JPS62174813A - Temperature controller for supply hot water - Google Patents

Temperature controller for supply hot water

Info

Publication number
JPS62174813A
JPS62174813A JP1469887A JP1469887A JPS62174813A JP S62174813 A JPS62174813 A JP S62174813A JP 1469887 A JP1469887 A JP 1469887A JP 1469887 A JP1469887 A JP 1469887A JP S62174813 A JPS62174813 A JP S62174813A
Authority
JP
Japan
Prior art keywords
hot water
circuit
temperature
water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1469887A
Other languages
Japanese (ja)
Inventor
Yoshio Yamamoto
山本 芳雄
Shuji Yamanochi
山ノ内 周二
Yukio Nagaoka
行夫 長岡
Yoshiyuki Yokoajiro
義幸 横網代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1469887A priority Critical patent/JPS62174813A/en
Publication of JPS62174813A publication Critical patent/JPS62174813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PURPOSE:To improve convenience to use and save energy by permitting a controller to control a hot water side drive means and a cold water side drive means in accordance with the signal deviation of a temperature detector from a temperature setting device and adjusting the water ratio of cold water to hot water through a hot water side value and a cold water side value. CONSTITUTION:A pressure controller 5 is inserted in the middle of a water supply circuit 4, and a bypass device 6 bypasses a flow to a hot water circuit 7 passing through a supply hot water heating source 1 and a cold water circuit not passing through said source 1. After both channels are passed through a flow rate control value 9, they put together and fed to the faucet of each terminal through a supply hot water circuit 10. The temperature setting device 11 is provided in the vicinity of the terminal faucet, and its signal is compared with a signal from the temperature detector 13 provided in the supply hot water circuit. The flow rate control value 9 controls the flow of the hot water circuit 7 and the cold water circuit 8 so that the difference between both flows can be zero. A common supply water circuit 4 is installed for the hot water circuit 7 and the cold water circuit 8, and here the pressure controller 5 is inserted. Then the pressure difference between a bypass part 6 and a junction part 14 comes to zero, whereby the temperature of supply hot water never changes even if the flow changes by modifying a faucet opening.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、湯と水の流量比を制御して適温を得る給湯温
度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hot water supply temperature control device that controls the flow rate ratio of hot water to water to obtain an appropriate temperature.

従来の技術 貯湯式の電気温水器やボイラーでは蓄積熱′fikを多
くする為に一般に約80℃の高温湯を貯めているが使用
する湯温は40°C位が最も多い。従って、給湯温度を
制御するためミキシングバルブで水と湯を混合操作して
適温を得るのであるが、任意の湯温で任意の/PA量を
得るには面倒な調整を8四′としていた。特に、他の水
栓の開閉による水圧変化があるとその都度調整しなけれ
ばならなかった。
Conventional hot water storage type electric water heaters and boilers generally store hot water at a temperature of about 80°C in order to increase the accumulated heat 'fik, but the temperature of hot water used is most often around 40°C. Therefore, in order to control the hot water temperature, a mixing valve is used to mix the water and hot water to obtain the appropriate temperature, but in order to obtain a desired /PA amount at a desired hot water temperature, a tedious adjustment is required. In particular, if there was a change in water pressure due to the opening or closing of other faucets, it had to be adjusted each time.

又、これら調整操作を行う間の高温)L)はjH1℃駄
に消費されたこと1どなる。更に、;’I& ’In’
、’rを得ることが優先されるため必要以上に湯を流す
傾向があるので、エネルギ節約の面からも問題が多かっ
た。
Also, the high temperature (L) during these adjustment operations was wasted in jH1°C. Furthermore, ;'I &'In'
Since priority is given to obtaining 'r, there is a tendency to pour more hot water than necessary, which poses many problems in terms of energy conservation.

また、瞬間式給湯機で給湯温度を変えられるものもあっ
たが、21+ii度設定を変更しても熱交換2を内の保
有水量や、熱交換器自身の熱容毒があるため、即座に給
湯温度が考えられるものでなかった。
In addition, there were some instant water heaters that could change the hot water temperature, but even if you changed the setting to 21+II degrees, the amount of water held in the heat exchanger 2 and the heat toxicity of the heat exchanger itself caused it to change immediately. The temperature of the hot water supply was unimaginable.

発明が解決しようとする問題点 上記のように従来の給湯温度制御装置は、使い勝手面、
省エネルギー面で多大な問題点を有しており、本発明は
、この従来の問題点を解決し、使い勝手の向上と省エネ
ルギー化を図った給湯温度制御装置を提供することを9
的としている。
Problems to be Solved by the Invention As mentioned above, the conventional hot water temperature control device has problems in terms of usability,
There are many problems in terms of energy conservation, and the present invention aims to solve these conventional problems and provide a hot water temperature control device that improves usability and saves energy.
It has been the target.

