder in water to form a mixture of Cd and Te containing CdTe, and after drying, a binder is added to form a paste. Coat it on the supporting substrate,
By sintering it in a firing container with multiple holes, a thin, dense layer is formed in contact with the support substrate.
A first compound semiconductor film containing CdTe or Cd, Te, and a porous CdTe or
forming a second compound semiconductor film containing Cd and Te;
The second compound semiconductor film containing porous CdTe or Cd or Te is then removed to form a cadmium telluride thin film with a thickness of 0.5 to 3 μm.Cadmium telluride for upper element of tandem solar cell Method for manufacturing thin films. 2. A caking film obtained by printing and sintering CdS powder or a paste containing CdS powder, CdCl 2 and a binding agent on a glass substrate is used as the supporting substrate, as described in claim 1. A method for producing a cadmium telluride thin film. 3. The thickness of the first compound semiconductor film is adjusted by the ratio of the total area of the openings of a firing container having a plurality of openings used when sintering the film to the area of the film to be sintered. A method for producing a cadmium telluride thin film according to claim 1. 4. The method for producing a cadmium telluride thin film according to claim 1, wherein the thickness of the first compound semiconductor film is adjusted by the temperature at which the film is sintered. 5 Claim 1, characterized in that the second compound semiconductor film is removed by applying ultrasonic waves in a solution.
A method for producing a cadmium telluride thin film as described in . 6. The method for producing a cadmium telluride thin film according to claim 1, wherein the second compound semiconductor film is removed by a mechanical method including brush cleaning. 7. The method for producing a cadmium telluride thin film according to claim 1, wherein the second compound semiconductor film is removed by a chemical etching method containing nitric acid.
JP62222317A 1987-09-04 1987-09-04 Manufacture of cadmium telluride thin film Granted JPS6464370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62222317A JPS6464370A (en) 1987-09-04 1987-09-04 Manufacture of cadmium telluride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62222317A JPS6464370A (en) 1987-09-04 1987-09-04 Manufacture of cadmium telluride thin film

Publications (2)

Publication Number Publication Date
JPS6464370A JPS6464370A (en) 1989-03-10
JPH054826B2 true JPH054826B2 (en) 1993-01-20

Family

ID=16780464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62222317A Granted JPS6464370A (en) 1987-09-04 1987-09-04 Manufacture of cadmium telluride thin film

Country Status (1)

Country Link
JP (1) JPS6464370A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139814A (en) * 1987-07-11 1992-08-18 Usui Kokusai Sangyo Kaisha Method of manufacturing metal pipes coated with tin or tin based alloys
CN102392282B (en) * 2011-11-26 2014-02-12 济南大学 Method for electrochemical preparation of cadmium telluride semiconductor film under alkaline water phase condition

Also Published As

Publication number Publication date
JPS6464370A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
Hodes et al. Painted, polycrystalline thin film photoelectrodes for photoelectrochemical solar cells
JP5837564B2 (en) Method for producing chalcogen-containing light-absorbing structure and photovoltaic device
US6127202A (en) Oxide-based method of making compound semiconductor films and making related electronic devices
JP4969785B2 (en) Chalcopyrite solar cell and method for manufacturing the same
EP1784871B1 (en) Method for producing a thin-film chalcopyrite compound
WO1997045880A1 (en) METHOD FOR FORMING CdTe FILM AND SOLAR BATTERY USING THE FILM
Sebastian et al. A photodetector based on ZnCdS nanoparticles in a CdS matrix formed by screen printing and sintering of CdS and ZnCl2
TWI455333B (en) Solar cell
JP4177480B2 (en) Compound semiconductor film and related electronic device manufacturing method
CN109524553B (en) Liquid film quick-drying creep-inhibiting in-situ crystallization preparation method of suede uniform perovskite film
CN107331774B (en) Novel perovskite solar cell structure and preparation method
CN112054074B (en) Photoelectric detector array and preparation method thereof, photoelectric detector and preparation method thereof
JPH054826B2 (en)
CN112234144B (en) Preparation method of perovskite microcrystalline film and solar cell device
CA3022214C (en) A method for producing a photovoltaic device
JPH01181477A (en) Manufacture of transparent electrode for cdte solar battery
JPH01168073A (en) Manufacture of photovoltaic device
TWI595680B (en) Method for preparing copper indium gallium diselenide/disulfide (cigs) nanoparticles,cigs nanoparticles prepared by the process and photovoltaic device based on it
JPH05234894A (en) Method and apparatus for manufacturing chalcopyrite type compound thin film
JPH0456172A (en) Method for forming thin cuinse2 film
CN116072748B (en) Based on CuAlO 2 Photovoltaic cell of/Si and preparation method
JP2523734B2 (en) Manufacturing method of photovoltaic device
JP4666734B2 (en) Photoelectric conversion device
JP3627952B2 (en) Manufacturing method of semiconductor film for solar cell and solar cell using the same
WO2012115267A1 (en) Photoelectric conversion element and photoelectric conversion device