JPH0548126A - Photoelectric conversion element and its manufacture - Google Patents

Photoelectric conversion element and its manufacture

Info

Publication number
JPH0548126A
JPH0548126A JP3200186A JP20018691A JPH0548126A JP H0548126 A JPH0548126 A JP H0548126A JP 3200186 A JP3200186 A JP 3200186A JP 20018691 A JP20018691 A JP 20018691A JP H0548126 A JPH0548126 A JP H0548126A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
conversion element
type amorphous
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3200186A
Other languages
Japanese (ja)
Other versions
JP2758741B2 (en
Inventor
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3200186A priority Critical patent/JP2758741B2/en
Publication of JPH0548126A publication Critical patent/JPH0548126A/en
Application granted granted Critical
Publication of JP2758741B2 publication Critical patent/JP2758741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a basic structure for manufacturing an inexpensive photoelectric conversion element and the manufacturing method of the conversion element. CONSTITUTION:This photoelectric conversion element is formed by successively forming an i-type amorphous silicon layer 3, p-type amorphous silicon layer 4, and transparent conductive film 5 on a substrate 1 after n-type crystalline silicon powder 6 is stuck to the surface of the substrate 1 by melting a low- melting point metal 2. When such structure is used, an inexpensive photoelectric conversion element can be manufactured, because the need of a crystalline silicon substrate which has been an obstacle in reducing the cost of photoelectric conversion elements can be eliminated. In addition, the area and degree of integration of the element can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶半導体粉末を用い
た光電変換素子及びその製造方法に関し、安価な光電変
換素子の製造を可能とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element using a crystalline semiconductor powder and a method for manufacturing the same, which makes it possible to manufacture an inexpensive photoelectric conversion element.

【0002】[0002]

【従来の技術】太陽電池、受光素子、光センサー等の光
電変換素子は単結晶基板を用いたもの、多結晶基板を用
いたもの、アモルファスを用いたものなどがあるが、こ
れらには一長一短がある。すなわち、単結晶基板を用い
たものは、高性能であるが価格も高い。アモルファスを
用いたものは、軽量で折曲げることもでき価格も安い
が、性能では劣り信頼性の点でも問題がある。多結晶基
板を用いたものは性能、価格ともに上記のものの中間に
位置するが、それでも十分に低価格ではない。
2. Description of the Related Art Photoelectric conversion elements such as solar cells, light receiving elements, and optical sensors include those using a single crystal substrate, those using a polycrystalline substrate, and those using an amorphous material, but these have advantages and disadvantages. is there. That is, the one using a single crystal substrate has high performance but is expensive. Amorphous materials are lightweight, can be bent, and are inexpensive, but have poor performance and are problematic in terms of reliability. Although the one using a polycrystalline substrate is in the middle of the above in performance and price, it is still not sufficiently low in price.

【0003】これに対し、光電変換素子の一例である太
陽電池においては、高性能で低価格の太陽電池を実現す
るために、単結晶半導体や多結晶半導体の粉末を用いた
太陽電池が考えられている。これは裏面電極の形成され
た基板上に単結晶半導体粉末、あるいは多結晶半導体粉
末を密に並べ、この半導体粉末内の一部に不純物をドー
プしてpn接合を形成したものである。
On the other hand, in a solar cell which is an example of a photoelectric conversion element, a solar cell using a powder of a single crystal semiconductor or a polycrystalline semiconductor is considered in order to realize a high performance and low cost solar cell. ing. In this method, a single crystal semiconductor powder or a polycrystalline semiconductor powder is densely arranged on a substrate on which a back electrode is formed, and impurities are partially doped in the semiconductor powder to form a pn junction.

【0004】[0004]

【発明が解決しようとする課題】従来の単結晶基板また
は多結晶基板を用いた光電変換素子では、素子として必
要な厚さ以上の基板が用いられており、これが不必要に
価格を上げる原因となっていた。これに対し、単結晶ま
たは多結晶半導体粉末を用いた光電変換素子では、単結
晶または多結晶基板を用いたもののように無駄に材料を
用いることがなく低価格化が可能である。
In a conventional photoelectric conversion element using a single crystal substrate or a polycrystalline substrate, a substrate having a thickness greater than that required for the element is used, which causes an unnecessary increase in cost. Was becoming. On the other hand, in the photoelectric conversion element using the single crystal or polycrystalline semiconductor powder, unlike the one using the single crystal or polycrystalline substrate, it is possible to reduce the cost without wastefully using the material.