問題点を解決するための手段 上記の問題点を解決するために、本発明の給湯温度制御
装置は、湯回路に湯側弁と、水回路に水側弁と、これら
の弁を電気的に駆動する湯側駆動手段と、水側駆動手段
と、混合湯温を検出する温度検出器と、混合湯温を設定
する温度設定器と、これら温度検出器と温度設定器の信
号を比較し、湯側駆動手段と水側駆動手段を制御する制
御2tとを備えて構成しているものである。
Means for Solving the Problems In order to solve the above problems, the hot water temperature control device of the present invention has a hot water side valve in the hot water circuit, a water side valve in the water circuit, and electrically connects these valves. Comparing the hot water side driving means to be driven, the water side driving means, a temperature detector for detecting the mixed hot water temperature, a temperature setting device for setting the mixed hot water temperature, and the signals of these temperature detectors and the temperature setting device, It is configured to include a hot water side drive means and a control 2t for controlling the water side drive means.

作  用 本発明は上記した構成によって、温度検出器と温度設定
器の信号偏差に応じて湯側駆動手段と、水側駆動手段を
制御器で制御し、湯側弁と水側弁にて湯と水の流量比を
調節し、設定された混合湯温を得るものである。
Effect of the Invention With the above-described configuration, the present invention controls the hot water side drive means and the water side drive means with the controller according to the signal deviation of the temperature detector and the temperature setting device, and controls the hot water side with the hot water side valve and the water side valve. The flow rate ratio of water and water is adjusted to obtain a set mixed water temperature.

実施例 以下、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例に於ける給湯システムの構成図で
、1は加熱ヒータ2と貯湯タンク3から構成された給湯
熱源で、図の場合は深夜電力による電気温水器を例とし
て示した。給水回路4の途中に圧力調整器5を挿入し、
分流部6にて給湯熱源1を通る湯回路7と給湯熱源1を
通らない水回路8に分流させる。両流路は流量比制御弁
9を通過してから合流して給湯回路10を通じて各端末
の蛇口へ給湯される。一方、端末蛇口の近傍には温度設
定器11があって、この信号は、制御回路12に於て、
給湯回路に設けた温度検出°器13からの信号と比較さ
れて、その差が無くなるように湯回路7と水回路8の流
量を流量比制御弁9によって制御している。
Fig. 1 is a block diagram of a hot water supply system according to an embodiment of the present invention, where 1 is a hot water heat source composed of a heater 2 and a hot water storage tank 3. In the figure, an electric water heater powered by late night electricity is shown as an example. . A pressure regulator 5 is inserted in the middle of the water supply circuit 4,
The water flow is divided into a hot water circuit 7 which passes through the hot water supply heat source 1 and a water circuit 8 which does not pass through the hot water supply heat source 1 at a diversion part 6. Both channels pass through a flow ratio control valve 9 and then merge to supply hot water to the faucets at each terminal through a hot water supply circuit 10. On the other hand, there is a temperature setting device 11 near the terminal faucet, and this signal is sent to the control circuit 12.
The flow rate of the hot water circuit 7 and the water circuit 8 is controlled by a flow rate ratio control valve 9 so that the signal from the temperature detector 13 provided in the hot water supply circuit is compared and the difference is eliminated.

今、湯回路7の温度をTH,流量をQHと示し、水回路
8の温度をTc、流量をQCと示し、合流後の給湯回路
10での温度をT、流量をQと示し更に温度設定器11
での設定温度を75と表わすと次の関係がある。
Now, the temperature of the hot water circuit 7 is shown as TH, the flow rate is shown as QH, the temperature of the water circuit 8 is shown as Tc, the flow rate is shown as QC, the temperature in the hot water supply circuit 10 after merging is shown as T, and the flow rate is shown as Q, and the temperature is further set. Vessel 11
If the set temperature is expressed as 75, the following relationship exists.

THQH+TCQC=TQ       −−−−−−
−−・IQH+QC=Q           ・・・
・・・・・・2次に全流量Qに対する湯回路の流QQs
の比をにと示すなら   QH=にQ      ・・
・・・・・・・3QC=(1−K)Q    −−−−
−−−・−4以上の4つの式からにを求めると5式を得
る。
THQ+TCQC=TQ --------
--・IQH+QC=Q...
...Secondly, the flow QQs of the hot water circuit with respect to the total flow Q
If we express the ratio of QH=toQ...
・・・・・・3QC=(1-K)Q -----
---・-5 equations are obtained from the four equations greater than or equal to 4.

ここで、T=75とすべき流量比には 6式となって、設定温度TS、湯回路と水回路の各々の
温度T)、1.T(:によって定められることになる。
Here, the flow rate ratio that should be T=75 requires six equations: set temperature TS, each temperature T of the hot water circuit and water circuit, 1. It will be determined by T(:.

