JPH0547807U - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0547807U
JPH0547807U JP9902291U JP9902291U JPH0547807U JP H0547807 U JPH0547807 U JP H0547807U JP 9902291 U JP9902291 U JP 9902291U JP 9902291 U JP9902291 U JP 9902291U JP H0547807 U JPH0547807 U JP H0547807U
Authority
JP
Japan
Prior art keywords
ultrasonic
probed
tip
contact
contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9902291U
Other languages
Japanese (ja)
Inventor
治通 車谷
直規 田岡
文雄 月本
惣市 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP9902291U priority Critical patent/JPH0547807U/en
Publication of JPH0547807U publication Critical patent/JPH0547807U/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

(57)【要約】 【目的】 集束部先端と被探査材表面との間で接触媒質
の介在が不十分となり、そこに誤差要因となる微小な空
隙が残るという問題、接触子先端での先端反射波と被探
査材表面での表面反射波とを混同するという問題、及
び、集束部先端部が摩耗し易いという問題を一挙に解消
し得る手段を提供する。 【構成】 被探査材表面に接当自在な接当部7aを先端
に備え、その接当に基づいて超音波接触子3を囲繞しつ
つ被探査材表面から一定距離だけ離間させた状態に保持
する接当筒体7を設ける。超音波接触子3と被探査材表
面との間に形成される先端間隙Sへ接触媒質Bを供給す
るための供給路Pを、前記接当筒体7と超音波接触子3
との間に形成する。その供給路Pへ前記接触媒質Bを供
給し続ける接触媒質供給装置を設ける。
(57) [Abstract] [Purpose] The problem that the contact medium is not sufficiently interposed between the tip of the focusing part and the surface of the material to be probed, and a minute gap that remains as an error factor remains there. (EN) Provided is a means capable of solving at once a problem of confusing a reflected wave with a surface reflected wave on the surface of a material to be probed and a problem that the tip of the focusing part is easily worn. [Structure] A tip portion is provided with a contact portion 7a that can be brought into contact with the surface of the material to be probed, and the ultrasonic contactor 3 is surrounded based on the contact and is kept a certain distance from the surface of the material to be probed. The contact cylinder 7 is provided. A supply path P for supplying the contact medium B to the tip gap S formed between the ultrasonic contactor 3 and the surface of the probed material is provided with the contact cylinder 7 and the ultrasonic contactor 3.
Form between and. A couplant supply device for continuously supplying the couplant B to the supply path P is provided.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、超音波探査装置に関し、更に詳しくは、超音波発信部と、その超音 波発信部から発信される超音波に対する集束部と、その超音波の被探査材におけ る反射波を受信する超音波受信部とを備えた超音波接触子を、被探査材の表面に 接触自在に構成し、その接触状態における前記超音波受信部での受信情報に基づ いて前記被探査材の探査を行う超音波探査装置に関する。 The present invention relates to an ultrasonic probing device, and more specifically, to an ultrasonic wave transmitting section, a focusing section for ultrasonic waves transmitted from the ultrasonic wave transmitting section, and a reflected wave of the ultrasonic wave on a probed material. An ultrasonic contactor having an ultrasonic wave receiving portion for receiving is configured to be freely contactable with the surface of the probed material, and based on the information received by the ultrasonic wave receiving portion in the contact state, the probed material of the probed material is detected. The present invention relates to an ultrasonic probe device for conducting an exploration.

【0002】[0002]

【従来の技術】[Prior Art]

かかる超音波探査装置は、例えば、被探査材の厚さの計測・被探査材内部の探 傷等に利用される。 従来の超音波探査装置においては、前記超音波接触子の先端部が、剥き出し状 態の集束部にて構成され、その集束部の先端を被探査材の表面に直接接当させる ようにして、前記超音波接触子の被探査材表面への接触を行っていた。そして、 前記超音波接触子と被探査材との間に形成される隙間には、その存在による探査 誤差発生を回避するため、例えば、前記被探査材の表面に予め塗布された接触媒 質を介在させるようにし、もって、前記隙間を前記接触媒質にて埋めるようにし ていた。 尚、前記集束部の材料としては、超音波の集束性を高めるためにポリスチレン 等の材料が用いられていた。 Such an ultrasonic probing device is used, for example, for measuring the thickness of a material to be probed, for flaw detection inside the material to be probed, and the like. In the conventional ultrasonic probe, the tip of the ultrasonic contactor is composed of a converging part in a bare state, and the tip of the converging part is brought into direct contact with the surface of the material to be probed. The ultrasonic contactor was in contact with the surface of the material to be probed. Then, in order to avoid occurrence of a search error due to the presence of the gap formed between the ultrasonic contactor and the probed material, for example, a catalyst catalyst material previously applied to the surface of the probed material is used. It was made to interpose, and thus the said gap was filled with the said contact medium. As the material of the focusing part, a material such as polystyrene has been used in order to enhance the focusing property of ultrasonic waves.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

