JPH0547844B2 - - Google Patents

Info

Publication number
JPH0547844B2
JPH0547844B2 JP63115809A JP11580988A JPH0547844B2 JP H0547844 B2 JPH0547844 B2 JP H0547844B2 JP 63115809 A JP63115809 A JP 63115809A JP 11580988 A JP11580988 A JP 11580988A JP H0547844 B2 JPH0547844 B2 JP H0547844B2
Authority
JP
Japan
Prior art keywords
hot water
valve body
temperature
valve
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63115809A
Other languages
Japanese (ja)
Other versions
JPS6486218A (en
Inventor
Yoshio Yamamoto
Shuji Yamanochi
Yukio Nagaoka
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11580988A priority Critical patent/JPS6486218A/en
Publication of JPS6486218A publication Critical patent/JPS6486218A/en
Publication of JPH0547844B2 publication Critical patent/JPH0547844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Flow Control (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、湯と水を混合して給湯を行なう湯水
混合式の給湯温度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hot water mixing type hot water supply temperature control device that supplies hot water by mixing hot water and water.

従来の技術 従来、この種の給湯温度制御装置においては、
貯湯式の電気温水やボイラーでは蓄積熱量を多く
する為に一般に約80℃の高温湯を貯めているが使
用する湯温は40℃位が最も多かつた。従つて、端
末に設けたミキシングバルブで水と混合操作して
適温を得るのであるが、任意の湯温で任意の湯量
を得るには面倒な調整を必要としていた。
Conventional technology Conventionally, in this type of hot water temperature control device,
Storage-type electric hot water and boilers generally store hot water at a temperature of about 80℃ in order to increase the amount of heat stored, but the most common hot water temperature used was around 40℃. Therefore, a mixing valve installed in the terminal is used to mix water with water to obtain the appropriate temperature, but in order to obtain a desired amount of hot water at a desired temperature, troublesome adjustments are required.

すなわち、ミキシングバルブが使用者自身がハ
ンルを調節し、手で触れてして温度調節を行なう
構造であつたため、各種の課題を有していた。
That is, since the mixing valve has a structure in which the user adjusts the handle and controls the temperature by touching it with his/her hand, there are various problems.

発明が解決しようとする課題 上記した従来の温度制御装置では、特に、他の
水栓の開閉による水圧変化があるとその都度調整
しなければならなかつた。又、これら調整操作を
行う間の高温湯は無駄に消費されたことになる。
更に、適温を得ることが優先されるため必要以上
に湯を流す傾向があるので、エネルギー節約の面
からも問題が多かつた。
Problems to be Solved by the Invention In the conventional temperature control device described above, the temperature control device had to be adjusted each time there was a change in water pressure due to opening and closing of other faucets. Moreover, the hot water used during these adjustment operations is wasted.
Furthermore, because priority is given to obtaining an appropriate temperature, there is a tendency to use more hot water than necessary, which poses many problems in terms of energy conservation.

本発明はこのような従来の課題を解決するもの
であり、使い勝手が良く、温度が安定し、省エネ
ルギーが図れる給湯温度制御装置を提供すること
を目的としている。
The present invention is intended to solve these conventional problems, and aims to provide a hot water temperature control device that is easy to use, has stable temperature, and can save energy.

