JPS6336528B2 - - Google Patents

Info

Publication number
JPS6336528B2
JPS6336528B2 JP55032971A JP3297180A JPS6336528B2 JP S6336528 B2 JPS6336528 B2 JP S6336528B2 JP 55032971 A JP55032971 A JP 55032971A JP 3297180 A JP3297180 A JP 3297180A JP S6336528 B2 JPS6336528 B2 JP S6336528B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
circuit
flow rate
water circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032971A
Other languages
Japanese (ja)
Other versions
JPS56129918A (en
Inventor
Yoshio Yamamoto
Shuji Yamanochi
Yukio Nagaoka
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3297180A priority Critical patent/JPS56129918A/en
Publication of JPS56129918A publication Critical patent/JPS56129918A/en
Publication of JPS6336528B2 publication Critical patent/JPS6336528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1393Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures characterised by the use of electric means

Description

【発明の詳細な説明】 本発明は太陽熱集熱器や排熱回収装置によつて
加熱される給湯熱源に、瞬間加熱方式の補助加熱
器を設置して給湯する給湯システムの湯温制御装
置に関するもので、給湯熱源を通る湯と給湯熱源
を通らない水を混合させる流量比制御と、補助加
熱器の能力制御によつて蛇口やシヤワーへ送る湯
温を任意にコントロールすることを要旨としてい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water temperature control device for a hot water supply system that supplies hot water by installing an instant heating type auxiliary heater on a hot water heat source heated by a solar collector or waste heat recovery device. The main idea is to arbitrarily control the temperature of the water sent to the faucet or shower by controlling the flow rate ratio to mix the hot water that passes through the hot water supply heat source with the water that does not pass through the hot water heat source, and by controlling the capacity of the auxiliary heater.

本発明の目的は、蛇口やシヤワーに於いてミキ
シングバルブで温度と量を選択する面倒な操作や
季節・時刻・天候に左右される給湯熱源の温度変
化による使用上の不便さを解消し、使い勝手の良
い給湯システムを得ることにある。本発明の他の
目的は、給湯熱源から得る熱エネルギを優先使用
することによつて補助加熱器の入力を最少とし例
えば太陽熱の給湯負荷に対する寄与率を高くする
ことによつて省エネルギ効果を発揮することにあ
る。
The purpose of the present invention is to eliminate the troublesome operation of selecting the temperature and amount using a mixing valve on a faucet or shower, and the inconvenience caused by changes in the temperature of the hot water heat source depending on the season, time of day, and weather. The point is to get a good hot water system. Another object of the present invention is to achieve an energy saving effect by minimizing the input to the auxiliary heater by preferentially using the thermal energy obtained from the hot water supply heat source, and by increasing the contribution rate of solar heat to the hot water supply load, for example. It's about doing.

太陽熱集熱器で集熱した熱エネルギーで貯湯槽
の水を加熱したり、集熱器と貯湯槽を一体にして
自然循環で給湯水を加熱する方式があるが、いず
れも貯湯槽の温度は季節・天候・時刻に左右され
て一定しない。このために補助熱源がいろいろ提
案されている。例えば、電気温水器やガス又は石
油による貯湯式ボイラの場合、太陽熱による温度
に関係なく約80℃に高めて貯湯している。この場
合、温度安定化の効果は高いが、一般に必要とす
る40℃前後の湯にするには再度、水とミキシング
しなければならない。もし、太陽熱のみで40℃以
上の湯温になつていれば、補助加熱の必要は無い
にもかかわらず80℃まで加温してしまうために余
分な熱エネルギを費したことになる。これは、貯
湯式で大量の熱量を蓄積するために生じる問題で
あつた。次に、瞬間湯沸器で補助加熱を行う場
合、既述のように太陽熱による温度が安定しない
ため、加熱能力一定のままでは沸騰の恐れがあ
る。従つて、給湯温度に応じた能力制御が必須要
件となつていた。この場合、任意温度になるよう
設定して、それに応じた能力制御を行うことは可
能であるが、設定温度よりも太陽熱による温度の
方が高い場合には全く効果が無かつた。従つて、
年間を通じて安定した使い勝手が得られるもので
は無かつた。
There are methods to heat water in a hot water tank using thermal energy collected by a solar heat collector, or to heat hot water by natural circulation by integrating a heat collector and a hot water tank, but in either case, the temperature of the hot water tank is It varies depending on the season, weather, and time of day. For this purpose, various auxiliary heat sources have been proposed. For example, in the case of an electric water heater or a hot water storage boiler using gas or oil, hot water is stored at a temperature of approximately 80°C, regardless of the temperature caused by solar heat. In this case, the effect of temperature stabilization is high, but in order to obtain hot water of around 40°C, which is generally required, it must be mixed with water again. If the water temperature was over 40℃ due to solar heat alone, extra heat energy would have been wasted to heat the water to 80℃ even though there was no need for supplementary heating. This was a problem caused by the hot water storage type, which stores a large amount of heat. Next, when performing auxiliary heating with an instantaneous water heater, as mentioned above, the temperature due to solar heat is not stable, so there is a risk of boiling if the heating capacity remains constant. Therefore, capacity control according to the hot water temperature has become an essential requirement. In this case, it is possible to set an arbitrary temperature and control the capacity accordingly, but this has no effect at all if the temperature due to solar heat is higher than the set temperature. Therefore,
It was not possible to obtain stable usability throughout the year.