【0005】しかしながら、従来の光電変換素子の一例
である結晶半導体粉末を用いた太陽電池は接合形成に不
純物拡散による高温プロセスを用いることや実際に素子
として形成する場合には表面での電極の取り出しや、表
面電極と裏面電極との絶縁などの問題を十分解決してい
なかった。
However, a solar cell using a crystalline semiconductor powder, which is an example of a conventional photoelectric conversion element, uses a high temperature process by impurity diffusion for junction formation, and in the case of actually forming it as an element, extraction of electrodes on the surface is taken out. Also, problems such as insulation between the front surface electrode and the back surface electrode have not been sufficiently solved.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
に本発明は、第一導電型の結晶半導体粉末上にi型のア
モルファス半導体層、第二導電型のアモルファス半導体
層が順次形成されていることを特徴とする光電変換素子
を提供する。
In order to achieve the above object, the present invention comprises the steps of sequentially forming an i-type amorphous semiconductor layer and a second conductivity type amorphous semiconductor layer on a first conductivity type crystalline semiconductor powder. A photoelectric conversion element characterized by being provided.

【0007】基板上に低融点金属層を形成し、該低融点
金属層上に第一導電型の結晶半導体粉末を密に配置し、
上記低融点金属層を加熱して上記低融点金属層に上記結
晶半導体粉末を固定し、該結晶半導体粉末上にi型のア
モルファス半導体層、第二導電型のアモルファス半導体
層が順次形成されていることを特徴とする上記本発明光
電変換素子の製造方法を提供する。
A low melting point metal layer is formed on a substrate, and first-conductivity-type crystalline semiconductor powder is densely arranged on the low melting point metal layer,
The low melting point metal layer is heated to fix the crystalline semiconductor powder to the low melting point metal layer, and an i-type amorphous semiconductor layer and a second conductivity type amorphous semiconductor layer are sequentially formed on the crystalline semiconductor powder. A method for manufacturing the photoelectric conversion element of the present invention is provided.

【0008】[0008]

【作用】本発明の光電変換素子は、基本的には第一導電
型の結晶半導体粉末1個とこの上に形成されたi型のア
モルファス半導体層、第二導電型のアモルファス半導体
層とで1つの光電変換素子として働き、キャリアは積層
方向に移動する。そして、これら基本素子が並列または
直列となるように電極により接続されて大面積の光電変
換素子として用いられる。
The photoelectric conversion element of the present invention basically comprises one crystal semiconductor powder of the first conductivity type, an i-type amorphous semiconductor layer formed thereon, and an amorphous semiconductor layer of the second conductivity type. It functions as one photoelectric conversion element, and the carrier moves in the stacking direction. Then, these basic elements are connected by electrodes in parallel or in series and used as a large-area photoelectric conversion element.

【0009】本発明の製造方法では、まず低融点金属層
により第一導電型の結晶半導体粉末(例えばn型Si)
が固定され、i型のアモルファス半導体層と第二導電型
のアモルファス半導体層(例えばp型アモルファスSi
層)との接合により表面電極が裏面電極である基板面と
直接接触するのが防がれる。基板面には結晶半導体粉末
に接続される裏面電極が形成されるか、又は基板自体が
裏面電極となっており、アモルファス半導体層により接
合を形成する際に、結晶半導体粉末のすき間によりこの
裏面電極にアモルファス半導体層が短絡するのを防ぐた
めにi型のアモルファス半導体層と第二導電型のアモル
ファス半導体層(例えばp型アモルファスSi層)との接
合が設けられている。そして、本製造方法によれば、結
晶半導体粉末からなる層とアモルファス半導体層とがこ
の順で基板上に形成された大面積の光電変換素子が形成
される。
In the manufacturing method of the present invention, first, a crystalline semiconductor powder of the first conductivity type (for example, n-type Si) is formed by the low melting point metal layer.
Is fixed and the i-type amorphous semiconductor layer and the second conductivity type amorphous semiconductor layer (for example, p-type amorphous Si
The bonding with the layer prevents the front electrode from coming into direct contact with the substrate surface, which is the back electrode. A backside electrode connected to the crystalline semiconductor powder is formed on the substrate surface, or the substrate itself serves as the backside electrode, and this backside electrode is formed due to the gap of the crystalline semiconductor powder when the junction is formed by the amorphous semiconductor layer. In order to prevent the amorphous semiconductor layer from short-circuiting, a junction between the i-type amorphous semiconductor layer and the second conductivity type amorphous semiconductor layer (for example, p-type amorphous Si layer) is provided. Then, according to the present manufacturing method, a large-area photoelectric conversion element in which a layer made of crystalline semiconductor powder and an amorphous semiconductor layer are formed in this order on the substrate is formed.