前記集束部の材料、即ち、ポリスチレン等の材料は、一般に硬いものであるた め、その集束部の先端が前記被探査材の表面の凹凸になじみ難く、その凹凸部分 には、上述の如く接触媒質を前記被探査材の表面に予め塗布しておいても、その 接触媒質の介在が不十分となって微小な空隙(気泡)が残り、その微小な空隙が 探査誤差要因になるという問題があった。 また、前記超音波接触子の先端(即ち、前記集束部の先端)を被探査材表面に 接当させるという使い方をしていたため、前記超音波接触子の先端での超音波の 反射と前記被探査材の表面での超音波の反射とを混同し易く、その混同によって 探査誤差を招来し易い上、前記集束部の先端部が摩耗し易くその耐久性が悪いと いう問題があった。 本考案は、かかる実情に着目してなされたものであり、上述の問題を一挙に解 消し得る超音波探査装置を提供することを目的としている。 Since the material of the focusing part, that is, the material such as polystyrene is generally hard, it is difficult for the tip of the focusing part to conform to the unevenness of the surface of the probed material, and the uneven part is contacted as described above. Even if the medium is applied to the surface of the material to be probed in advance, the interposition of the contact medium becomes insufficient and minute voids (air bubbles) remain, which causes a problem that the minute voids cause an error in the survey. there were. Also, since the tip of the ultrasonic contactor (that is, the tip of the focusing portion) is brought into contact with the surface of the material to be probed, the reflection of ultrasonic waves at the tip of the ultrasonic contactor and There is a problem that the ultrasonic wave is easily confused with the reflection of ultrasonic waves on the surface of the exploration material, and the confusion easily causes an exploration error, and the tip of the focusing portion is easily worn and its durability is poor. The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultrasonic probe apparatus that can solve the above problems all at once.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案に係る超音波計測装置の特徴構成は、被探査材の表面に接当自在な接当 部を先端に備え、その接当に基づいて超音波接触子を囲繞しつつ前記被探査材の 表面から一定距離だけ離間させた状態に保持する接当筒体を設け、前記超音波接 触子と前記被探査材の表面との間に形成される先端間隙へ接触媒質を供給するた めの供給路を、前記接当筒体と前記超音波接触子との間に形成し、その供給路へ 前記接触媒質を供給し続ける接触媒質供給装置を設けてある点にある。 The characteristic configuration of the ultrasonic measuring device according to the present invention is that the tip of the abutting part is abutting against the surface of the probed material, and the ultrasonic contactor is surrounded by the abutting part to surround the probed material. An abutting cylinder that holds a certain distance from the surface is provided to supply the couplant to the tip gap formed between the ultrasonic contactor and the surface of the probed material. A supply path is formed between the contact cylinder and the ultrasonic contactor, and a couplant supply device for continuing to supply the couplant to the supply path is provided.

【0005】[0005]

【作用】[Action]

被探査材の表面に前記接当筒体の接当部を接当させ、その接当筒体によって前 記超音波接触子を保持すると、その超音波接触子はその先端が被探査材の表面か ら一定距離だけ離間した状態となる。従って、その超音波接触子の先端での超音 波の反射と被探査材の表面での超音波の反射とが明確に区別され、それら両反射 の混同が回避されるようになる。 また、前記超音波接触子は、その先端が被探査材の表面から離間した状態で使 用されることとなるため、その先端部、即ち、前記集束部の先端部の接当摩耗が 回避されるようになる。 更に、前記超音波接触子の先端と被探査材の表面との間に形成される先端空隙 には、前記接触媒質供給装置からの接触媒質が前記供給路を経由して供給され続 けるため、その先端間隙には、微小な空隙(気泡)のない状態に前記接触媒質が 補充されるようになる。 When the abutting portion of the abutting cylinder is brought into contact with the surface of the probed material and the ultrasonic contactor is held by the abutment cylinder, the tip of the ultrasonic contactor is the surface of the probed material. It will be a certain distance away from them. Therefore, the reflection of ultrasonic waves at the tip of the ultrasonic contactor and the reflection of ultrasonic waves at the surface of the probed material are clearly distinguished, and confusion of these two reflections can be avoided. Further, since the ultrasonic contactor is used with the tip thereof separated from the surface of the material to be probed, contact wear of the tip portion, that is, the tip portion of the focusing portion is avoided. Become so. Further, since the contact medium from the contact medium supply device is continuously supplied through the supply path to the front end gap formed between the front end of the ultrasonic contactor and the surface of the probed material, The contact medium is replenished in the tip gap without any minute void (bubble).