以下、図面に基いて本発明の実施例を説明す
る。第1図は給湯システム構成図で、1は太陽熱
による給湯熱源で、集熱器2で加温された熱媒は
ポンプ3によつてタンク4の中の熱交換コイル5
を循環することによつてタンク4中の水を加熱し
ている。給水回路6から供給される水は、圧力調
整器7を通過して分流部8にて給湯熱源1を通る
湯回路9と水回路10に分かれ、給湯熱源1通過
後に流量比制御弁11にて合流する。次に、補助
加熱器12では熱交換器13を通過中にバーナ1
4によつて加温され、給湯回路15から各端末の
蛇口へ供給される。16は給湯回路15中に設け
た温度検出器であつて、給湯端末の近傍に設けら
れた温度設定器17からの信号と制御回路18で
比較されて、その差が無くなるようにバーナ14
への入力を制御する能力制御装置19及び流量比
制御弁11を駆動制御している。更に、20は湯
回路9に設けられた温度検出器であつて、この信
号も前述の制御回路18へ加えられている。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a diagram showing the configuration of a hot water supply system, where 1 is a hot water heat source using solar heat, and the heat medium heated by a collector 2 is transferred to a heat exchange coil 5 in a tank 4 by a pump 3.
The water in the tank 4 is heated by circulating the water. Water supplied from the water supply circuit 6 passes through a pressure regulator 7 and is divided into a hot water circuit 9 and a water circuit 10, which pass through the hot water supply heat source 1 at a branch section 8, and after passing through the hot water supply heat source 1, the water is passed through a flow rate ratio control valve 11. join together. Next, in the auxiliary heater 12, the burner 1 is heated while passing through the heat exchanger 13.
4, and supplied from the hot water supply circuit 15 to the faucets of each terminal. Reference numeral 16 denotes a temperature detector provided in the hot water supply circuit 15, which compares the signal from the temperature setting device 17 provided near the hot water supply terminal with the control circuit 18, and detects the temperature in the burner 14 so that the difference is eliminated.
The capacity control device 19 and the flow ratio control valve 11 that control the input to the flow rate control valve 11 are drive-controlled. Furthermore, 20 is a temperature detector provided in the hot water circuit 9, and this signal is also applied to the control circuit 18 described above.

次に基本的動作について、第2図の動作説明図
と第3図の制御ブロツク線図を用いて説明する。
Next, the basic operation will be explained using the operation explanatory diagram in FIG. 2 and the control block diagram in FIG. 3.

今、湯回路から供給される湯の温度と流量を
TH,QHと示し、水回路10から供給される水の
温度と流量をTC,QCと示し、補助加熱器12で
の燃焼入力と効率をwi,ηと示し、給湯回路1
5での温度と流量をT,Qと示し、温度設定器1
7で設定した温度をTSと表わすと次の各式が得
られる。
Now, check the temperature and flow rate of hot water supplied from the hot water circuit.
The temperature and flow rate of water supplied from the water circuit 10 are shown as T C , Q C , the combustion input and efficiency in the auxiliary heater 12 are shown as wi, η, and the hot water supply circuit 1
The temperature and flow rate at 5 are indicated as T and Q, and the temperature setting device 1
If the temperature set in step 7 is expressed as T S , the following equations are obtained.

QH+QC=Q ……1 QHTH+QCTC+ηwi=TQ ……2 ここでT=TSとなるように制御するのである
から2式は次のようにも表わせる、 QHTH+QCTC+ηwi=TSQ ……3 さて、TH>TSの条件下では補助加熱する必要
は無いので3式にwi=0とし、 QH=KQ ……4 QC=(1−K)Q ……5 と表わせば、全流量に占める湯回路流量の割合K
は、 K=TS−TC/TH−TC ……6 となつて、第2図の範囲「A」のように制御すれ
ば設定した目標温度が得られる。この流量比を定
めるために流量比制御弁11にて湯回路9、水回
路10の弁開口度を制御するものである。
Q. _ _ _ _ _ _ H T H +Q C T C +ηwi=T S Q ...3 Now, under the condition of T H > T S , there is no need for auxiliary heating, so we set wi = 0 in equation 3, and Q H = KQ ...4 Q C =(1-K)Q...5 If expressed as, the ratio of hot water circuit flow rate to the total flow rate K
is K=T S -T C /T H -T C . . . 6. If the control is performed as shown in range "A" in FIG. 2, the set target temperature can be obtained. In order to determine this flow rate ratio, the valve opening degrees of the hot water circuit 9 and the water circuit 10 are controlled by the flow rate ratio control valve 11.