課題を解決するための手段 上記の課題を解決するために本発明の給湯温度
制御装置は、湯と水の混合比率を調節する湯側弁
体と、水側弁体と、少なくとも水側弁の周囲に取
り付けられ弁体の対向する弁座に上流側から臨ん
だダイヤフラムと、このダイヤフラムにより主流
路と仕切られて形成された背圧室と、この背圧室
に弁体の上流側から分岐されて連通するとともに
弁体の下流側に再び合流する連通孔と、この連通
孔の開度を調節する調節弁と、この調節弁を連続
的に駆動する駆動手段と、混合湯温を設定する温
度設定器と、湯側弁体と水側弁体で調節された湯
と水が合流して流れる給湯回路に設けられ、かつ
連通孔の給湯回路への合流点の下流側に設けられ
た混合湯温を検出する温度検出器と、前記温度設
定器と温度検出器の信号を比較して前記駆動手段
を制御する制御器とを備えて構成するものであ
る。
Means for Solving the Problems In order to solve the above problems, the hot water supply temperature control device of the present invention includes a hot water side valve body for adjusting the mixing ratio of hot water and water, a water side valve body, and at least a water side valve body. A diaphragm attached to the periphery facing the valve seat facing the valve body from the upstream side, a back pressure chamber separated from the main flow path by this diaphragm, and a back pressure chamber branched from the upstream side of the valve body. A communication hole that communicates with the valve body and rejoins the downstream side of the valve body, a control valve that adjusts the opening degree of this communication hole, a driving means that continuously drives this control valve, and a temperature that sets the temperature of the mixed water. A mixed hot water system installed in a hot water circuit where hot water adjusted by a setting device, a hot water side valve body, and a water side valve body flows together, and is installed downstream of the point where the communication hole joins the hot water circuit. The device includes a temperature detector that detects temperature, and a controller that compares signals from the temperature setting device and the temperature detector to control the driving means.

作 用 本発明は上記した構成により、蛇口やシヤワー
へ供給される湯温を温度検出器で検出し、温度設
定器で設定された目的温度と一致させるように制
御器で駆動手段を制御し、調節弁による背圧室の
圧力制御によつて湯側弁体と水側弁体で湯、水の
混合比率を変え、操作上の使い勝手の向上と、無
駄に消費される湯をなくし、省エネルギー化と、
的確な温度での混合の供給を達成するものであ
る。
Effects The present invention has the above-described configuration, in which the temperature of hot water supplied to the faucet or shower is detected by a temperature detector, and the controller controls the driving means so that the temperature matches the target temperature set by the temperature setting device. By controlling the pressure in the back pressure chamber using the control valve, the mixing ratio of hot water and water is changed between the hot water side valve body and the water side valve body, improving operational ease of use, eliminating wasted hot water consumption, and saving energy. and,
This achieves the supply of mixture at the correct temperature.

実施例 以下図面に基いて本発明の実施例を説明する。
第1図は本発明実施例に於ける給湯システムの構
成図、は加熱ヒータ2と貯湯タンク3から構成
された給湯熱源で、図の場合は深夜電力による電
気温水器を例として示した。給水回路4の途中に
圧力調整器5を挿入し、分流部6にて給湯熱源
を通る湯回路7と給湯熱源を通らない水回路8
に分流させる。両流路は流量比制御弁を通過し
てから合流して給湯回路10を通じて各端末の蛇
口へ給湯される。一方、端末蛇口の近傍には温度
設定器11があつて、この信号は、制御回路12
に於て、給湯回路に設けた温度検出器13からの
信号と比較されて、その差が無くなるように湯回
路7と水回路8の流量を流量比制御弁によつて
制御している。
Embodiments Embodiments of the present invention will be described below based on the drawings.
FIG. 1 is a block diagram of a hot water supply system according to an embodiment of the present invention. 1 is a hot water heat source composed of a heater 2 and a hot water storage tank 3. In the figure, an electric water heater powered by late night electricity is shown as an example. A pressure regulator 5 is inserted in the middle of the water supply circuit 4, and the water supply heat source 1 is
A hot water circuit 7 that passes through the hot water circuit 7 and a water circuit 8 that does not pass through the hot water heat source 1
Divert the flow into Both channels pass through a flow ratio control valve 9 and then merge to supply hot water to the faucets at each terminal through a hot water supply circuit 10. On the other hand, there is a temperature setting device 11 near the terminal faucet, and this signal is sent to the control circuit 12.
At this time, the signal is compared with the signal from the temperature detector 13 provided in the hot water supply circuit, and the flow rates of the hot water circuit 7 and the water circuit 8 are controlled by the flow rate ratio control valve 9 so that the difference is eliminated.

今、湯回路7の温度をTH、流量をQHと示し、
水回路8の温度をTC、流量をQCと示し、合流後
の給湯回路10での温度をT、流量Qと示し更に
温度設定器11での設定温度をTSと表わすと次
の関係がある。
Now, let the temperature of hot water circuit 7 be T H and the flow rate be Q H ,
If the temperature of the water circuit 8 is T C and the flow rate is Q C , the temperature in the hot water supply circuit 10 after merging is T and the flow rate Q, and the set temperature in the temperature setting device 11 is T S , the following relationship is obtained. There is.