【0006】[0006]

【考案の効果】[Effect of the device]

かくして、本考案によれば、超音波接触子の先端での超音波の反射と被探査材 の表面での超音波の反射との混同が回避されてその混同に基づく探査誤差の発生 が解消され、また、前記超音波接触子の先端部の接当摩耗が回避されてその耐久 性の問題が解消され、更に、先端間隙に前記微小な空隙(気泡)が生じるのが回 避されてその存在に基づく探査誤差の発生が解消されるようになり、もって、従 来の問題が一挙に解消されるようになる。 Thus, according to the present invention, the confusion between the reflection of the ultrasonic wave at the tip of the ultrasonic contactor and the reflection of the ultrasonic wave at the surface of the probed material is avoided, and the occurrence of the search error due to the confusion is eliminated. In addition, the contact wear of the tip of the ultrasonic contactor is avoided and the problem of its durability is solved, and further, the existence of the minute void (bubble) in the tip gap is avoided. The occurrence of exploration error based on the above will be solved, and thus the conventional problems will be solved all at once.

【0007】[0007]

【実施例】【Example】

図1には、本考案に係る超音波探査装置(具体的には、超音波肉厚計)の要部 が、その超音波肉厚計によって読み取られる各反射パルスと関連付けられて示さ れており、図2には、前記超音波肉厚計の全体構成が示されている。 FIG. 1 shows a main part of an ultrasonic probe device (specifically, an ultrasonic wall thickness gauge) according to the present invention in association with each reflection pulse read by the ultrasonic wall thickness gauge. 2, the overall configuration of the ultrasonic wall thickness gauge is shown.

【0008】 図中、1は前記肉厚計の制御装置であり、その制御装置1には、信号ケーブル 2を介して超音波接触子3が接続されている。その制御装置1と超音波接触子3 との間では、肉厚計測のための入出力信号の授受が前記信号ケーブル2を介して 行われるようになっている。前記超音波接触子3は、肉厚計測の対象となる被探 査材A(具体的には、腐食が進行した実腐食管)に対し、その表面に接触媒質B を介在させつつ接触させた状態に配置されるが、その接触媒質Bは、前記制御装 置1とは別個の接触媒質供給装置4から供給チューブ5経由で後述の如く供給さ れるようになっている。尚、6は流量調整ツマミである。In the figure, reference numeral 1 is a control device for the wall thickness gauge, and an ultrasonic contactor 3 is connected to the control device 1 via a signal cable 2. Between the control device 1 and the ultrasonic contactor 3, input / output signals for wall thickness measurement are exchanged via the signal cable 2. The ultrasonic contactor 3 was brought into contact with the material A to be inspected (specifically, an actual corrosion pipe in which corrosion has progressed), which is the target of wall thickness measurement, with the contact medium B 1 interposed on the surface thereof. The couplant B is arranged in a state, but the couplant B is supplied from a couplant supply device 4 separate from the control device 1 via a supply tube 5 as described later. Incidentally, 6 is a flow rate adjusting knob.