次にTH<TSとなる場合を考える。この時は、
給湯熱源1から供給される温度が低いのであるか
ら補助加熱しなければならない。ところが、一般
に瞬間加熱方式の補助加熱器12では定格入力に
対して絞ることができる最低入力の下限がある。
これはバーナの燃焼性能上の要因で決まるもので
ある。従つて、最低入力で加熱することになる
が、この場合、湯回路9からのみ供給すると温度
が上がり過ぎる場合があるので、補助加熱器12
は最低入力に維持しつつ流量比を制御する必要が
ある。これが第2図での範囲「B」であつて、補
助加熱すべき給湯負荷が最低能力以下の場合であ
る。最低入力をwiと示すと、3式は QHTH+QCTC+ηwi=TSQ ……7 これからKを4,5式を代入して求めると、 K=TS−TCηWi/Q/TH−TC ……8 となる。ηwi/QをΔtと示し、TS=TH+ΔTと示
せば8式は K=TH−TC+ΔT−Δt/TH−TC=1−Δt−ΔT/TH
TC……9 となる。ここでΔT=Δtの場合にK=1となつ
て、湯回路9のみから供給して丁度設定温度が得
られる場合であつて、Δt>ΔTの場合はKは1以
下、すなわち水回路10からも供給する必要があ
ることを示している。Δt=TS−TCの条件ではK
=0となつて水回路10のみから供給して丁度設
定温度が得られる場合である。しかしTH=TS
は範囲「A」に於てK=1となつて湯回路のみか
ら供給しており、範囲「A」と範囲「B」の切り
換え点では制御の方法によつては湯回路9のみか
らの供給状態と、水回路10のみからの供給で最
少能力で加熱する状態を繰り返えす場合があるの
で、この切り換え点に於て第2図のように若干の
ヒステリシスを設けると良い。但し、同図での
Δt′は実用上差しつかえの無い範囲にすべきであ
る。この範囲「B」は給湯負荷が比較的低い領域
の場合であり、補助加熱すべき給湯負荷が最少能
力以上になれば次の範囲「C」になる。
Next, consider the case where T H < T S. At this time,
Since the temperature supplied from the hot water heat source 1 is low, supplementary heating is required. However, in general, in the instant heating type auxiliary heater 12, there is a lower limit to the minimum input that can be reduced relative to the rated input.
This is determined by factors related to the combustion performance of the burner. Therefore, heating is performed with the minimum input, but in this case, if the hot water is supplied only from the hot water circuit 9, the temperature may rise too much, so the auxiliary heater 12
It is necessary to control the flow rate ratio while maintaining the minimum input. This is the range "B" in FIG. 2, where the hot water supply load to be auxiliary heated is below the minimum capacity. Letting the lowest input be wi, then equation 3 is Q H T H +Q C T C +ηwi=T S Q...7 From now on, when K is calculated by substituting equations 4 and 5, K=T S −T C ηWi/ Q/T H −T C ...8. If ηwi/Q is expressed as Δt and T S =T H +ΔT, equation 8 becomes K=T H −T C +ΔT−Δt/T H −T C =1−Δt−ΔT/T H
T C ......9. Here, when ΔT=Δt, K=1, and the set temperature can be obtained by supplying only from the hot water circuit 9, and when Δt>ΔT, K is less than 1, that is, from the water circuit 10. This indicates that it is also necessary to supply Under the condition of Δt=T S −T C, K
= 0, and the set temperature can be obtained by supplying water only from the water circuit 10. However, in T H = T S , K = 1 in range "A" and hot water is supplied only from the hot water circuit, and depending on the control method, hot water may not be supplied at the switching point between range "A" and range "B". Since the state of supply from only the circuit 9 and the state of heating at the minimum capacity with only the supply from the water circuit 10 may be repeated, it is recommended to provide a slight hysteresis at this switching point as shown in Figure 2. good. However, Δt' in the figure should be within a practically acceptable range. This range "B" is a region where the hot water supply load is relatively low, and when the hot water supply load to be auxiliary heated exceeds the minimum capacity, the next range "C" occurs.

範囲「C」ではK=1として湯回路9からのみ
供給し、3式を変形して得られる10式で示される
補助加熱能力になるよう制御する領域である。
In the range "C", K=1, water is supplied only from the hot water circuit 9, and control is performed so that the auxiliary heating capacity is expressed by Equation 10 obtained by modifying Equation 3.

wi=Q(TS−TH)/η ……10 能力制御は電気信号によつてガス供給量を制御
する電子式比例弁などを用いた能力制御装置19
によつて行われる。
wi=Q(T S −T H )/η ……10 Capacity control is performed by a capacity control device 19 using an electronic proportional valve that controls the gas supply amount using an electric signal.
It is carried out by.

第3図の制御ブロツク線図に於て、湯回路9に
設けられた温度検出器20は範囲「A」と範囲
「B」のどちらの制御を行うべきかを判別するた
めに用いられており、その結果によつて、流量比
制御弁11又は能力制御装置19を作動させるこ
とを示している。この温度検出器20は必らずし
も必要とせず、運転シーケンスの面で補うことも
可能である。例えば、端末蛇口を開いてしばらく
の間は湯回路9のみを開くことにし、温度検出器
16で検知した後に制御方式を判別するようにし
ても良い。
In the control block diagram of FIG. 3, the temperature detector 20 provided in the hot water circuit 9 is used to determine whether control should be performed in range "A" or range "B". , indicates that the flow ratio control valve 11 or the capacity control device 19 is operated depending on the result. This temperature detector 20 is not necessarily required and can be supplemented in terms of the operating sequence. For example, only the hot water circuit 9 may be opened for a while after opening the terminal faucet, and the control method may be determined after the temperature is detected by the temperature detector 16.

次に、流量比制御弁11の各種実施例について
述べる。第4図では合流部21の上流側近傍に2
ケのモータで開閉される弁を湯回路9水回路10
に各々設けたもので、弁ケース22の中に閉方向
へ附勢された弁プラグ23があつて、これをモー
タ24で回転せしめらるカム25で開度制御して
いる。モータ24は回転角度をフイードバツクし
たサーボモータシステムでも良いし、正負パルス
数に対応した回転角度になるパルスモータでも良
い。そして、2ケのモータ24は各々、制御回路
18によつて角度制御されて湯回路9と水回路1
0を流れる流量比が最適状態になるよう弁開度を
調整している。
Next, various embodiments of the flow ratio control valve 11 will be described. In FIG. 4, there are two
The valves that are opened and closed by the motor are connected to the hot water circuit 9 and the water circuit 10.
A valve plug 23 energized in the closing direction is placed in a valve case 22, and its opening degree is controlled by a cam 25 rotated by a motor 24. The motor 24 may be a servo motor system in which the rotation angle is fed back, or a pulse motor whose rotation angle corresponds to the number of positive and negative pulses. The angles of the two motors 24 are controlled by the control circuit 18, and the hot water circuit 9 and the water circuit 1
The valve opening degree is adjusted so that the flow rate ratio of 0 is optimal.