THQH+TCQC−TQ ……1 QH+QC=Q ……2 次に全流量Qに対する湯回路の流量QHの比を
Kと示すなら QH=KQ ……3 QC=(1−K)Q ……4 以上の4つの式からKを求めると5式を得る。
T H Q H +T C Q C −TQ ...1 Q H +Q C =Q ...2 Next, if K is the ratio of the flow rate Q H of the hot water circuit to the total flow Q, then Q H = KQ ...3 Q C =(1-K)Q...4 When K is determined from the above four equations, 5 equations are obtained.

K=T−TC/TH−TC ……5 ここで、T=TSとすべき流量比Kは K=TS−TC/TH−TC ……6 6式となつて、設定温度TS、湯回路と水回路
の各々の温度TH、TCによつて定められることに
なる。
K=T-T C /T H -T C ...5 Here, the flow rate ratio K that should make T=T S is K=T S -T C /T H -T C ...6 , the set temperature T S , and the respective temperatures T H and T C of the hot water circuit and the water circuit.

第2図に設定温度TSによつて選ぶべきK(=
QH/Q)の値を示している。TS=THならK=1
で湯回路のみ開き、TS=TCならK=0で水回路
のみが開く。貯湯式温水器でTH=80℃とし、水
の温度が5℃からら30℃の間で変化してもシヤワ
ーとして40℃を得るには、Kは0.47から0.2の間
で変れば良いという試算が可能である。温度検出
器13の信号によつて流量比制御弁を制御する
ことは、6式で求められる流量比Kの値と自動的
に一致させるように作動していることになる。第
3図は制御ブロツク線図であつて、温度設定器1
1の信号TSと、温度検出器の信号Tによつて流
量比制御弁が制御されることを示している。
Figure 2 shows K (=
The value of Q H /Q) is shown. If T S = T H then K = 1
If T S = T C , then only the water circuit will open when K=0. In a hot water storage type water heater, T H = 80°C, and in order to obtain a shower of 40°C even if the water temperature changes between 5°C and 30°C, K needs to vary between 0.47 and 0.2. Estimation is possible. Controlling the flow rate ratio control valve 9 based on the signal from the temperature detector 13 means that the flow rate ratio control valve 9 is automatically brought into agreement with the value of the flow rate ratio K determined by Equation 6. FIG. 3 is a control block diagram showing the temperature setting device 1.
This shows that the flow ratio control valve 9 is controlled by the signal T S of 1 and the signal T of the temperature sensor.

ところで、一度、温度設定して所定の流量比で
供給するよう制御された状態から給湯蛇口の開度
を変化させた場合を考えると、供給圧が湯回路7
と水回路8で異る場合には同じ開口面積比のまま
では流量比が変化する。例えば、湯回路7側にの
み圧力調整器5を挿入し、水回路8側へ元圧を直
接加えた場合に於てはこの傾向が著しく、流量を
蛇口で調整する度に、所定流量比を維持するため
に開口比を変更する動作が必要となる。このこと
は流量比制御弁の寿命短くするのみならず、応
答遅れによる過度的温度変化も生じることにな
る。そこで、湯回路7と水回路8に対し共通の給
水回路4を設け、ここに圧力調整器5を挿入すれ
ば、両回路の分流部6から合流部14までの圧力
差は常に一致するため、蛇口開度を変えた時の流
量変化による湯温変化がない。
By the way, if we consider the case where the opening degree of the hot water faucet is changed after the temperature has been set and the hot water supply faucet is controlled to be supplied at a predetermined flow rate, the supply pressure will be lower than the hot water circuit 7.
If the opening area ratio is different in the water circuit 8, the flow rate ratio will change if the opening area ratio remains the same. For example, when the pressure regulator 5 is inserted only into the hot water circuit 7 side and the source pressure is applied directly to the water circuit 8 side, this tendency is remarkable, and each time the flow rate is adjusted with the faucet, the predetermined flow rate ratio is In order to maintain this, it is necessary to change the aperture ratio. This not only shortens the life of the flow rate ratio control valve 9 , but also causes transient temperature changes due to delayed response. Therefore, if a common water supply circuit 4 is provided for the hot water circuit 7 and the water circuit 8, and a pressure regulator 5 is inserted therein, the pressure difference from the branch section 6 to the confluence section 14 of both circuits will always be the same. There is no change in hot water temperature due to changes in flow rate when changing the faucet opening.