【0009】 前記超音波接触子3は、超音波を送信・受信する送受信子3A(即ち、その探 触子3Aは、超音波を発信する超音波発信部X及びその超音波の反射波を受信す る超音波受信部Yの両機能を果たす)と、その先端にスペーサ3B及びカップリ ング3Cを介して装着され、前記超音波発信部Xから発信される超音波を集束す る集束部3D(具体的には、超音波集束効果を有するポリスチレン等を素材とす る集束レンズ)とを備えてなり、それらは、被探査材表面へ接当される接当部7 aを先端に備え且つその接当状態にて前記超音波接触子3の先端(即ち、前記集 束部3Dの先端面)を被探査材表面から第1設定距離L1だけ離間させる接当筒 体7(具体的には、所定の強度を有するステンレス鋼等を素材とする先端縮径円 筒体)にて保持されている。尚、前記第1設定距離L1は、前記送受信子3Aか ら発信される超音波の波長の1/2以上に設定される。The ultrasonic contactor 3 transmits and receives ultrasonic waves to and from a transmitter / receiver 3A (that is, the probe 3A receives ultrasonic waves from an ultrasonic wave transmission section X and the reflected waves of the ultrasonic waves). Functioning as both the ultrasonic wave receiving unit Y) and a focusing unit 3D (which focuses the ultrasonic wave transmitted from the ultrasonic wave transmitting unit X on the tip of the ultrasonic wave receiving unit Y via a spacer 3B and a coupling 3C). Specifically, a focusing lens made of polystyrene or the like having an ultrasonic focusing effect is provided, and each of them has a contact portion 7a for contacting the surface of the probed material at its tip and The contacting cylinder 7 (specifically, the contacting cylinder 7 that separates the tip of the ultrasonic contactor 3 (that is, the tip end surface of the focusing portion 3D) from the surface of the material to be probed by the first set distance L1 in the contact state. A cylinder with a reduced diameter tip made of stainless steel or the like with a certain strength. It is held by the body). The first set distance L1 is set to ½ or more of the wavelength of the ultrasonic wave transmitted from the transceiver 3A.

【0010】 前記超音波接触子3の先端部においては、前記接当筒体7と前記集束部3Dと の間に、前記集束部3Dの先端と被探査材表面との間に形成される先端間隙Sを 前記供給チューブ5に通じさせる供給路Pが形成されている。尚、その供給路P は、前記超音波接触子3の基端側においては前記接当筒体7内に穿設されている 。そして、前記供給路Pへは、前記接触媒質供給装置4からの接触媒質Bが前記 供給チューブ5を経由して供給され続け、その接触媒質Bは、前記供給路Pを経 由して前記先端間隙Sへ切れ目なく補給されるようになる。At the tip of the ultrasonic contactor 3, a tip formed between the contact cylinder 7 and the focusing section 3D, between the tip of the focusing section 3D and the surface of the material to be probed. A supply path P that connects the gap S to the supply tube 5 is formed. The supply path P 1 is formed in the contact cylinder 7 on the proximal side of the ultrasonic contactor 3. Then, the contact medium B from the contact medium supply device 4 is continuously supplied to the supply path P via the supply tube 5, and the contact medium B passes through the supply path P to the tip. The gap S is replenished without interruption.

【0011】 かかる肉厚計においては、前記制御装置1によって適宜条件に設定された超音 波が前記送受信子3A(前記超音波発信部X)から発信される。その超音波は、 前記超音波接触子3の先端(前記集束部3Dの先端面)にて先端反射波として反 射し、且つ、前記被探査材Aの表面にて表面反射波として反射し、且つ、前記被 探査材Aの底面にて底面反射波として反射し、もって、3種類の反射波が発生す るようになる。そして、それら3種類の反射波による各反射パルスの信号は、前 記送受信子3A(前記超音波受信部Y)にて受信された後、前記制御装置1へ送 られて読み取りが行われ、その読み取りに基づいて、前記被探査材Aの肉厚計測 が実行されるようになる。In such a wall thickness gauge, an ultrasonic wave which is appropriately set by the control device 1 is transmitted from the transmitter / receiver 3A (the ultrasonic wave transmitting section X). The ultrasonic wave is reflected as a tip reflected wave at the tip of the ultrasonic contactor 3 (tip surface of the focusing portion 3D), and is reflected as a surface reflected wave on the surface of the probed material A, In addition, it is reflected as a bottom surface reflected wave on the bottom surface of the material A to be probed, so that three kinds of reflected waves are generated. Then, the signals of the respective reflected pulses due to the three types of reflected waves are received by the transmitter / receiver 3A (the ultrasonic receiving unit Y), and then sent to the control device 1 to be read, Based on the reading, the thickness measurement of the material A to be probed is executed.