第2図に設定温度Tsによって選ぶべきK(=QH/Q
)の値を示している。T5=THならに=1で湯回路の
み開き、TS=TCならに=0で水回路のみが開く。貯
湯式温水器でT)4=80℃とし、水の温度が5℃から
30℃の間で変化してもシャワーとして40℃を得るに
は、Kは0.47から0.2の間で変れば良いという試
算が可能である。温度検出器13の信号によって流量比
制御弁9を制■1することは、6式で求められる流量比
にの値と自動的に一致させるよう作動していることにな
る。第3図は制御ブロック線図であって、温度設定器1
1の信号T5と、温度検出器の信号Tによって流分比制
ル11弁9が制御されることを示している。
Figure 2 shows the K (=QH/Q) that should be selected depending on the set temperature Ts.
) is shown. If T5=TH, then only the hot water circuit will open when it is 1; if TS=TC, then only the water circuit will open when it is 0. In a hot water storage type water heater, T)4 = 80℃, and in order to obtain a shower temperature of 40℃ even if the water temperature changes between 5℃ and 30℃, K must be between 0.47 and 0.2. It is possible to estimate that it would be better if things changed. Controlling the flow rate ratio control valve 9 by the signal from the temperature detector 13 means that the flow rate ratio is automatically brought into agreement with the value determined by Equation 6. FIG. 3 is a control block diagram, in which the temperature setting device 1
It is shown that the flow rate ratio control 11 valve 9 is controlled by the signal T5 of 1 and the signal T of the temperature sensor.

ところで、一度、温度設定して所定の流量比で供給する
よう制御された状態から給湯蛇口の開度を変化させた場
合を考えると、供給圧が湯回路7と水回路8で異る場合
には同じ開口面も°1比のままでは流量比が変化する。
By the way, if we consider the case where the opening degree of the hot water faucet is changed after the temperature has been set and the water supply is controlled to be supplied at a predetermined flow rate ratio, if the supply pressure is different between the hot water circuit 7 and the water circuit 8, Even if the opening surface is the same, the flow rate ratio will change if the °1 ratio remains the same.

例えば、湯回路7側にのみ圧力調整器5を挿入し、水回
路8側へ元圧を直接加えた場合に於てはこの傾向が著し
く、流ユを蛇口で調整する度に、所定流量比を維持する
ために開口比を変更する動作が必要となる。このことは
流量比制御弁9の寿命を短くするのみならず、応答遅れ
による過渡的温度変化も生じることになる。そこで、湯
回路7と水回路8に対し共通の給水回路4を設け、ここ
に圧力調整器5を挿入すれば、両回路の分流部6から合
流部14までの圧力差は常に一致するため、蛇口開度を
変えた時の流量変化による湯温変化がない。
For example, when the pressure regulator 5 is inserted only into the hot water circuit 7 side and the source pressure is applied directly to the water circuit 8 side, this tendency is remarkable, and each time the flow rate is adjusted with the faucet, the predetermined flow rate ratio is In order to maintain this, it is necessary to change the aperture ratio. This not only shortens the life of the flow rate ratio control valve 9, but also causes transient temperature changes due to response delays. Therefore, if a common water supply circuit 4 is provided for the hot water circuit 7 and the water circuit 8, and a pressure regulator 5 is inserted therein, the pressure difference from the branch section 6 to the confluence section 14 of both circuits will always be the same. There is no change in hot water temperature due to changes in flow rate when changing the faucet opening.

次に、流量比制御弁9の実施例について述べる。Next, an example of the flow ratio control valve 9 will be described.

第4図は2個のモータバルブを用いる例で、合流部14
の直前の湯口路7と水回路8に弁座15と対応する弁プ
ラグ16で形成される同一構造の湯側弁17と水側弁1
7′を挿入し、その開度を電気的駆動手段である湯側モ
ータ18、水側モータ18′で回転せしめられるカム1
9によって制御している。モータ18.18′は角度位
置検出したフィードバックループを持つサーボシステム
で駆動されるが、パルスモータのように制御の正、負パ
ルスによって角度調整できるものである。
Figure 4 shows an example using two motor valves, and the merging section 14
A hot water side valve 17 and a water side valve 1 of the same structure are formed by a valve seat 15 and a corresponding valve plug 16 in a sprue passage 7 and a water circuit 8 immediately before the
7' is inserted, and its opening degree is rotated by a hot water side motor 18 and a water side motor 18', which are electrical drive means.
It is controlled by 9. The motors 18 and 18' are driven by a servo system having a feedback loop that detects the angular position, and the angle can be adjusted by controlling positive and negative pulses like a pulse motor.

両回路の弁開度は各に独立しているが、いずれも制御回
路12で駆動されて、6式で示したに値が得られるよう
開度調整動作を行う。
Although the valve openings of both circuits are independent, both are driven by the control circuit 12 to adjust the openings so that the value shown in equation 6 is obtained.