【0010】[0010]

【実施例】以下実施例によって本発明を具体的に説明す
る。
The present invention will be described in detail with reference to the following examples.

【0011】実施例1 図1は本発明による太陽電池素子の製造工程を説明する
図である。まず、基板1上に約20μm厚の低融点金属膜
2を形成する(図1(a)、(b))。基板1にはステンレス
を、低融点金属膜2にはハンダを用いた。この場合、基
板1の材質としては200℃〜300℃程度の温度に耐えるも
のであれば良く、裏面電極を兼ねさせるために導電性材
料か又は導電性の金属膜で覆われたものとする。低融点
金属としてはSn、In、Zn等の単体またはハンダ等の合金
でもよい。次に、低融点金属膜2上に平均粒径が50μm
のn型単結晶又は多結晶のシリコン粉末6を密に1層な
いし2層付着させる(図1(c))。粉末結晶の大きさは
ライフタイムと光の吸収係数、利用波長等によって適宜
決定する。結晶シリコンの大きさは50μm程度のものが
良いが、これより小さくてもかまわない。尚、粉末の形
状は球形である必要はなく、どのような形状のものであ
ってもよい。また粒径が異なるものが混在していても支
障はない。
Example 1 FIG. 1 is a diagram for explaining a manufacturing process of a solar cell element according to the present invention. First, the low melting point metal film 2 having a thickness of about 20 μm is formed on the substrate 1 (FIGS. 1A and 1B). Stainless steel was used for the substrate 1 and solder was used for the low melting point metal film 2. In this case, the material of the substrate 1 may be one that can withstand a temperature of about 200 ° C. to 300 ° C., and it is covered with a conductive material or a conductive metal film to serve also as a back electrode. The low melting point metal may be a simple substance such as Sn, In, or Zn, or an alloy such as solder. Next, the average particle size is 50 μm on the low melting point metal film 2.
One or two layers of the n-type single crystal or polycrystal silicon powder 6 are densely adhered (FIG. 1 (c)). The size of the powder crystal is appropriately determined according to the lifetime, the absorption coefficient of light, the wavelength used, and the like. The size of the crystalline silicon is preferably about 50 μm, but it may be smaller than this. The shape of the powder does not have to be spherical and may be any shape. Also, there is no problem even if particles having different particle sizes are mixed.

【0012】次に、低融点金属2を溶融し、n型結晶シ
リコン粉末6を裏面電極となる基板1に低融点金属膜2
を介して固定する(図1(d))。次に、基板温度200℃で
i型アモルファスシリコン層3を形成する(図1
(e))。i型アモルファスシリコン層はあまり厚すぎる
と効率が低下し、余り薄すぎると表面電極と裏面電極が
短絡するため、数100Åが望ましい。
Next, the low melting point metal 2 is melted, and the n-type crystalline silicon powder 6 is applied to the substrate 1 serving as the back electrode to form the low melting point metal film 2
It is fixed via (Fig. 1 (d)). Next, the i-type amorphous silicon layer 3 is formed at a substrate temperature of 200 ° C. (see FIG. 1).
(e)). If the i-type amorphous silicon layer is too thick, the efficiency is reduced, and if it is too thin, the front electrode and the back electrode are short-circuited.