【0012】 尚、前記制御装置1においては、前記各反射パルスが1.5波長分のパルスと なるように、前記超音波発信部Xから発信される超音波の条件を設定する。そし て、前記超音波の波長の1/2以上に相当し、且つ、前記第1設定距離L1より 短い第2設定距離L2だけ前記超音波接触子3の先端(即ち、前記集束部3Dの 先端面)から離間した位置まで、前記超音波発信部Xからの超音波が達したこと を条件として、前記各反射パルスの信号の読み取りの開始が行われる。即ち、上 述の条件に至るまでの前記各反射パルスの信号はブランキングされる。In the control device 1, the condition of the ultrasonic wave transmitted from the ultrasonic wave transmitting unit X is set so that each reflected pulse becomes a pulse of 1.5 wavelengths. Then, the tip end of the ultrasonic contactor 3 (that is, the tip end of the focusing portion 3D) corresponds to ½ or more of the wavelength of the ultrasonic wave and is shorter than the first set distance L1 by a second set distance L2. The reading of the signal of each reflected pulse is started on condition that the ultrasonic wave from the ultrasonic wave transmission unit X reaches a position separated from the surface). That is, the signals of the respective reflection pulses until the above conditions are blanked.

【0013】 かくして、前記超音波肉厚計を用いて被探査材Aの肉厚計測を行う場合は、被 探査材表面と超音波接触子3の先端との距離が前記第1設定距離L1だけ離間す ることとなるため、前記先端反射波による反射パルスと前記表面反射波による反 射パルスとが区別されるようになる。しかも、前記第1設定距離L1よりも短く て超音波接触子3の先端よりは手前となる前記第2設定距離L2だけ超音波接触 子3から先端から離間した位置に前記超音波発信部Xからの超音波が達した後に 前記反射パルスの読み取りが行われることとなるので、前記先端反射波による反 射パルスの読み取りが回避され、且つ、前記表面反射波による反射パルスの読み 取りは実行されるようになり(勿論、前記被探査材Aの底面での反射波による反 射パルスの読み取りは実行される)、もって、前記先端反射波と前記表面反射波 との混同が確実に避けられるようになる。Thus, when the thickness of the material A to be probed is measured using the ultrasonic thickness gauge, the distance between the surface of the material to be probed and the tip of the ultrasonic contactor 3 is equal to the first set distance L1. Since they are separated from each other, the reflected pulse due to the tip reflected wave and the reflected pulse due to the surface reflected wave can be distinguished from each other. In addition, from the ultrasonic wave transmitting portion X, the ultrasonic wave transmitter 3 is located at a position that is shorter than the first set distance L1 and is closer to the second set distance L2 that is closer to the front end of the ultrasonic contactor 3 from the ultrasonic contactor 3. Since the reflected pulse is read after the arrival of the ultrasonic wave, the reading of the reflected pulse by the tip reflected wave is avoided and the reading of the reflected pulse by the surface reflected wave is executed. (Of course, reading of the reflected pulse by the reflected wave on the bottom surface of the material A to be probed is executed), so that confusion between the tip reflected wave and the surface reflected wave can be surely avoided. Become.

【0014】 尚、前記第1設定距離L1及び前記第2設定距離L2を、超音波接触子3から 発せられる超音波の波長の1/2以上に設定したのは、前記先端反射波による反 射パルスも前記表面反射波による反射パルスも前述した如く1.5波長分のパル スとなるように超音波の条件が設定されるので、前記設定距離を前記波長の1/ 2未満に設定すると、前記先端反射波による反射パルスの後半1/2波長分と、 前記表面反射波による反射パルスの前半1/2波長分とが交錯する虞れがあるか らである。The first set distance L1 and the second set distance L2 are set to ½ or more of the wavelength of the ultrasonic wave emitted from the ultrasonic contactor 3 because the reflection by the tip reflected wave is generated. Since the ultrasonic wave conditions are set so that both the pulse and the pulse reflected by the surface reflected wave have a pulse of 1.5 wavelengths as described above, if the set distance is set to less than 1/2 of the wavelength, This is because there is a risk that the latter half ½ wavelength of the reflected pulse due to the tip reflected wave and the former ½ wavelength of the reflected pulse due to the surface reflected wave may intersect.

【0015】 また、前記超音波接触子3は、その先端が被探査材表面から離間した状態で使 用されることとなるため、その先端部、即ち、前記集束部3Dの先端部の接当摩 耗が回避されるようになる。更に、前記超音波接触子3の先端と被探査材表面と の間に形成される先端空隙Sには、前記接触媒質供給装置4からの接触媒質Bが 前記供給路Pを経由して供給され続けるため、その先端間隙Sには、微小な空隙 (気泡)のない状態に前記接触媒質Bが補充されるようになる。Further, since the ultrasonic contactor 3 is used in a state where the tip end thereof is separated from the surface of the material to be probed, the tip end portion thereof, that is, the tip end portion of the focusing portion 3D is abutted. Wear will be avoided. Furthermore, the tip space S formed between the tip of the ultrasonic contactor 3 and the surface of the material to be probed is supplied with the contact medium B from the contact medium supply device 4 via the supply path P. In order to continue, the contact medium B is replenished in the tip end gap S without any minute void (bubble).