第5図は1組のモータ24とカム25で制御す
る例であつて、第2図に示したように、流量は湯
回路9と水回路10が互に逆の関係で増減するか
ら、対向設置することによつて流量比制御弁11
を構成している。
FIG. 5 shows an example of control using one set of motor 24 and cam 25. As shown in FIG. 2, the flow rate increases and decreases in the opposite relationship between hot water circuit 9 and water circuit 10, so By installing the flow ratio control valve 11
It consists of

第6図は弁体を一体化して制御する場合の例で
あつて、湯回路9と水回路10が弁ケース26の
中で合流し、合流直前の各々の回路に弁座部を対
応させ、弁プラグ27の移動によつて、一方回路
の弁開度増加時に他方回路の弁開度減少を生じせ
しめるよう構成したもので、弁プラグ27は第4
図,第5図の場合と同様にモータ24及びカム2
5で移動させられる。弁ケース26は一体化によ
つて少し大きくなるが1ケで良い。又、弁プラグ
26に対して作用する湯回路9及び水回路の供給
圧力による力が互に逆方向で打消し合うため動作
が安定しやすい効果も有している。
FIG. 6 shows an example of controlling the valve body by integrating the valve body, in which the hot water circuit 9 and the water circuit 10 are merged in the valve case 26, and the valve seat portion is made to correspond to each circuit immediately before the merge. By moving the valve plug 27, when the valve opening of one circuit increases, the valve opening of the other circuit decreases.
The motor 24 and the cam 2 are similar to those shown in Figs.
You can move it with 5. Although the valve case 26 becomes a little larger due to integration, only one valve case 26 is sufficient. Further, since the forces due to the supply pressures of the hot water circuit 9 and the water circuit that act on the valve plug 26 cancel each other in opposite directions, the valve plug 26 has the effect of easily stabilizing the operation.

第7図は他の実施例に於ける流量比制御弁11
について示したもので、いわゆるパイロツト式制
御弁28を一対として用いた場合である。湯回路
9と水回路10は同じ構成であつて、主通水路か
ら連続してダイヤフラム室29があり、ここから
弁座30とダイヤフラム31とで決められる間隙
を通つて出口に到る。一方、入口側から出口側へ
は別の水路が形成されていて、固定オリフイス3
2からパイロツト弁33が直列接続され、この間
で分圧された圧力がダイヤフラム31へ作用す
る。パイロツト弁33はコイル34でプランジヤ
ー35に生じる電磁力と制御スプリング36の反
力との釣合い点に応じてその開口度が定められ
る。主スプリング37は背圧室38にあつて、ダ
イヤフラム31を閉方向へ附勢している。
FIG. 7 shows a flow rate ratio control valve 11 in another embodiment.
This is a case in which a pair of so-called pilot type control valves 28 are used. The hot water circuit 9 and the water circuit 10 have the same configuration, and there is a diaphragm chamber 29 continuous from the main water passage, from which the outlet is reached through a gap defined by a valve seat 30 and a diaphragm 31. On the other hand, another waterway is formed from the inlet side to the outlet side, and a fixed orifice 3
2 and a pilot valve 33 are connected in series, and the partial pressure between them acts on the diaphragm 31. The opening degree of the pilot valve 33 is determined depending on the balance point between the electromagnetic force generated in the plunger 35 by the coil 34 and the reaction force of the control spring 36. The main spring 37 is located in the back pressure chamber 38 and urges the diaphragm 31 in the closing direction.

今、コイル34への通電が断たれている場合を
考えると、制御スプリング36の力によつてパイ
ロツト弁33は全閉であるからダイヤフラム31
の背圧室38の圧力は供給圧と等しく、ダイヤフ
ラム室29側から図に於て上方へ働く力よりも大
きくなると共に、主スプリング37の力も加わつ
てダイヤフラム31は弁座30へ圧接し、通路は
閉じる。次に、コイル34に電流が流れ、パイロ
ツト弁33が開いてくると、背圧室38の圧力は
オリフイス32とパイロツト弁33で分圧された
値に低下することになる。ダイヤフラム室29に
は供給元圧が働いているので、あるパイロツト弁
開度以上になればダイヤフラム31は開き始め
る。コイル電流が増加してパイロツト弁33が更
に開くと、背圧室38の圧力も更に低下するので
ダイヤフラム31自体が受ける開弁方向の力が増
加し、主スプリング37の力と釣合う位置も、よ
り開弁方向へ移動する。こうして、コイル34へ
の電流値によつてパイロツト弁33開度を制御す
ることが主通水路の弁開度を制御していることに
なる。流体自体の圧力によつてダイヤフラム31
の位置を制御するので、パイロツト弁33の微少
変位が大きなダイヤフラム31変位量として変換
されているし、プランジヤー35が発生するわず
かな力が主通路開度を制御し得る大きな力へ増幅
されたものである。従つて、第4図,第5図,第
6図で示した直動方式に比べてコイル34、プラ
ンジヤー35、制御スプリング36で構成されパ
イロツト弁33の位置を動かせるアクチエータ部
の小型、少パワー化が可能となる。第7図のアク
チエータ構成の他に、第4図のようなモータとカ
ムを用いる場合や、他の方法も考えられるが、こ
れらアクチエータの小型、少パワー化は制御回路
18の小容量化をも可能にするものである。
Now, considering the case where the current to the coil 34 is cut off, the pilot valve 33 is fully closed by the force of the control spring 36, so the diaphragm 31
The pressure in the back pressure chamber 38 is equal to the supply pressure, and is greater than the force acting upward in the figure from the diaphragm chamber 29 side, and the force of the main spring 37 is also applied, causing the diaphragm 31 to come into pressure contact with the valve seat 30, closing the passage. closes. Next, when current flows through the coil 34 and the pilot valve 33 opens, the pressure in the back pressure chamber 38 drops to a value divided by the orifice 32 and the pilot valve 33. Since the supply source pressure is working in the diaphragm chamber 29, the diaphragm 31 starts to open when the pilot valve opening reaches a certain degree. When the coil current increases and the pilot valve 33 opens further, the pressure in the back pressure chamber 38 also decreases, so the force in the valve opening direction that the diaphragm 31 itself receives increases, and the position where it balances the force of the main spring 37 also changes. Move further toward the valve opening direction. In this way, controlling the opening degree of the pilot valve 33 by the current value applied to the coil 34 is equivalent to controlling the valve opening degree of the main water passage. Due to the pressure of the fluid itself, the diaphragm 31
, the minute displacement of the pilot valve 33 is converted into a large amount of displacement of the diaphragm 31, and the slight force generated by the plunger 35 is amplified into a large force that can control the opening degree of the main passage. It is. Therefore, compared to the direct drive system shown in FIGS. 4, 5, and 6, the actuator section, which is composed of a coil 34, a plunger 35, and a control spring 36 and can move the position of the pilot valve 33, is smaller and requires less power. becomes possible. In addition to the actuator configuration shown in FIG. 7, it is also possible to use a motor and cam as shown in FIG. It is what makes it possible.