次に、流量比制御弁の実施例について述べ
る。第4図はパイロツト式制御弁を用いた流量比
制御弁の例を示している。湯回路7と水回路8
には合流部14の直前に同一のパイロツト式制御
弁15を設けている。ここで、主通路中に弁座1
6を設け、これと対応して弁体部を有し弁座16
に当接する弁体部よりダイヤフラム膜を上流側に
臨ませた仕切手段であるダイヤフラム弁17が開
口度を調整できるように設けられ、ダイヤフラム
弁17の仕切手段であるダイヤフラム17Aによ
り仕切られた背圧室18には、入口圧と出口圧の
差を連通孔である固定オリフイス19と調整弁で
あるパイロツト弁20で分圧して加わる。パイロ
ツト弁20はコイル21でプランジヤー22に生
じる力と制御スプリング23の力との釣合い点に
応じて、その開口度が連続的に制御される。24
はダイヤフラム弁17を閉じる方向へ附勢した主
スプリングである。
Next, an example of the flow ratio control valve 9 will be described. FIG. 4 shows an example of a flow rate ratio control valve 9 using a pilot type control valve. Hot water circuit 7 and water circuit 8
An identical pilot type control valve 15 is provided immediately before the merging section 14. Here, there is a valve seat in the main passage.
6, and a valve seat 16 having a corresponding valve body portion.
A diaphragm valve 17, which is a partitioning means, has a diaphragm membrane facing upstream from the valve body that comes into contact with the diaphragm valve 17, and is provided so that the degree of opening can be adjusted. The difference between the inlet pressure and the outlet pressure is applied to the chamber 18 by dividing the pressure through a fixed orifice 19, which is a communication hole, and a pilot valve 20, which is a regulating valve. The opening degree of the pilot valve 20 is continuously controlled according to the equilibrium point between the force generated on the plunger 22 by the coil 21 and the force of the control spring 23. 24
is a main spring that biases the diaphragm valve 17 in the closing direction.