第5図はパイロット式制御弁を用いた滝川゛比制御弁9
の例を示している。湯回路7と水口路8には合流部14
の直前に同一のパイロット式制御弁19.19′を設け
ている。ここで、主通路中に弁座20を設け、これと対
応してダイヤフラム弁21が開口度を調整できるように
設けられ、ダイヤフラム弁21の背圧室22には、入口
圧と出口圧の差を固定オリフィス23とパイロット弁2
4で分圧されて加わる。パイロット弁24はコイル25
でプランジャー26に生じる力と制御スプリング27の
力との釣合い点に応じて、その開口度が制御される。2
8はダイヤフラム弁21を閉じる方向へ附勢した主スプ
リングである。
Figure 5 shows Takigawa ratio control valve 9 using a pilot type control valve.
An example is shown. There is a confluence section 14 between the hot water circuit 7 and the water outlet path 8.
An identical pilot-operated control valve 19,19' is provided immediately before. Here, a valve seat 20 is provided in the main passage, and a diaphragm valve 21 is provided correspondingly so that the degree of opening can be adjusted. Fixed orifice 23 and pilot valve 2
The pressure is divided by 4 and added. The pilot valve 24 has a coil 25
The degree of opening is controlled according to the equilibrium point between the force generated on the plunger 26 and the force of the control spring 27. 2
8 is a main spring that biases the diaphragm valve 21 in the closing direction.

今、コイル25への電流が零であれば制御スプリング2
7の力によってパイロット弁24は全閉となる。その結
果、背圧室22には供給圧が加って、ダイヤフラム弁2
1の主通路側圧力との間に圧力座が生じ、その圧力差に
よる力と主スプリング2日の力によってダイヤフラム弁
は全閉となる。
Now, if the current to the coil 25 is zero, the control spring 2
The pilot valve 24 is fully closed by the force of 7. As a result, supply pressure is applied to the back pressure chamber 22, and the diaphragm valve 2
A pressure seat is generated between the main passage side pressure of the first spring and the main passage side pressure of the first spring, and the diaphragm valve is fully closed by the force due to the pressure difference and the force of the main spring second.

コイル25にわずかの電流が流れ、パイロット弁、24
が少し開くと、背圧室22の圧力はオリフィス23とパ
イロット弁24との抵抗比で分圧された値にまで低下す
る。ダイヤフラム弁21を開く方向には供給圧が加って
いるから、この圧力差で生じる開方向の力と、主スプリ
ング2日の力が釣合う弁開度を保つことになる。コイル
25の電流が増加すると、パイロット弁24の弁開度は
増加し、背圧室22の圧力は低下する。その結果、ダイ
ヤフラム弁21の開方向の力は増加するから主スプリン
グ28と釣合って定まる弁開度も増加している。こうし
て、コイル25への電流値に応じてダイヤフラム弁21
の弁開度を制御することができる。従って制御弁19.
19′の開度調部により流量比を調節したり、給湯量を
制御したり、給湯を停止したりすることができる。この
パイロット式では、流体圧によって弁開度を定めるため
に、パイロット弁24の少しの変位缶゛がダイヤフラム
弁21の大きな移動量に変換しているし、パイロット弁
24を動かす微少な力がダイヤフラム弁21を動かす大
きな力へ増幅するものである。従って、第4図で述べた
直動弁方式に比べてコイル25、プランジャー26で構
成されるアクチェータの小型、少パワー化が可能となる
。第5図のアクチェータの他に、モータとカムによる駆
動方式も考えられるが、これらアクチェータの少パワー
化は、制御回路12の小容f;を化をも可能にするもの
である。
A small amount of current flows through the coil 25, causing the pilot valve, 24
When the back pressure chamber 22 opens slightly, the pressure in the back pressure chamber 22 decreases to a value divided by the resistance ratio between the orifice 23 and the pilot valve 24. Since the supply pressure is applied in the direction in which the diaphragm valve 21 is opened, the valve opening is maintained such that the force in the opening direction generated by this pressure difference and the force of the main spring 21 are balanced. When the current in the coil 25 increases, the opening degree of the pilot valve 24 increases and the pressure in the back pressure chamber 22 decreases. As a result, the force in the opening direction of the diaphragm valve 21 increases, so the valve opening degree determined in balance with the main spring 28 also increases. In this way, depending on the current value to the coil 25, the diaphragm valve 21
The valve opening degree can be controlled. Therefore, the control valve 19.
The opening adjustment section 19' allows the flow ratio to be adjusted, the amount of hot water supplied, and the hot water supply to be stopped. In this pilot type, the valve opening is determined by fluid pressure, so a small displacement of the pilot valve 24 is converted into a large amount of movement of the diaphragm valve 21, and the minute force that moves the pilot valve 24 is This amplifies the force into a large force that moves the valve 21. Therefore, compared to the direct-acting valve system described in FIG. 4, the actuator composed of the coil 25 and plunger 26 can be made smaller and have less power. In addition to the actuator shown in FIG. 5, a drive system using a motor and a cam may also be considered, but reducing the power of these actuators also makes it possible to reduce the size f; of the control circuit 12.

第5図では2ケのパイロット式制御弁で流量比制1aT
I弁9を構成しているが、これを一体化した例を第6図
で示す。パイロット式制御弁自体は第5図の例と同じで
ある。ただ、パイロット弁24を駆動するアクチェータ
29の構成はコイルとプランジャー及び制御スプリング
でも良いし、モータとカムでも良い。この構成では合流
部14が流量比制御弁9の中に含まれることになる。
In Figure 5, two pilot control valves control the flow rate at 1aT.
An example of an integrated I-valve 9 is shown in FIG. The pilot type control valve itself is the same as the example shown in FIG. However, the structure of the actuator 29 that drives the pilot valve 24 may be a coil, a plunger, and a control spring, or may be a motor and a cam. In this configuration, the merging section 14 is included in the flow rate ratio control valve 9.