【0013】次に、基板温度200℃でp型アモルファス
シリコン層4を形成する(図1(f))。p型アモルファ
スシリコン層の膜厚は100Å〜200Åが望ましい。これに
よりp型アモルファスシリコンとn型結晶シリコンによる
ヘテロ接合が形成される。最後に、アモルファスシリコ
ン層4上に透明導電膜5を形成する(図1(g))。必要
によりこの上に適宜金属の集電極を形成して大面積の太
陽電池が完成する。
Next, a p-type amorphous silicon layer 4 is formed at a substrate temperature of 200 ° C. (FIG. 1 (f)). The film thickness of the p-type amorphous silicon layer is preferably 100Å to 200Å. As a result, a heterojunction composed of p-type amorphous silicon and n-type crystalline silicon is formed. Finally, the transparent conductive film 5 is formed on the amorphous silicon layer 4 (FIG. 1 (g)). If necessary, a metal collector electrode is appropriately formed on this to complete a large-area solar cell.

【0014】本太陽電池では、結晶シリコン粉末6から
なる層の横方向のキャリアーの移動が阻害されている
が、この構造の太陽電池ではキャリアーの膜厚方向の移
動が効率を殆ど決めているため、効率はこの層を単一の
結晶シリコン層で形成した場合と殆ど変わるところがな
い。本実施例では全工程を通じて基板温度が300℃以下
で形成できるため、不純物を高温で拡散して接合を形成
するのに比べて基板の材質に対する制限が緩和され、種
々の基板を用いることができる。また、製造エネルギー
も少なくて済む。
In this solar cell, the movement of carriers in the lateral direction of the layer made of crystalline silicon powder 6 is hindered. However, in the solar cell of this structure, the movement of carriers in the film thickness direction almost determines the efficiency. The efficiency is almost the same as when this layer is formed of a single crystalline silicon layer. In this embodiment, since the substrate temperature can be formed at 300 ° C. or lower throughout the entire process, restrictions on the material of the substrate can be relaxed and various substrates can be used as compared with the case where impurities are diffused at a high temperature to form a junction. .. Also, it requires less manufacturing energy.

【0015】実施例2 図2は本発明第2実施例の太陽電池の製造工程を説明す
る図である。本実施例は直列接続構造の太陽電池モジュ
ールの製造方法である。まず、基板1としてはガラス、
プラスチック等の絶縁性ないし絶縁物で覆われたものを
用いる(図2(a))。ここではガラスを用いた。この基
板1上に低融点金属膜2を短冊状に形成する(同図
(b))。これは裏面電極となる。
Embodiment 2 FIG. 2 is a diagram for explaining a manufacturing process of a solar cell according to a second embodiment of the present invention. The present embodiment is a method for manufacturing a solar cell module having a series connection structure. First, the substrate 1 is glass,
Use an insulating or insulating material such as plastic (Fig. 2 (a)). Here, glass was used. The low melting point metal film 2 is formed in a strip shape on the substrate 1 (see FIG.
(b)). This will be the back electrode.

【0016】次に、平均粒形50μmのn型の結晶シリコン
粉末6を配置し(図2(c))、低融点金属膜2を溶融し
て接着する(図2(d))。次に、基板温度200℃でi型ア
モルファスシリコン層3を、結晶シリコン粉末上面に形
成する。図2で表されるように金属膜の片側端面を覆う
構造となるように選択的に形成する(図2(e))。次
に、基板温度200℃でp型アモルファスシリコン層4を
結晶シリコン粉末6の上部に選択的に形成する。(図2
(f))。p型アモルファスシリコン層の膜厚は100Å〜20
0Åが望ましい。これによりアモルファスシリコンと結
晶シリコンによるヘテロ接合が形成される。
Next, n-type crystalline silicon powder 6 having an average grain shape of 50 μm is placed (FIG. 2 (c)), and the low melting point metal film 2 is melted and adhered (FIG. 2 (d)). Next, the i-type amorphous silicon layer 3 is formed on the upper surface of the crystalline silicon powder at a substrate temperature of 200 ° C. As shown in FIG. 2, the metal film is selectively formed so as to have a structure that covers one end surface of the metal film (FIG. 2E). Next, the p-type amorphous silicon layer 4 is selectively formed on the crystalline silicon powder 6 at the substrate temperature of 200 ° C. (Fig. 2
(f)). The thickness of p-type amorphous silicon layer is 100Å ~ 20
0Å is desirable. As a result, a heterojunction of amorphous silicon and crystalline silicon is formed.