今、コイル21への電流が零であれば制御スプ
リング23の力によつてパイロツト弁20は全閉
となる。その結果、背圧室18には供給圧が加つ
て、ダイヤフラム弁17の主通路側圧力との間に
圧力差が生じ、その圧力差による力と主スプリン
グ24の力によつてダイヤフラム弁は全閉とな
る。コイル21にわずかの電流が流れ、パイロツ
ト弁20が少し開くと、背圧室18の圧力はオリ
フイス19とパイロツト弁20との抵抗比で分圧
された値にまで低下する。ダイヤフラム弁17を
開く方向には供給圧が加つているから、この圧力
差で生じる開方向の力と、主スプリング24の力
が釣合う弁開度を保つことになる。コイル21の
電流が増加すると、パイロツト弁20の弁開度は
増加し、背圧室18の圧力は低下する。その結
果、ダイヤフラム弁17の開方向の力は増加する
から主スプリング24と釣合つて定まる弁開度も
増加している。こうして、コイル21への電流値
に応じてダイヤフラム弁17の弁開度を制御する
ことができる。このパイロツト式では、流体圧に
よつて弁開度を定めるために、パイロツト弁20
の少しの変位置がダイヤフラム弁17の大きな移
動量に変換しているし、パイロツト弁20を動か
す微少な力がダイヤフラム弁17を動かす大きな
力へ増幅するものである。従つて、直動弁方式に
比べてコイル21、プランジヤー22で構成され
るアクチエータの小型、少パワー化が可能とな
る。ここで、温度検出器13は、湯側の流量比制
御弁と水側の流量比制御弁で調節された湯と水が
合流し混合された湯と水が流れる給湯回路10に
設けられ、かつ連通孔19の主流路への合流点の
下流側に設けられているため、温度検出器13以
降に連通孔からの湯水が混ざることが無く、正確
な温度が得られる。第4図のアクチエータの他
に、モータとカムによる駆動方式も考えられる
が、これらアクチエータの少パワー化は、制御回
路12の小容量化をも可能にするものである。
Now, if the current to the coil 21 is zero, the pilot valve 20 is fully closed by the force of the control spring 23. As a result, the supply pressure is applied to the back pressure chamber 18, and a pressure difference is generated between the pressure on the main passage side of the diaphragm valve 17, and the force due to the pressure difference and the force of the main spring 24 cause the diaphragm valve to fully move. Closed. When a small amount of current flows through the coil 21 and the pilot valve 20 opens slightly, the pressure in the back pressure chamber 18 decreases to a value divided by the resistance ratio between the orifice 19 and the pilot valve 20. Since supply pressure is applied in the direction in which the diaphragm valve 17 is opened, a valve opening is maintained such that the force in the opening direction generated by this pressure difference and the force of the main spring 24 are balanced. When the current in the coil 21 increases, the opening degree of the pilot valve 20 increases and the pressure in the back pressure chamber 18 decreases. As a result, the force in the opening direction of the diaphragm valve 17 increases, so the valve opening determined in balance with the main spring 24 also increases. In this way, the valve opening degree of the diaphragm valve 17 can be controlled according to the current value to the coil 21. In this pilot type, the pilot valve 20 is used to determine the valve opening degree based on fluid pressure.
A small displacement of the diaphragm valve 17 translates into a large amount of movement of the diaphragm valve 17, and a small force that moves the pilot valve 20 is amplified into a large force that moves the diaphragm valve 17. Therefore, the actuator composed of the coil 21 and the plunger 22 can be made smaller and have less power than the direct-acting valve system. Here, the temperature detector 13 is provided in the hot water supply circuit 10 through which the hot water and water adjusted by the flow rate ratio control valve on the hot water side and the flow rate ratio control valve on the water side flow. Since the communication hole 19 is provided on the downstream side of the confluence point with the main flow path, hot water from the communication hole does not mix after the temperature sensor 13, and accurate temperature can be obtained. In addition to the actuator shown in FIG. 4, a drive system using a motor and a cam may also be considered, but reducing the power of these actuators also makes it possible to reduce the capacity of the control circuit 12.

また、ダイヤフラム弁17のダイヤフラム部に
穴が開いたり、周囲の支持がはずれても、ダイヤ
フラム部が弁部の上流側に位置しているため、流
路を弁体あるいはダイヤフラム自身で閉塞し、流
れを止めたり、流量を絞つたりすることができ
る。そして、温度検出器13で検出される温度が
変化するため、制御的に設定温度を維持しようと
して、故障していない側の弁を絞め込み、給湯を
止めたり流量を絞り込むため、故障時にいたずら
に湯や水を流し去ることがない。
Furthermore, even if a hole is made in the diaphragm part of the diaphragm valve 17 or the surrounding support is removed, since the diaphragm part is located upstream of the valve part, the flow path will be blocked by the valve body or the diaphragm itself, and the flow will not flow. can be stopped or the flow rate can be reduced. Then, as the temperature detected by the temperature detector 13 changes, in order to maintain the set temperature in a controlled manner, the valve on the non-failure side is throttled, stopping the hot water supply or reducing the flow rate, which may cause mischief in the event of a malfunction. No hot water or water is washed away.

第4図では2ケのパイロツト式制御弁で流量比
制御弁を構成しているが、これを一体化した例
を第5図で示す。パイロツト式制御弁自体は第4
図の例と同じである。ただし、パイロツト弁20
を駆動するアクチエータ25の構成はコイルとプ
ランジヤー及び制御スプリングでも良いし、モー
タとカムでも良い。この構成では合流部14が流
量比制御弁の中に含まれることになる。
In FIG. 4, the flow rate ratio control valve 9 is composed of two pilot type control valves, but FIG. 5 shows an example in which these are integrated. The pilot type control valve itself is the fourth
This is the same as the example in the figure. However, the pilot valve 20
The actuator 25 for driving may be composed of a coil, a plunger, and a control spring, or may be a motor and a cam. In this configuration, the merging section 14 is included in the flow rate ratio control valve 9 .