第7図では2ケのパイロツト式制御弁によつて
流量比制御弁11を構成したが、これを一体化し
た例を第8図に示した。ここでアクチエータ39
の内部構成を省略したが、第7図のような電磁力
を応用した場合でも良いし、モータとカムを用い
た例でも良い。又、動作も第7図の例と同様なの
で省略するが、合流部21が内蔵される点に特長
がある。
In FIG. 7, the flow rate ratio control valve 11 is composed of two pilot type control valves, but FIG. 8 shows an example in which these are integrated. Here actuator 39
Although the internal configuration has been omitted, it may be possible to apply electromagnetic force as shown in FIG. 7, or it may be an example using a motor and a cam. The operation is also the same as that of the example shown in FIG. 7, so a description thereof will be omitted, but the feature is that the merging section 21 is built-in.

次に、パイロツト式制御弁方式でアクチエータ
33を1ケにした流量比制御弁11の例を第9図
に示した。ここで、水回路10側にダイヤフラム
31を設け、オリフイス32、パイロツト弁3
3、主スプリング37、背圧室38、アクチエー
タ39は第7図,第8図の実施例と同じ構成・作
用を行う。弁ケース40にはダイヤフラム31と
同一中心軸線上に水側弁座41と湯側弁座42が
設けられ、共通の弁プラグ43がその位置によつ
て各々の弁開度を制御する。この弁プラグ43は
ダイヤフラム31に連結されている。
Next, FIG. 9 shows an example of a flow ratio control valve 11 using a pilot type control valve system and having only one actuator 33. Here, a diaphragm 31 is provided on the water circuit 10 side, an orifice 32, a pilot valve 3
3. The main spring 37, the back pressure chamber 38, and the actuator 39 have the same structure and function as the embodiments shown in FIGS. 7 and 8. A water side valve seat 41 and a hot water side valve seat 42 are provided in the valve case 40 on the same central axis as the diaphragm 31, and a common valve plug 43 controls the opening degree of each valve depending on its position. This valve plug 43 is connected to the diaphragm 31.

さて、パイロツト弁33が全閉ならダイヤフラ
ム31は図に於て下方へ移動し水回路10を閉じ
て湯回路9のみを開く。一方、パイロツト弁33
が全開なら、ダイヤフラム31は上方へ移動する
から水回路10が開き湯回路9が閉じられる。従
つて、パイロツト弁33の弁開度によつて湯側と
水側の弁開口比を変化させられるので第2図に示
したような流量比制御がアクチエータ39が1ケ
でも可能となる。このことは、制御系の簡素化に
も有利となる。
Now, if the pilot valve 33 is fully closed, the diaphragm 31 moves downward in the figure, closing the water circuit 10 and opening only the hot water circuit 9. On the other hand, the pilot valve 33
If is fully open, the diaphragm 31 moves upward, so the water circuit 10 is opened and the hot water circuit 9 is closed. Therefore, since the valve opening ratio of the hot water side and the water side can be changed by the valve opening degree of the pilot valve 33, the flow ratio control as shown in FIG. 2 can be performed even with a single actuator 39. This is also advantageous for simplifying the control system.

ところで、一度、温度設定して所定の流量比を
得るように制御された状態から、給湯蛇口の開度
を変化させた場合を考えると、供給圧が湯回路9
と水回路10で異る場合には同じ開口面積比のま
までは流量比が変化する。例えば湯回路9側にの
み圧力調整器7を挿入し、水回路10側が元圧を
直接加えている場合に於てはこの傾向が著しく、
流量を蛇口で調整する度に所作の流量比を維持す
るために開口比を変更する動作が必要となる。こ
のことは流量比制御弁11の寿命を短くするのみ
ならず、応答遅れによる過渡的温度変化をも生じ
ることになり好ましくない。そこで第1図に示し
たように、湯回路9と水回路10に対して共通の
給水回路6に圧力調整器7を設けることに効果が
ある。
By the way, if we consider the case where the opening degree of the hot water faucet is changed after the temperature has been set and controlled to obtain a predetermined flow rate ratio, the supply pressure will change to the hot water circuit 9.
If the opening area ratio is different in the water circuit 10, the flow rate ratio will change if the opening area ratio remains the same. For example, when the pressure regulator 7 is inserted only in the hot water circuit 9 side and the water circuit 10 side directly applies the source pressure, this tendency is noticeable.
Every time the flow rate is adjusted with a faucet, it is necessary to change the opening ratio in order to maintain the desired flow rate ratio. This not only shortens the life of the flow rate ratio control valve 11, but also causes transient temperature changes due to response delays, which is undesirable. Therefore, as shown in FIG. 1, it is effective to provide a pressure regulator 7 in the water supply circuit 6 that is common to the hot water circuit 9 and the water circuit 10.