【0017】最後に、透明電極5をp型アモルファスシ
リコンの上面から隣接する短冊状素子の下部電極2の端
面露出部に接続するように選択的に形成し、各短冊状に
形成された各素子が直列に接続されるようにする(図2
(g))。以上のようにして隣り合った太陽電池素子が直
列に接続された太陽電池モジュールが形成される。
Finally, the transparent electrode 5 is selectively formed so as to be connected from the upper surface of the p-type amorphous silicon to the exposed end surface of the lower electrode 2 of the adjacent strip-shaped element, and each strip-shaped element is formed. Are connected in series (Fig. 2
(g)). As described above, a solar cell module in which adjacent solar cell elements are connected in series is formed.

【0018】以上の2つの実施例では結晶シリコン粉末
をn型としたがp型を用いても良く、この場合はアモルフ
ァスシリコン層はn型となる。
Although the crystalline silicon powder is n-type in the above two embodiments, p-type may be used. In this case, the amorphous silicon layer is n-type.

【0019】[0019]

【発明の効果】本発明の光電変換素子は結晶半導体粉末
の表面にアモルファス半導体層により接合を形成するの
で、低温で接合を形成することができ、基板として可と
う性基板を用いることも可能となる。さらに、結晶半導
体粉末を用い、アモルファス層も薄くてよいので、結晶
基板を使った素子に比べて使用材料が少なく低価格化が
可能である。
Since the photoelectric conversion device of the present invention forms a bond on the surface of the crystalline semiconductor powder by the amorphous semiconductor layer, the bond can be formed at a low temperature, and a flexible substrate can be used as the substrate. Become. Further, since the crystalline semiconductor powder is used and the amorphous layer may be thin, less material is used and the cost can be reduced as compared with the element using the crystal substrate.

【0020】また、本発明により形成された太陽電池は
これまでアモルファス太陽電池で問題となっている光劣
化が生じないために、高信頼性の素子を作成出来る。
Further, the solar cell formed according to the present invention does not suffer from the photodegradation which has been a problem in the amorphous solar cell so far, so that a highly reliable element can be produced.

【0021】一方、本発明の製造方法によれば、大面積
の太陽電池素子を製造することができ、また薄膜集積化
技術の応用により直列接続が容易であり、必要な電圧出
力が得られるモジュールを作ることが出来る。
On the other hand, according to the manufacturing method of the present invention, a solar cell device having a large area can be manufactured, and the series connection is easy due to the application of the thin film integration technology, and the required voltage output can be obtained in the module. Can be made.

【0022】尚、本発明は広く光電変換装置に応用で
き、微細な光電変換装置として使用することもできる。
The present invention can be widely applied to photoelectric conversion devices and can also be used as fine photoelectric conversion devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の光電変換素子の製造工程を説
明する図である。
FIG. 1 is a diagram illustrating a manufacturing process of a photoelectric conversion element of Example 1 of the present invention.