次に、パイロツト式制御弁方式でアクチエータ
25を1個にして流量比を制御する例を第6図に
示す。ここで水回路8側にダイヤフラム26を設
け、オリフイス19、背圧室18、パイロツト弁
20、アクチエータ25は第4図の場合と同様で
ある。そして水回路側の弁座27と湯回路側の弁
座28を同軸上に対向して設け、ダイヤフラム2
6に連動する弁体29が各々の弁座と対応してい
る。既述のように、アクチエータ25の信号入力
によつてダイヤフラム26の位置を制御できるの
で、弁体29を上下動することによつて水側と湯
側の開口度を制御できる。
Next, FIG. 6 shows an example in which the flow rate ratio is controlled using a single actuator 25 using a pilot type control valve system. Here, a diaphragm 26 is provided on the water circuit 8 side, and the orifice 19, back pressure chamber 18, pilot valve 20, and actuator 25 are the same as in the case of FIG. Then, the valve seat 27 on the water circuit side and the valve seat 28 on the hot water circuit side are provided facing each other on the same axis, and the diaphragm 2
6 corresponds to each valve seat. As described above, since the position of the diaphragm 26 can be controlled by inputting a signal from the actuator 25, the degree of opening on the water side and the hot water side can be controlled by moving the valve body 29 up and down.

今、パイロツト弁20が全閉なら水回路8が全
閉で湯回路7が全開となり、逆に、パイロツト弁
20が全開なら水回路8が全開で湯回路7が全閉
となる。パイロツト弁20が中間的な開度なら、
その開度に応じた両回路の開口比が選択される。
すなわち、アクチエータ25の1個の信号で流量
比が制御できることになつて、制御系の簡単化が
図れる。
Now, if the pilot valve 20 is fully closed, the water circuit 8 is fully closed and the hot water circuit 7 is fully open, and conversely, if the pilot valve 20 is fully open, the water circuit 8 is fully open and the hot water circuit 7 is fully closed. If the pilot valve 20 is at an intermediate opening,
The aperture ratio of both circuits is selected according to the opening degree.
That is, the flow rate ratio can be controlled with one signal from the actuator 25, and the control system can be simplified.

上記の実施例のうち特に第6図に示すような、
湯側弁体と水側弁体が弁プラグ29として一体的
に設けられ、かつ背圧室18、連通孔である固定
オリフイス19、駆動手段であるアクエータ25
が一方にだけ設けられている形式の場合、アクチ
エータ25が一個で済み、一層消費電力が低減で
きるので、電池駆動型の混合弁へ展開し易い効果
を有している。
Among the above embodiments, especially as shown in FIG.
A hot water side valve body and a water side valve body are integrally provided as a valve plug 29, and a back pressure chamber 18, a fixed orifice 19 which is a communication hole, and an actuator 25 which is a driving means.
In the case of a type in which the actuator 25 is provided only on one side, only one actuator 25 is required, and power consumption can be further reduced, so that it has the effect of being easily developed into a battery-driven mixing valve.

発明の効果 以上のように本発明の給湯温度制御装置によれ
ば、次のような効果が得られる。
Effects of the Invention As described above, according to the hot water supply temperature control device of the present invention, the following effects can be obtained.

給湯熱源を通らない水回路8からの水を混合
して供給する方式で、温度設定器11の信号に応
じて最適混合比を自動的に選択することによつ
て、給湯端末でのミキシングバルブで温度を設定
するための調整操作が不要となり、一度、温度設
定すれば蛇口開度によつて量調節を行つても温度
が変化しないため使い勝手が極めて向上する。
又、湯の流し過ぎや、調整時間中の湯の損失が無
くなるばかりでなく、高温湯を供給する時に比べ
て配管からの熱放散ロスが少くなるなど省エネル
ギー面からの効果も大きい。
This system mixes and supplies water from the water circuit 8 that does not pass through the hot water heat source 1 , and automatically selects the optimum mixing ratio according to the signal from the temperature setting device 11. There is no need for adjustment operations to set the temperature, and once the temperature is set, the temperature does not change even if the amount is adjusted by the faucet opening, greatly improving usability.
In addition, not only does it eliminate overflowing of hot water and loss of hot water during the adjustment time, but it also has great energy-saving effects, such as less heat dissipation loss from piping than when supplying high-temperature hot water.