湯回路7と水回路8の流量比を制御する方法は両流路の
合流部14近傍に限ることは無く、元の給水回路4から
の分流部6に設ける方法もある。
The method of controlling the flow rate ratio of the hot water circuit 7 and the water circuit 8 is not limited to the vicinity of the confluence section 14 of both flow paths, and there is also a method of providing the flow rate ratio in the branch section 6 from the original water supply circuit 4.

その例が第7図に示されている。ここで設けた記号は第
1図と同様の働きを示す構成要素である。
An example is shown in FIG. The symbols provided here are components indicating the same functions as in FIG. 1.

水の流れは連続的であるから、分流比を制御することは
合流比を制御することになっており、作用効果は同一で
ある。ただ、加熱される前の水を制御する方法であるか
ら、Oリングやダイヤフラムなどのゴム部品の劣化を少
くできる効果がある。
Since the flow of water is continuous, controlling the splitting ratio is equivalent to controlling the merging ratio, and the effects are the same. However, since it is a method of controlling water before it is heated, it has the effect of reducing deterioration of rubber parts such as O-rings and diaphragms.

この場合は流量比制御弁9としては第4図から第6図の
例で述べた構成そのまま、又は、一部の変更によって応
用できるものである。
In this case, the flow rate ratio control valve 9 can be applied with the same structure as described in the examples of FIGS. 4 to 6, or with some modifications.

更に、圧力調整器5と流量比制御弁9の構成的な一体化
も可能であって、その例を第8図に示した。ここで、給
水回路4に対して閉じる方向へ附勢した逆止スプリング
30で逆止弁31が設けられ、給水圧によって開けられ
負圧を生じた場合は閉じるように作用して逆流を防いで
いる。次に、減圧弁座32があるてこれに弁シート33
が対応する。一方、減圧弁座32の反対側にはほぼ同一
内径のシリンダ部34が形成され、その内側に弁シート
33と連動するピストン部35が挿入されている。こう
して、弁シート33に加わる給水圧による力が、ピスト
ン部35に加わる給水圧による力とバランスするよう構
成している。これら弁シート33、ピストン部35は成
上ダイヤフラム36に固定され、Iglに於て上下動す
るものである。
Furthermore, it is also possible to structurally integrate the pressure regulator 5 and the flow ratio control valve 9, an example of which is shown in FIG. Here, a check valve 31 is provided with a check spring 30 biased in the closing direction with respect to the water supply circuit 4, and when opened by the water supply pressure and negative pressure is generated, it acts to close and prevent backflow. There is. Next, there is a valve seat 33 on which the pressure reducing valve seat 32 is located.
corresponds. On the other hand, a cylinder portion 34 having substantially the same inner diameter is formed on the opposite side of the pressure reducing valve seat 32, and a piston portion 35 interlocking with the valve seat 33 is inserted inside the cylinder portion 34. In this way, the force due to the water supply pressure applied to the valve seat 33 is configured to be balanced with the force due to the water supply pressure applied to the piston portion 35. These valve seat 33 and piston portion 35 are fixed to a growing diaphragm 36 and move up and down at Igl.

減圧ダイヤプラム36には減圧弁座32通過後の減圧さ
れた圧力がダイヤフラム室37に鋤くため、図に於て上
方への力を生じる。この力と対向するのが減圧スプリン
グ38である。設定されたスプリング力と減圧ダイヤフ
ラム36の力がバランスする位置に自動的に移動調整動
作を行う。今、圧力が上昇すれば減圧ダイヤフラム36
の力が増加するので弁シート33は上昇して開口度を絞
り、逆の場合は開口度を広くすることによって圧力変化
を吸収している。この圧力調整器5につづいて流量比制
御弁9があって、この例では2ケのパイロット式制御弁
から構成している。この部分の動作はすでに説明した通
りである。このように一体化することによって、取扱い
、工事、製造上で有利となる効果を有する。
In the pressure reducing diaphragm 36, the reduced pressure after passing through the pressure reducing valve seat 32 is collected in the diaphragm chamber 37, so that an upward force is generated in the figure. The pressure reducing spring 38 opposes this force. A movement adjustment operation is automatically performed to a position where the set spring force and the force of the pressure reducing diaphragm 36 are balanced. If the pressure increases now, the pressure reducing diaphragm 36
As the force increases, the valve seat 33 rises and narrows the opening degree, and in the opposite case, the valve seat 33 absorbs the pressure change by widening the opening degree. Following the pressure regulator 5 is a flow rate ratio control valve 9, which in this example is comprised of two pilot type control valves. The operation of this part has already been explained. This integration has advantages in terms of handling, construction, and manufacturing.