圧力調整器7によつて湯回路9と水回路10は
等圧で供給されるから、分流部8と合流部21の
間での圧力差は湯回路側9と水回路側10とで常
に一致する。従つて、蛇口開度変化による全流量
変化が生じても流量比は変らず湯温は安定であ
る。
Since the hot water circuit 9 and the water circuit 10 are supplied with equal pressure by the pressure regulator 7, the pressure difference between the branch section 8 and the confluence section 21 is always the same between the hot water circuit side 9 and the water circuit side 10. do. Therefore, even if the total flow rate changes due to a change in faucet opening, the flow rate ratio remains unchanged and the water temperature remains stable.

流量比の制御は両回路の合流点で行う方法だけ
では無く、給水回路6からの分流部8で行うこと
も出来る。この例を第10図に示した。ここで、
構成要素に設けた番号は第1図のそれと対応して
いる。水の流れは連続的なので、分流部8で制御
して分流比を可変することは合流比を可変するこ
とと同一となつており、作用効果は第1図の場合
と変らない。加熱される前の水を制御しているの
でリングやダイヤフラムなどのゴム部品の劣化
を防止することが出来る効果を有している点に於
いて第1図より優れていると言える。又、分流比
制御を行うための流量比制御弁は第4図から第9
図の例で述べた構成そのまま、又は、一部の変更
によつて対応できるものである。
The flow rate ratio can be controlled not only at the junction of both circuits, but also at the branch section 8 from the water supply circuit 6. An example of this is shown in FIG. here,
The numbers assigned to the components correspond to those in FIG. Since the flow of water is continuous, varying the diversion ratio by controlling the diversion section 8 is the same as varying the confluence ratio, and the effect is the same as in the case of FIG. 1. It can be said that it is superior to FIG. 1 in that it has the effect of preventing deterioration of rubber parts such as rings and diaphragms because the water is controlled before it is heated. In addition, the flow rate ratio control valves for controlling the split flow ratio are shown in Figures 4 to 9.
The configuration described in the example shown in the figure can be used as is, or it can be handled by making some changes.

更に、第10図の実施例では、圧力調整器7と
流量比制御弁11の構成的一体化も可能であり、
その一例を第11図に示した。給水方向に対して
逆止弁44があつて逆止スプリング45で閉止方
向へ附勢され、給水圧によつて押し開けられる
が、給水側に負圧を生じた場合は閉じて逆流を防
いでいる。この逆止弁部につづいて減圧弁座46
があり、これに弁シート47が対応する。一方、
減圧弁座46の反対側にはほぼ同一内径のシリン
ダ部48が同一軸線上に形成され、その内側に弁
シート47と連動するピストン部49が挿入され
ている。この部分は、弁シート47に加わる水圧
によつて開方向へ働く力と、ピストン部に加わる
水圧によつて閉方向へ働く力とを打ち消し合わせ
ることによつて圧力調整精度を高める効果を有し
ている。弁シート47、ピストン部49は減圧ダ
イヤフラム50に固着させて一体となつて上下動
するものである。減圧弁座46を通過した後の圧
力がダイヤフラム室51へ導かれて減圧ダイヤフ
ラム50に対して図に於て上方へ働く力を生じ
る。この力と対向するのが減圧スプリング52
で、減圧スプリング52の力と減圧ダイヤフラム
50で生じる力がバランスする位置で減圧弁座4
6での開度が決められる。給水圧が上昇すると減
圧ダイヤフラム50で生じる閉方向の力が増加す
るので、次の安定位置は、より閉弁位置へ近寄つ
た位置となつて圧力上昇を吸収する。逆に、給水
圧が降下すると弁開度は広くなつて圧力降下を吸
収する。こうして、給水圧変化があつてもほぼ一
定の圧力で下流側へ給水するように作用してい
る。下流側には、この例では2ケのパイロツト式
制御弁からなる流量比制御弁11があつて、これ
はすでに説明した動作を行う。こうして一体化す
れば、取扱い、配管工事上で便利なものである。
Furthermore, in the embodiment shown in FIG. 10, it is also possible to structurally integrate the pressure regulator 7 and the flow ratio control valve 11,
An example is shown in FIG. A check valve 44 is placed in the direction of water supply and is urged in the closing direction by a check spring 45, and is pushed open by the water supply pressure, but if negative pressure is generated on the water supply side, it closes to prevent backflow. There is. Following this check valve part, a pressure reducing valve seat 46
, and the valve seat 47 corresponds to this. on the other hand,
On the opposite side of the pressure reducing valve seat 46, a cylinder part 48 having substantially the same inner diameter is formed on the same axis, and a piston part 49 interlocking with the valve seat 47 is inserted inside the cylinder part 48. This part has the effect of increasing pressure adjustment accuracy by canceling out the force acting in the opening direction due to the water pressure applied to the valve seat 47 and the force acting in the closing direction due to the water pressure applied to the piston section. ing. The valve seat 47 and the piston portion 49 are fixed to the pressure reducing diaphragm 50 and move up and down as one. The pressure after passing through the pressure reducing valve seat 46 is led to the diaphragm chamber 51 and produces a force acting upwardly in the figure on the pressure reducing diaphragm 50. The pressure reducing spring 52 opposes this force.
Then, the pressure reducing valve seat 4 is moved at a position where the force of the pressure reducing spring 52 and the force generated by the pressure reducing diaphragm 50 are balanced.
The opening degree can be determined at 6. As the water supply pressure increases, the force in the closing direction generated by the pressure reducing diaphragm 50 increases, so the next stable position is a position closer to the valve closing position to absorb the pressure increase. Conversely, when the water supply pressure drops, the valve opening widens to absorb the pressure drop. In this way, even if the water supply pressure changes, water is supplied to the downstream side at a substantially constant pressure. On the downstream side, there is a flow rate ratio control valve 11 consisting of two pilot type control valves in this example, which performs the operation described above. If integrated in this way, it will be convenient for handling and piping work.