【0016】 次に、本考案に係る超音波探査装置(前記超音波肉厚計)による肉厚計測結果 について説明する。 前記超音波肉厚計を用いて実腐食管の肉厚を計測した結果を、レーザ変位計を 用いて実腐食管の肉厚を計測した結果と比較した。その比較結果を表1に一覧す る。また、前記超音波肉厚計による肉厚計測結果と、レーザ変位計を用いた肉厚 計測結果との相関を図3に示す。Next, the result of wall thickness measurement by the ultrasonic probe device (the ultrasonic wall thickness meter) according to the present invention will be described. The result of measuring the wall thickness of the actual corrosion pipe using the ultrasonic wall thickness gauge was compared with the result of measuring the wall thickness of the actual corrosion pipe using the laser displacement meter. The comparison results are listed in Table 1. FIG. 3 shows the correlation between the thickness measurement result obtained by the ultrasonic thickness gauge and the thickness measurement result obtained by the laser displacement gauge.

【0017】[0017]

【表1】 [Table 1]

【0018】 前記超音波肉厚計による肉厚計測結果は、レーザ変位計を用いた肉厚計測結果 とよく対応しており、本考案の有効性が確認された。The result of thickness measurement using the ultrasonic thickness gauge corresponds well with the result of thickness measurement using a laser displacement meter, confirming the effectiveness of the present invention.

【0019】 次に、別実施例について説明する。 前記超音波発信部Xと前記超音波受信部Yとが、別の送受信子にて構成されて いてもよい。その場合、前記超音波接触子3は送信専用の送受信子及び受信専用 の送受信子の組み合わせにて構成される。Next, another embodiment will be described. The ultrasonic wave transmission unit X and the ultrasonic wave reception unit Y may be configured by different transceivers. In that case, the ultrasonic contactor 3 is composed of a combination of a transmitter / receiver dedicated to transmission and a transmitter / receiver dedicated to reception.

【0020】 本考案に係る超音波探査装置は、前記超音波肉厚計以外にも、超音波接触子3 からの超音波を、被探査材Aの表面及び内部にて夫々反射させ、それら反射によ る反射パルスの読み取りに基づいて、被探査材内部の探傷等を行う装置にも適用 することができる。In addition to the ultrasonic wall thickness gauge, the ultrasonic probing apparatus according to the present invention reflects the ultrasonic waves from the ultrasonic contactor 3 on the surface and the inside of the material A to be probed, and reflects them. It can also be applied to an apparatus for detecting flaws in the material to be probed based on the reading of the reflected pulse by.

【0021】 尚、実用新案登録請求の範囲の項に図面との対照を便利にするために符号を記 すが、該記入により本考案は添付図面の構成に限定されるものではない。It should be noted that reference numerals are added to the claims of the utility model for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る超音波探査装置の要部を反射パル
スと共に示す説明図
FIG. 1 is an explanatory view showing a main part of an ultrasonic probe according to the present invention together with a reflection pulse.

【図2】前記超音波探査装置の全体構成を示す説明図FIG. 2 is an explanatory diagram showing the overall configuration of the ultrasonic probe.

【図3】前記超音波探査装置による探査結果の有効性を
示すグラフ
FIG. 3 is a graph showing the effectiveness of the search results by the ultrasonic search device.