更に、湯側弁体と側弁体を直接駆動手段で動か
す訳でなく、背圧室への連通孔を調節する調節弁
を動かすため、流体の力を利用した倍力が図れる
ので、駆動手段の消費エネルギーがなくて済む。
Furthermore, since the hot water side valve body and the side valve body are not directly moved by the driving means, but a control valve that adjusts the communication hole to the back pressure chamber is moved, boosting force can be achieved using the force of the fluid. There is no need to consume energy.

また、弁体の対向する弁座にダイヤフラムが上
流側から臨んでいるため、万が一穴開きなどで破
損しても、このダイヤフラムによつて弁座は閉塞
され、湯、水の流れを止めるか流量を絞るため、
いたずらに故障した方に流れ続けることがない。
また、湯側弁体、水側弁体で混合比が調節された
湯と水と、調節弁で調節された連通孔を通る湯、
水がすべて合流した後で温度検出器で混合湯温の
検出を行つているため、温度検出後に連通孔を通
つた湯や水が混ざることが無く、設定された通り
の混合湯温が得られる。
In addition, since the diaphragm faces the valve seat facing the valve body from the upstream side, even if the valve seat is damaged due to a hole, etc., the diaphragm will block the valve seat and stop the flow of hot water or the flow rate. In order to narrow down the
It will not continue to flow to the person who is inadvertently malfunctioning.
In addition, the hot water and water whose mixing ratio is adjusted by the hot water side valve body and the water side valve body, and the hot water that passes through the communication hole adjusted by the control valve,
Since the mixed water temperature is detected with a temperature sensor after all the water has joined, the hot water that passes through the communication hole does not mix after the temperature is detected, and the mixed water temperature as set is obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における給湯温度制
御装置の給湯システムの構成図、第2図は同流量
比制御弁に必要とされる特性図、第3図は同制御
ブロツク線図、第4図、第5図、第6図は各々流
量比制御弁の実施例を示す構成断面図である。 11……温度設定器、12……制御回路(制御
器)、13……温度検出器、17……ダイヤフラ
ム弁(湯側弁体、水側弁体)、17A……ダイヤ
フラム、18……背圧室、19……固定オリフイ
ス(連通孔)、20……パイロツト弁(調節弁)、
21……コイル(駆動手段)、25……アクチユ
エータ(駆動手段)、29……弁プラグ(湯側弁
体、水側弁体)。
Fig. 1 is a configuration diagram of a hot water supply system of a hot water temperature control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram required for the flow rate ratio control valve, Fig. 3 is a control block diagram of the same, and Fig. 3 is a diagram of the same control block diagram. FIG. 4, FIG. 5, and FIG. 6 are structural sectional views showing embodiments of the flow rate ratio control valve, respectively. 11...Temperature setting device, 12...Control circuit (controller), 13...Temperature detector, 17...Diaphragm valve (hot water side valve body, water side valve body), 17A...Diaphragm, 18...Back Pressure chamber, 19...fixed orifice (communication hole), 20...pilot valve (control valve),
21... Coil (driving means), 25... Actuator (driving means), 29... Valve plug (hot water side valve body, water side valve body).

Claims (1)