以上、各種の実施例によつて説明したように、
本発明は、給湯熱源1から供給される湯温が設定
した湯温に比べて高い場合は水との混合する流量
比を制御し、設定した湯温よりも低い場合は補助
加熱器12の能力制御と流量比制御を単独又は併
用するものであつて、給湯熱源1から供給される
温度に関係なく一定の設定した温度で給湯できる
ものである。
As explained above using various examples,
The present invention controls the mixing flow ratio with water when the temperature of hot water supplied from the hot water supply heat source 1 is higher than the set water temperature, and when the water temperature is lower than the set water temperature, the capacity of the auxiliary heater 12 is controlled. Control and flow rate ratio control are used alone or in combination, and hot water can be supplied at a constant set temperature regardless of the temperature supplied from hot water heat source 1.

太陽熱集熱器を用いた給湯熱源では、季節・日
射条件・時刻・水温などによつて、タンク4内の
温度は水温近傍の温度から60℃を超える温度まで
変化することが避けられない。例えば風呂用に適
した40℃近傍の湯を得る時に本発明の制御装置
は、給湯熱源1内での温度変化を、高すぎる場
合、低すぎる場合、どちらの場合も吸収するので
シーズンを通じて良好な使い勝手をもたらすこと
ができる。
In a hot water heat source using a solar heat collector, the temperature inside the tank 4 inevitably changes from around the water temperature to over 60°C depending on the season, solar radiation conditions, time of day, water temperature, etc. For example, when obtaining hot water around 40°C, which is suitable for bathing, the control device of the present invention absorbs temperature changes in the hot water supply heat source 1, whether it is too high or too low, so that it can maintain a good temperature throughout the season. It can bring ease of use.

又、補助加熱器として高温貯湯式の電気温水器
やボイラを用いる場合に比べると、蛇口同整が不
要ばかりでなく、設定温度以上に加熱することが
ないので省エネルギ効果が高い。又、給湯配管か
らの放熱ロスも高温給湯して蛇口でミキシングす
る方法に比べると少くできる。さらに補助加熱器
の運転エネルギーが最低になるよう動作しており
給湯設備としての維持費低減に効果が大きい。特
に給湯熱源として太陽熱システムを利用した場合
には、太陽熱を優先使用することになつて省エネ
ルギ効果は高くなる。
Furthermore, compared to using a high-temperature hot water storage type electric water heater or boiler as an auxiliary heater, not only is it unnecessary to adjust the faucet, but there is no need to heat the faucet above a set temperature, resulting in a high energy saving effect. Furthermore, the heat radiation loss from the hot water supply piping can be reduced compared to the method of supplying hot water at a high temperature and mixing it with a faucet. Furthermore, the auxiliary heater operates to minimize operating energy, which is highly effective in reducing maintenance costs for hot water supply equipment. In particular, when a solar thermal system is used as a hot water supply heat source, the energy saving effect is enhanced because solar heat is used preferentially.

使用目的温度の湯が高温でも水道水温でも任意
に得られ使い勝手が良い。
It is convenient to use because hot water at the intended temperature can be obtained at any temperature, whether it is high temperature or tap water temperature.

このように本発明は使い勝手面と、省エネルギ
面において優れた効果を有するものである。
As described above, the present invention has excellent effects in terms of usability and energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における給湯温度制
御装置の給湯システム構成図、第2図は同流量比
制御弁と能力制御装置の動作説明図、第3図は同
制御ブロツク線図、第4図,第5図,第6図,第
7図,第8図,第9図は同流量比制御弁の各実施
例を示す構成断面図、第10図は他の実施例にお
ける給湯システム構成図、第11図は圧力調整器
と流量比制御弁を一体化した例を示す構成断面図
である。 1…給湯熱源、9…湯回路、10…水回路、1
1…流量比制御弁、21…合流部、12…補助加
熱器、19…能力制御装置、16,20…温度検
出器、17…温度設定器、8…分流部。
Fig. 1 is a hot water supply system configuration diagram of a hot water temperature control device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the same flow ratio control valve and capacity control device, Fig. 3 is a control block diagram, Figures 4, 5, 6, 7, 8, and 9 are cross-sectional views showing each embodiment of the same flow rate ratio control valve, and Figure 10 is a hot water supply system configuration in another embodiment. 11 are sectional views showing an example in which a pressure regulator and a flow ratio control valve are integrated. 1...Hot water heat source, 9...Hot water circuit, 10...Water circuit, 1
DESCRIPTION OF SYMBOLS 1... Flow rate ratio control valve, 21... Merging part, 12... Auxiliary heater, 19... Capacity control device, 16, 20... Temperature detector, 17... Temperature setting device, 8... Dividing part.

Claims (1)