【符号の説明】[Explanation of symbols]

3 超音波接触子 3D 集束部 7 接当筒体 7a 接当部 4 接触媒質供給装置 A 被探査材 B 接触媒質 P 供給路 S 先端空隙 X 超音波発信部 Y 超音波受信部 3 Ultrasonic contactor 3D Focusing part 7 Contact cylinder 7a Contact part 4 Contact medium supply device A Probed material B Contact medium P Supply path S Tip gap X Ultrasonic wave transmitter Y Ultrasonic wave receiver

───────────────────────────────────────────────────── フロントページの続き (72)考案者 岸野 惣市 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Souichi Kishino 4-1-2, Hiranocho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 超音波発信部(X)と、その超音波発信
部(X)から発信される超音波に対する集束部(3D)
と、その超音波の被探査材(A)における反射波を受信
する超音波受信部(Y)とを備えた超音波接触子(3)
を、被探査材(A)の表面に接触自在に構成し、その接
触状態における前記超音波受信部(Y)での受信情報に
基づいて前記被探査材(A)の探査を行う超音波探査装
置であって、 前記被探査材(A)の表面に接当自在な接当部(7a)
を先端に備え、その接当に基づいて前記超音波接触子
(3)を囲繞しつつ前記被探査材(A)の表面から一定
距離だけ離間させた状態に保持する接当筒体(7)を設
け、 前記超音波接触子(3)と前記被探査材(A)の表面と
の間に形成される先端間隙(S)へ接触媒質(B)を供
給するための供給路(P)を、前記接当筒体(7)と前
記超音波接触子(3)との間に形成し、 前記供給路(P)へ前記接触媒質(B)を供給し続ける
接触媒質供給装置(4)を設けてある超音波探査装置。
1. An ultrasonic wave transmission unit (X) and a focusing unit (3D) for ultrasonic waves transmitted from the ultrasonic wave transmission unit (X).
And an ultrasonic wave contactor (3) including an ultrasonic wave receiving section (Y) for receiving a reflected wave of the ultrasonic wave on the probed material (A).
Is configured to be freely contactable with the surface of the material to be probed (A), and ultrasonic probe for performing the probe of the material to be probed (A) based on the information received by the ultrasonic wave receiving unit (Y) in the contact state. A device, which is abutment part (7a) capable of abutting freely on the surface of the probed material (A).
A contacting cylinder (7) which is provided at the tip and which holds the ultrasonic contactor (3) in a state of being separated from the surface of the probed material (A) by a certain distance while surrounding the ultrasonic contactor (3) based on the contact. And a supply path (P) for supplying the contact medium (B) to the tip gap (S) formed between the ultrasonic contactor (3) and the surface of the probed material (A). A contact medium supply device (4) formed between the contact cylinder (7) and the ultrasonic contactor (3) and continuously supplying the contact medium (B) to the supply path (P). An ultrasonic probe provided.
JP9902291U 1991-12-02 1991-12-02 Ultrasonic probe Pending JPH0547807U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9902291U JPH0547807U (en) 1991-12-02 1991-12-02 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9902291U JPH0547807U (en) 1991-12-02 1991-12-02 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0547807U true JPH0547807U (en) 1993-06-25

Family

ID=14235597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9902291U Pending JPH0547807U (en) 1991-12-02 1991-12-02 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0547807U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247751A (en) * 1995-03-09 1996-09-27 Nissan Motor Co Ltd Ultrasonic thickness measuring sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192607A (en) * 1987-05-07 1989-04-11 Toa Nenryo Kogyo Kk Tank plate inspecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192607A (en) * 1987-05-07 1989-04-11 Toa Nenryo Kogyo Kk Tank plate inspecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247751A (en) * 1995-03-09 1996-09-27 Nissan Motor Co Ltd Ultrasonic thickness measuring sensor

Similar Documents

Publication Publication Date Title
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
US8770027B2 (en) Pulse-echo method by means of an array-type probe and temperature compensation
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
CN102422123B (en) Apparatus and method for measuring material thickness
US4890496A (en) Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements
US8739630B2 (en) Pulse-echo method for determining the damping block geometry
CN101923075B (en) Method for compensating vibration of automatic and ultrasonic steel pipe flaw detection probe
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP4728838B2 (en) Ultrasonic spot weld evaluation method and apparatus
CN106441178A (en) Ultrasonic thickness measuring technology having self-correcting function
CN108802202A (en) A kind of ultrasonic wave tandem probe apparatus and method
CA2544844A1 (en) Method for checking a weld between two metal pipelines
JP2006242770A (en) Electromagnetic ultrasonic flaw detection/measurement method and device
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
JPH0547807U (en) Ultrasonic probe
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
JP4429810B2 (en) Ultrasonic flaw detection method
JPH07333201A (en) Ultrasonic flaw detection of piping
JPH05149736A (en) Ultrasonic examining method
CA3044105C (en) Method and device for checking an object for flaws
JP2002202116A (en) Method of measuring thickness of locally thinned portion of plate
JP2010190794A (en) Thinning detection method