【特許請求の範囲】 1 湯と水の混合比率を調節する湯側弁体と、水
側弁体と、少なくとも前記水側弁体の周囲に取り
付けられた弁体の対向する弁座に上流側から臨ん
だダイヤフラムと、このダイヤラムにより主流路
と仕切られて形成された背圧室と、前記背圧室に
前記弁体の上流側から分岐されて連通するととも
に前記弁体の下流側に再び合流する連通孔と、こ
の連通孔の開度を調節する調節弁と、この調節弁
を連続的に駆動する駆動手段と、混合湯温を設定
する温度設定器と、前記湯側弁体と前記水側弁体
で調節された湯と水が合流して流れる給湯回路に
設けられ、かつ前記連通孔の給湯回路への合流点
の下流側に設けられた混合湯温を検出する温度検
器と、前記温度設定器と温度検出器の信号を比較
して前記駆動手段を制御する制御器を備えた給湯
温度制御装置。 2 湯側弁体と水側弁体を一体的に設け、かつ背
圧室、調節弁、駆動手段を一方にのみ設けた特許
請求の範囲第1項記載の給湯温度制御装置。
[Scope of Claims] 1. A hot water side valve body for adjusting the mixing ratio of hot water and water, a water side valve body, and an upstream side valve on opposing valve seats of the valve body attached at least around the water side valve body. A diaphragm facing from above, a back pressure chamber formed by being partitioned from the main flow path by this diaphragm, and a back pressure chamber that is branched from the upstream side of the valve body and communicates with the back pressure chamber, and merges again on the downstream side of the valve body. a control valve that adjusts the opening degree of the communication hole, a driving means that continuously drives the control valve, a temperature setting device that sets the temperature of the mixed hot water, the hot water side valve body, and the water side valve body. a temperature detector for detecting the temperature of mixed hot water, which is installed in a hot water circuit where hot water regulated by a side valve body and water flow together, and which is installed downstream of the point where the communication hole joins the hot water circuit; A hot water temperature control device comprising a controller that compares signals from the temperature setting device and the temperature detector to control the driving means. 2. The hot water temperature control device according to claim 1, wherein the hot water side valve body and the water side valve body are integrally provided, and a back pressure chamber, a control valve, and a driving means are provided only on one side.
JP11580988A 1988-05-12 1988-05-12 Hot-water supply temperature controller Granted JPS6486218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11580988A JPS6486218A (en) 1988-05-12 1988-05-12 Hot-water supply temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11580988A JPS6486218A (en) 1988-05-12 1988-05-12 Hot-water supply temperature controller

Publications (2)

Publication Number Publication Date
JPS6486218A JPS6486218A (en) 1989-03-30
JPH0547844B2 true JPH0547844B2 (en) 1993-07-19

Family

ID=14671629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11580988A Granted JPS6486218A (en) 1988-05-12 1988-05-12 Hot-water supply temperature controller

Country Status (1)

Country Link
JP (1) JPS6486218A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL151809A (en) * 2002-09-19 2006-06-11 Rivlin Eitan Hydraulically controlled thermostatic mixing valve
JP3922251B2 (en) 2003-12-17 2007-05-30 三菱電機株式会社 Ignition coil
JP4566657B2 (en) * 2004-08-20 2010-10-20 株式会社Inax Hot water mixing valve
JP2008133860A (en) * 2006-11-27 2008-06-12 Inax Corp Hot and cold water mixing valve
JP2009121589A (en) * 2007-11-14 2009-06-04 Inax Corp Automatic temperature-adjustable hot and cold water mixing valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239824A (en) * 1975-09-19 1977-03-28 Automatic Switch Co Valve
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239824A (en) * 1975-09-19 1977-03-28 Automatic Switch Co Valve
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Also Published As

Publication number Publication date
JPS6486218A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JPH0547844B2 (en)
JPS6336528B2 (en)
JP2911989B2 (en) Hot water supply temperature control device
EP3407154A1 (en) An electronic intelligent water outlet control system
JPH0370807B2 (en)
JPS603722A (en) Mixing device of hot water and cold water
JPS6231234B2 (en)
JPS62174813A (en) Temperature controller for supply hot water
JP2831502B2 (en) Shower equipment
JPH0333925B2 (en)
JPS6231231B2 (en)
JP2557848Y2 (en) Hot water mixer tap
JPH029338Y2 (en)
JPS6241517A (en) Hot water temperature controller in gas water heater
JPS62262113A (en) Mixing device for hot water and cold water
JPS62259116A (en) Hot water-water mixing device
JPH0379926A (en) Hot water supply device
JP2751399B2 (en) Hot water mixing control device
JPH0341135Y2 (en)
JPH0429233Y2 (en)
JP2827685B2 (en) Hot water mixing equipment
JPS61140685A (en) Hot and cold water mixing device
JPH041363Y2 (en)
JPH03160511A (en) Hot and cold water mixing controller
JP2002089954A (en) Automatic hot water supplier