【特許請求の範囲】 1 給湯熱源と、給湯熱源を通る湯回路と給湯熱
源を通らない水回路の各々の流量を制御する流量
比制御弁と、湯回路と水回路の合流部より下流に
設けた補助加熱器と、補助加熱器の能力制御装置
と、温度検出器と温度設定器と、前記温度検出器
と温度設定器の信号により前記流量比制御弁及び
能力制御装置を駆動する制御回路とによつて構成
され、前記制御回路は補助加熱器の能力が零で流
量比制御弁のみを駆動する場合と補助加熱器の能
力を最低値に維持して流量比制御弁のみを駆動す
る場合と流量比制御弁が湯回路のみを開いて能力
制御装置を駆動する場合とを有する給湯温度制御
装置。 2 給湯熱源下流の湯回路と水回路の合流部に流
量比制御弁を設け、その下流に補助加熱器と温度
検出器とを設置したことを特徴とする特許請求の
範囲第1項記載の給湯温度制御装置。 3 給湯熱源上流の湯回路と水回路の分流部に流
量比制御弁を設け、給湯熱源下流の湯回路と水回
路の合流部下流に補助加熱器と温度検出器とを設
置したことを特徴とする特許請求の範囲第1項記
載の給湯温度制御装置。 4 給湯熱源下流の湯回路と、合流部下流に設け
た補助加熱器下流の給湯回路の各々に温度検出器
を設けたことを特徴とする特許請求の範囲第1項
記載の給湯温度制御装置。
[Scope of Claims] 1. A hot water supply heat source, a flow rate ratio control valve for controlling the respective flow rates of a hot water circuit passing through the hot water supply heat source and a water circuit not passing through the hot water supply heat source, and a flow rate ratio control valve provided downstream from the confluence of the hot water circuit and the water circuit. an auxiliary heater, a capacity control device for the auxiliary heater, a temperature detector and a temperature setting device, and a control circuit that drives the flow rate ratio control valve and the capacity control device based on signals from the temperature detector and temperature setting device. The control circuit has two cases: when the capacity of the auxiliary heater is zero and only the flow rate ratio control valve is driven, and when the capacity of the auxiliary heater is maintained at the minimum value and only the flow rate ratio control valve is driven. A hot water temperature control device having a flow rate ratio control valve that opens only a hot water circuit to drive a capacity control device. 2. The hot water supply according to claim 1, characterized in that a flow rate ratio control valve is provided at the confluence of the hot water circuit and the water circuit downstream of the hot water supply heat source, and an auxiliary heater and a temperature detector are installed downstream of the flow ratio control valve. Temperature control device. 3. A flow rate ratio control valve is provided at the branch part of the hot water circuit and the water circuit upstream of the hot water supply heat source, and an auxiliary heater and a temperature detector are installed downstream of the confluence of the hot water circuit and the water circuit downstream of the hot water supply heat source. A hot water supply temperature control device according to claim 1. 4. The hot water supply temperature control device according to claim 1, wherein a temperature detector is provided in each of the hot water circuit downstream of the hot water supply heat source and the hot water circuit downstream of the auxiliary heater provided downstream of the merging portion.
JP3297180A 1980-03-14 1980-03-14 Controller for temperature of hot water supply Granted JPS56129918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3297180A JPS56129918A (en) 1980-03-14 1980-03-14 Controller for temperature of hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3297180A JPS56129918A (en) 1980-03-14 1980-03-14 Controller for temperature of hot water supply

Publications (2)

Publication Number Publication Date
JPS56129918A JPS56129918A (en) 1981-10-12
JPS6336528B2 true JPS6336528B2 (en) 1988-07-20

Family

ID=12373780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3297180A Granted JPS56129918A (en) 1980-03-14 1980-03-14 Controller for temperature of hot water supply

Country Status (1)

Country Link
JP (1) JPS56129918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129853A (en) * 2022-03-02 2023-09-11 주식회사 케이디파워 Solar power generation system and method capable of detecting leakage section through leakage monitoring for each solar cell module

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057150A (en) * 1983-09-08 1985-04-02 Matsushita Electric Ind Co Ltd Hot water supplyer
JPS61114029A (en) * 1984-11-06 1986-05-31 Matsushita Electric Ind Co Ltd Hot water supplier
JPH0823772B2 (en) * 1985-02-19 1996-03-06 松下電器産業株式会社 Hot water mixing device
JPS61190615A (en) * 1985-02-19 1986-08-25 Matsushita Electric Ind Co Ltd Mixing device of hot water and cold water
JPH0441293Y2 (en) * 1985-03-06 1992-09-29
JPH0441292Y2 (en) * 1985-03-06 1992-09-29
JPS62297912A (en) * 1986-06-17 1987-12-25 Mitsubishi Heavy Ind Ltd Temperature control method
JP5814643B2 (en) * 2011-06-14 2015-11-17 株式会社ガスター Hot water storage system
JP6138550B2 (en) * 2013-03-29 2017-05-31 株式会社ガスター Heat source equipment
CN103604213A (en) * 2013-11-12 2014-02-26 尚圣杰 Electromagnetic assisted heating air-source water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591154Y2 (en) * 1978-06-09 1984-01-13 松下電器産業株式会社 Fluid heating control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125384A (en) * 1978-03-06 1979-09-28 Bjoerklund Curt Arnold Apparatus for controlling quantity and temperatube and so on of at least two fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129853A (en) * 2022-03-02 2023-09-11 주식회사 케이디파워 Solar power generation system and method capable of detecting leakage section through leakage monitoring for each solar cell module

Also Published As

Publication number Publication date
JPS56129918A (en) 1981-10-12

Similar Documents

Publication Publication Date Title
JPS6336528B2 (en)
JPS6327620B2 (en)
JPH0794958B2 (en) Temperature control device for heat exchanger
JPH0547844B2 (en)
JPS6235574B2 (en)
GB2289116A (en) Flow control valve assembly
JPS599426A (en) Temperature controlling apparatus
JPS5822052Y2 (en) instant gas water heater
GB1585695A (en) Gas-fired continuous-flow water heater
JPH0241466Y2 (en)
JPH0370137B2 (en)
JPH048675B2 (en)
JPS62174813A (en) Temperature controller for supply hot water
KR950009264B1 (en) Gas boiler
JP2529763B2 (en) Water heater
JPH1091244A (en) Air-conditioning machine equipped with flow rate controller
KR950009265B1 (en) Gas boiler
JPS5868566A (en) Temperature control valve
JPH102609A (en) Hot-water supply apparatus
JP2557848Y2 (en) Hot water mixer tap
JPS6023624Y2 (en) Water heater
JPH0141090Y2 (en)
JPH0252180B2 (en)
JPH0221157A (en) Hot water supplying apparatus with water bypass
KR860000300Y1 (en) Water heater