以上、実施例で述べたように、給湯熱源1を通らない水
回路8からの水を混合して供給する方式で、温度設定器
11の信号に応じて最適混合比を自動的に選択すること
によって、給湯端末でのミキシングバルブで温度を設定
するための調整操作が不要となり、一度、温度設定すれ
ば蛇口開度によって量調節を行っても温度が変化しない
ため使い勝手が極めて向上する。又、湯の流し過ぎや、
調整時間中の湯の損失が4jjQ (なるばかりでなく
、高温湯を供給する時に比べて配管からの熱放散ロスが
少くなるなど省エネルギー面からの効果も大きい。
As described above in the embodiment, the optimum mixing ratio is automatically selected according to the signal from the temperature setting device 11 by mixing and supplying water from the water circuit 8 that does not pass through the hot water heat source 1. This eliminates the need for adjustment operations to set the temperature using the mixing valve at the hot water supply terminal, and once the temperature is set, the temperature does not change even if the amount is adjusted by the faucet opening, greatly improving usability. Also, do not use too much hot water,
Not only does this reduce the loss of hot water during the adjustment time by 4jjQ, but it also has great energy-saving effects, such as less heat dissipation loss from the piping compared to when high-temperature hot water is supplied.

尚、給湯熱源1は貯湯式に限らず、瞬間式給湯機であっ
ても同じ効果が期待できるものである。
Note that the hot water heat source 1 is not limited to a hot water storage type, and the same effect can be expected even if it is an instantaneous hot water heater.

また、従来の給湯温度が変えられる瞬間式給湯(幾に比
べて、熱交換器の保有水iilや熱容量による温度設定
変更時の給湯温度の変化が速くできる。
In addition, compared to conventional instant hot water supply systems in which the hot water temperature can be changed, the hot water temperature can be changed more quickly when the temperature setting is changed based on the water held in the heat exchanger or the heat capacity.

また、本発明においては、流量比制御弁9として、湯口
路7と水回路8に独立して同一構造の弁17.17′等
を設け、かつ同一構造のモータ18.18′等で駆動し
ているため、同一部品が湯側と水側で使用できる利点を
有しており、安価に提供できる。更に、湯側弁17、水
側弁17′等は湯と水の流量比を調節する上において、
湯側弁17を開成方向に駆動して水側弁18を閉成方向
に駆動するなど反比例的に動かして混合湯温を調節した
り、あるいは一方を固定して他方を動かして混合湯温を
調節したり、同一方向に動かして混合湯温を一定に維持
しつつ給湯流量を変えたり、双方を閉成して給湯を停止
すること等が任意にでき、自由度の高い制御が可能とな
る。給湯の停止11.冒こおいて、自然冷却により、給
湯熱源1の湯が湯回路7から流量比制御弁9を経て水回
路8を逆流して自然に循環し、貯湯タンク3内の湯の冷
却が促進される現象があるが、湯側弁17あるいは水側
弁17′または双方を閉成しておくことによりこれが防
止できる。また、湯側弁17と水側弁17′の双方を閉
成しておくことにより、断水時等に貯湯タンク3内の湯
が逆流してなくなってしまうことが防止できる。
Further, in the present invention, as the flow rate ratio control valve 9, valves 17, 17', etc. of the same structure are provided independently in the sprue passage 7 and the water circuit 8, and are driven by motors 18, 18', etc. of the same structure. This has the advantage that the same parts can be used on the hot water side and the water side, and can be provided at low cost. Furthermore, the hot water side valve 17, water side valve 17', etc. are used to adjust the flow rate ratio of hot water and water.
The mixed water temperature can be adjusted by moving the hot water side valve 17 in the opening direction and the water side valve 18 in the closing direction, or by fixing one side and moving the other. A high degree of freedom in control is possible by adjusting the flow rate, moving in the same direction to maintain a constant mixed water temperature while changing the hot water supply flow rate, or closing both to stop hot water supply. . Stopping hot water supply 11. In addition, due to natural cooling, hot water from the hot water supply heat source 1 flows back through the water circuit 8 from the hot water circuit 7 through the flow ratio control valve 9 and naturally circulates, thereby promoting cooling of the hot water in the hot water storage tank 3. Although this phenomenon occurs, this can be prevented by closing the hot water side valve 17, the water side valve 17', or both. Furthermore, by keeping both the hot water side valve 17 and the water side valve 17' closed, it is possible to prevent the hot water in the hot water storage tank 3 from flowing backward and running out during a water outage or the like.

上記の実施例において、給湯熱源1の下流の湯回路7と
水回路8の合流部に流量比制御弁9として湯側弁17と
水側弁17′を設けた場合は、温度検出器13と流量比
制御弁9か近傍になるため、温度制御装置として一体的
にまとめる上で有利であるという効果を有している。
In the above embodiment, when the hot water side valve 17 and the water side valve 17' are provided as the flow ratio control valve 9 at the confluence of the hot water circuit 7 and the water circuit 8 downstream of the hot water supply heat source 1, the temperature sensor 13 and Since it is located near the flow ratio control valve 9, it has the advantage of being integrated as a temperature control device.

また、給湯熱源1の上流の湯回路7と水口路8の分流部
に流量比制御弁9を設けた場合は、湯側弁17や水側弁
17′等が熱を受けないため、材料の選定や寿命の面で
有利であるという効果を有している。
In addition, when the flow ratio control valve 9 is provided at the branch part between the hot water circuit 7 and the water outlet path 8 upstream of the hot water supply heat source 1, the hot water side valve 17, the water side valve 17', etc. do not receive heat, so the material This has the effect of being advantageous in terms of selection and lifespan.

更に、温度設定器を給湯回路10の端末近傍に設置し、
温度を遠隔設定することにより、使用したい所で温度設
定ができるという効果を有する。
Furthermore, a temperature setting device is installed near the terminal of the hot water supply circuit 10,
By setting the temperature remotely, you can set the temperature wherever you want to use it.

なお、」二記の実施例の他、各端末に各々第1図に示す
流量比制御弁9を設けたり、特定の端末に設けることも
勿論可能である。
In addition to the embodiments described in section 2, it is of course possible to provide the flow rate ratio control valve 9 shown in FIG. 1 at each terminal, or to provide it at a specific terminal.

発明の効果 以」二のように本発明の給湯温度制御装置によれば次の
ような効果が得られる。
Effects of the Invention As described above, the hot water supply temperature control device of the present invention provides the following effects.

(1)給湯端末でのミキシングパルプによる藷1度調節
が不要となり、蛇口によって流量調節しても温度が変わ
らなく、かつ湯、水の混合によって速量を得るため応答
性がよいため使い勝手がきわめてよい。
(1) It is no longer necessary to adjust the temperature by mixing pulp at the hot water supply terminal, the temperature does not change even if the flow rate is adjusted using the faucet, and the speed is obtained by mixing hot water and water, resulting in good responsiveness, making it extremely easy to use. good.

(2)湯の流しすぎや、調整時間中の湯の損失が無くな
るばかりでなく、高温湯を供給する時に比べ配管からの
放熱ロスの低減も期待でき、省エネルギー化が図れる。
(2) Not only does it eliminate over-flowing of hot water and loss of hot water during the adjustment time, but it can also be expected to reduce heat radiation loss from piping compared to when supplying high-temperature hot water, resulting in energy savings.

(3)端末に複雑なミキシングバルブを設けなくてもよ
いため、端末吐出口を簡jlにもでき、かつ電気的に制
御されるため操作部と弁部、駆動部の設置位置も自由で
あり、デザイン上の自由度が太きい゛。
(3) Since there is no need to install a complicated mixing valve at the terminal, the terminal discharge port can be made simple, and since it is electrically controlled, the installation position of the operation part, valve part, and drive part can be freely set. , there is a great deal of freedom in design.

(4)湯回路と水回路に各々湯側弁と水側弁を設け、か
つ各々に電気的な駆動手段を装備しているため、混合湯
温制御、流量制御、給湯停止など制御的な動作が巾広く
行なえる。
(4) The hot water circuit and water circuit are each equipped with a hot water side valve and a water side valve, and each is equipped with an electric drive means, allowing control operations such as mixed hot water temperature control, flow rate control, and hot water supply stop. can be performed widely.

(5)湯側弁、水側弁で各回路を閉成することにより、
給湯熱源の自然放熱の低減化や、断水時の逆流防止等が
可能である。
(5) By closing each circuit with the hot water side valve and water side valve,
It is possible to reduce the natural heat dissipation of the hot water supply heat source and prevent backflow when water is cut off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における給湯温度制御装置の
給湯システムの構成図、第2図は同流景比制御弁に必要
とされる特性図、第3図は同制御ブロック線図、第4図
、第5図、第6図は各々流量比制御弁の実施例を示す構
成断面図、第7図は他の実施例を示す給湯システム構成
図、第8図は圧力調整器と流■比制御弁を一体化した例
を示す構成断面図である。 1・・・・・・給湯熱源、7・・・・・・湯回路、8・
・・・・・水回路、9・・・・・・流i1(比制御弁(
湯側弁、水側弁、湯側駆動手段、水制駆動手段)、10
・・・・・・給湯回路、11・・・・・・温度設定器、
12・・・・・・制御器、13・・・・・・温度検出器
、17・・・・・・湯側弁、17′・・・・・・水側弁
、18ル1側モータ(湯側駆動手段)18′・・・・・
水側モータ(水側卵重11手c号)〜 第2図 第3図 第5図 第7図 第8図
Fig. 1 is a configuration diagram of a hot water supply system of a hot water temperature control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram required for the stream ratio control valve, and Fig. 3 is a control block diagram of the same. Figures 4, 5, and 6 are cross-sectional views showing an embodiment of the flow rate ratio control valve, Figure 7 is a configuration diagram of a hot water supply system showing another example, and Figure 8 is a pressure regulator and a flow rate ratio control valve. ②It is a configuration sectional view showing an example in which a ratio control valve is integrated. 1...Hot water supply heat source, 7...Hot water circuit, 8.
...Water circuit, 9...Flow i1 (ratio control valve (
hot water side valve, water side valve, hot water side drive means, water control drive means), 10
...Hot water supply circuit, 11...Temperature setting device,
12... Controller, 13... Temperature detector, 17... Hot water side valve, 17'... Water side valve, 18 Le 1 side motor ( Hot water side drive means) 18'...
Water side motor (Water side egg weight 11 hand number c) ~ Figure 2 Figure 3 Figure 5 Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)給湯熱源を通る湯回路に設けた湯量を制御する湯
側弁と、この湯側弁を電気的に駆動する湯側駆動手段と
、給湯熱源を通らない水回路に設けた水量を制御する水
側弁と、この水側弁を電気的に駆動する水側駆動手段と
、前記湯回路と水回路が合流した給湯回路に設けた混合
湯温を検出する温度検出器と、混合湯温を設定する温度
設定器と、前記温度検出器と温度設定器の信号を比較し
、前記湯側駆動手段と水側駆動手段を制御して湯と水の
流量比を制御する制御器とを備えた給湯温度制御装置。
(1) A hot water side valve that controls the amount of hot water provided in the hot water circuit that passes through the hot water supply heat source, a hot water side driving means that electrically drives this hot water side valve, and a hot water side valve that controls the amount of water provided in the water circuit that does not pass through the hot water heat source. a water-side valve that electrically drives the water-side valve; a temperature detector that detects the mixed water temperature provided in the hot water supply circuit where the hot water circuit and the water circuit merge; and a controller that compares signals from the temperature detector and the temperature setter and controls the hot water side drive means and the water side drive means to control the flow rate ratio of hot water and water. Hot water temperature control device.
(2)給湯熱源下流の湯回路と水回路の合流部に湯側弁
と水側弁を設けた特許請求の範囲第1項記載の給湯温度
制御装置。
(2) The hot water temperature control device according to claim 1, wherein a hot water side valve and a water side valve are provided at the junction of the hot water circuit and the water circuit downstream of the hot water supply heat source.
(3)給湯熱源上流の湯回路と水回路の分流部に湯側弁
と水側弁を設けた特許請求の範囲第1項記載の給湯温度
制御装置。
(3) The hot water temperature control device according to claim 1, wherein a hot water side valve and a water side valve are provided at a branch part of the hot water circuit and the water circuit upstream of the hot water supply heat source.
(4)温度設定器を給湯回路の端末近傍に設置し、温度
を遠隔設定することを特徴とする特許請求の範囲第1項
記載の給湯温度制御装置。
(4) The hot water supply temperature control device according to claim 1, characterized in that a temperature setting device is installed near a terminal of the hot water supply circuit to remotely set the temperature.
JP1469887A 1987-01-23 1987-01-23 Temperature controller for supply hot water Pending JPS62174813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1469887A JPS62174813A (en) 1987-01-23 1987-01-23 Temperature controller for supply hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1469887A JPS62174813A (en) 1987-01-23 1987-01-23 Temperature controller for supply hot water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3297280A Division JPS56129919A (en) 1980-03-14 1980-03-14 Controller for temperature of hot water supply

Publications (1)

Publication Number Publication Date
JPS62174813A true JPS62174813A (en) 1987-07-31

Family

ID=11868404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1469887A Pending JPS62174813A (en) 1987-01-23 1987-01-23 Temperature controller for supply hot water

Country Status (1)

Country Link
JP (1) JPS62174813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186120A (en) * 1989-12-13 1991-08-14 Matsushita Electric Ind Co Ltd Hot and cold water mixer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186120A (en) * 1989-12-13 1991-08-14 Matsushita Electric Ind Co Ltd Hot and cold water mixer

Similar Documents

Publication Publication Date Title
CN1169034C (en) Hydraulic actuating mixing valve
JPS6336528B2 (en)
JPS62174813A (en) Temperature controller for supply hot water
JP2911989B2 (en) Hot water supply temperature control device
JPH0547844B2 (en)
JPH0268469A (en) Evaporator pressure regulating valve
JPH0526995B2 (en)
JPS603721A (en) Mixing device of hot water and cold water
JPH0118986Y2 (en)
JP2831502B2 (en) Shower equipment
JPH0142766Y2 (en)
JPH048675B2 (en)
JP2669084B2 (en) Fluid control valve
JPH0221157A (en) Hot water supplying apparatus with water bypass
JPS6269034A (en) Temperature regulator
JPH07317927A (en) Hot water supplying device
JPS5868566A (en) Temperature control valve
JPH029338Y2 (en)
SU1701176A1 (en) Apparatus for controlling air temperature in green houses with tube heating system
JPH0241466Y2 (en)
JPS6141016Y2 (en)
JPS6026249A (en) Hot water feeding unit
JPH02290441A (en) Hot water supplying apparatus
JP2557848Y2 (en) Hot water mixer tap
JPS60259840A (en) Hot water supply controller