【図2】本発明実施例2の光電変換素子の製造工程を説
明する図である。
FIG. 2 is a diagram illustrating a manufacturing process of the photoelectric conversion element according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 低融点金属膜 3 i型アモルファスシリコン層 4 p型アモルファスシリコン層 5 透明導電膜 6 結晶シリコン粉末 1 substrate 2 low melting point metal film 3 i-type amorphous silicon layer 4 p-type amorphous silicon layer 5 transparent conductive film 6 crystalline silicon powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型の結晶半導体粉末上にi型の
アモルファス半導体層、第二導電型のアモルファス半導
体層が順次形成されていることを特徴とする光電変換素
子。
1. A photoelectric conversion element, comprising an i-type amorphous semiconductor layer and a second-conductivity type amorphous semiconductor layer sequentially formed on a first-conductivity-type crystalline semiconductor powder.
【請求項2】 基板上に形成された低融点金属層上に第
一導電型の結晶半導体粉末を配置し、該金属層を加熱し
て溶融させ結晶半導体粉末を金属層上に固定した後に、
該結晶半導体粉末上にi型のアモルファス半導体層、第
二導電型のアモルファス半導体層を順次形成することを
特徴とする請求項1の光電変換素子の製造方法。
2. A first-conductivity-type crystalline semiconductor powder is placed on a low melting point metal layer formed on a substrate, and the metallic layer is heated and melted to fix the crystalline semiconductor powder onto the metallic layer,
The method for producing a photoelectric conversion element according to claim 1, wherein an i-type amorphous semiconductor layer and a second conductivity type amorphous semiconductor layer are sequentially formed on the crystalline semiconductor powder.
JP3200186A 1991-08-09 1991-08-09 Photoelectric conversion element and method for manufacturing the same Expired - Fee Related JP2758741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200186A JP2758741B2 (en) 1991-08-09 1991-08-09 Photoelectric conversion element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200186A JP2758741B2 (en) 1991-08-09 1991-08-09 Photoelectric conversion element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0548126A true JPH0548126A (en) 1993-02-26
JP2758741B2 JP2758741B2 (en) 1998-05-28

Family

ID=16420228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200186A Expired - Fee Related JP2758741B2 (en) 1991-08-09 1991-08-09 Photoelectric conversion element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2758741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261301A (en) * 2001-02-28 2002-09-13 Kyocera Corp Photoelectric converter
JP2007221112A (en) * 2006-01-18 2007-08-30 Semiconductor Energy Lab Co Ltd Photoelectric converter and its manufacturing method
US8049103B2 (en) 2006-01-18 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258078A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Amorphous photoelectric conversion device
JPH01110776A (en) * 1987-10-23 1989-04-27 Mitsubishi Electric Corp Manufacture of semiconductor polycrystalline thin film
JPH0273671A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Manufacture of photoelectric transfer element
JPH0321079A (en) * 1989-06-19 1991-01-29 Mitsubishi Electric Corp Polycrystalline solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258078A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Amorphous photoelectric conversion device
JPH01110776A (en) * 1987-10-23 1989-04-27 Mitsubishi Electric Corp Manufacture of semiconductor polycrystalline thin film
JPH0273671A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Manufacture of photoelectric transfer element
JPH0321079A (en) * 1989-06-19 1991-01-29 Mitsubishi Electric Corp Polycrystalline solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261301A (en) * 2001-02-28 2002-09-13 Kyocera Corp Photoelectric converter
JP2007221112A (en) * 2006-01-18 2007-08-30 Semiconductor Energy Lab Co Ltd Photoelectric converter and its manufacturing method
US8049103B2 (en) 2006-01-18 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8729386B2 (en) 2006-01-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2758741B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US6548751B2 (en) Thin film flexible solar cell
JP3203078B2 (en) Photovoltaic element
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
KR100880946B1 (en) Solar Cell and Manufacturing Method thereof
US20100031999A1 (en) Solar cell module
JP2003515934A (en) Diode structures, especially for thin-film solar cells
JP2758749B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2641800B2 (en) Solar cell and method of manufacturing the same
JP3992126B2 (en) Manufacturing method of solar cell
JPH0536997A (en) Photovoltaic device
JPS5846074B2 (en) Method of manufacturing photovoltaic device
US4706376A (en) Method of making semiconductor photoelectric conversion device
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JP3209700B2 (en) Photovoltaic device and module
JPH0945946A (en) Solar cell and fabrication thereof
JP3653379B2 (en) Photovoltaic element
JPH1012903A (en) Photoelectric transducer
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
JPH07105513B2 (en) Photovoltaic device
JP3249619B2 (en) Solar cell
JPH03270177A (en) Semiconductor photodetection device and its manufacture
JPS6143870B2 (en)
JPH09181343A (en) Photoelectric conversion device
JP4666734B2 (en) Photoelectric conversion device
JP3484852B2 (en) Solar cell manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees