JPH0192607A - Tank plate inspecting device - Google Patents

Tank plate inspecting device

Info

Publication number
JPH0192607A
JPH0192607A JP62109653A JP10965387A JPH0192607A JP H0192607 A JPH0192607 A JP H0192607A JP 62109653 A JP62109653 A JP 62109653A JP 10965387 A JP10965387 A JP 10965387A JP H0192607 A JPH0192607 A JP H0192607A
Authority
JP
Japan
Prior art keywords
tank
ultrasonic
plate
inspection device
tank plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62109653A
Other languages
Japanese (ja)
Inventor
Shinichi Nagai
慎一 永井
Yoshiaki Taniguchi
善昭 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tonen General Sekiyu KK
Original Assignee
Mitsubishi Electric Corp
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Toa Nenryo Kogyyo KK filed Critical Mitsubishi Electric Corp
Priority to JP62109653A priority Critical patent/JPH0192607A/en
Publication of JPH0192607A publication Critical patent/JPH0192607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily and smoothly inspect the plate thickness state of a tank plate by using a noncontract type ultrasonic wave generator and an ultrasonic wave detector. CONSTITUTION:The inspecting device 10 runs on the surface of the bottom plate 1 of a tank by itself with wheels 12A and 12B provided to a casing 11. The inspecting device 10 has the ultrasonic wave generator 13, ultrasonic wave detector 14, a data analyzing and storing circuit 15, a control circuit 16, a power circuit 17, and a wheel driving motor 18 incorporated in the casing 11. Laser light L1 from the ultrasonic wave generator 13 is projected on the surface of the tank bottom plate 1 as a body to be inspected to generate an ultrasonic wave in the surface of the tank bottom plate 1. The ultrasonic wave is propagated in the plate and reflected by the bottom surface of the tank bottom plate 1 to return to the surface. Consequently, the ultrasonic wave detector 14 performs detection by the intervention of the laser light L2. Data is analyzed by the data analyzing and storing circuit 15 to measure the plate thickness of the tank bottom plate 1 according to its reflection time.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、石油製品、LNG、化学薬品等を貯蔵するタ
ンクの底板、側板等の板厚状態を検査するタンク板検査
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tank plate inspection device for inspecting the thickness of bottom plates, side plates, etc. of tanks for storing petroleum products, LNG, chemicals, etc.

[従来の技術] タンクの底板、側板等は腐食等の原因で板厚が薄くなる
と、内容物の漏洩を生ずるおそれがある。このため、内
容物によっては、法令等により、定期的な板厚検査が義
務づけられている。
[Prior Art] When the thickness of the bottom plate, side plate, etc. of a tank becomes thin due to corrosion or the like, there is a risk that the contents may leak. For this reason, depending on the contents, periodic board thickness inspections are required by law.

従来、タンク板検査装置として、タンク板の各部に超音
波を発生させ、該超音波がタンク板の板厚内を伝播する
時間を測定することにより、タンク板の板厚を測定する
ものが採用されている。このタンク板検査装置は、タン
ク板に超音波を発生させる超音波発生器と、タンク板の
板厚内を伝播した超音波を検出する超音波検出器とを有
して構成される。
Conventionally, tank plate inspection equipment has been used to measure tank plate thickness by generating ultrasonic waves in each part of the tank plate and measuring the time it takes for the ultrasonic waves to propagate within the thickness of the tank plate. has been done. This tank plate inspection device includes an ultrasonic generator that generates ultrasonic waves on the tank plate, and an ultrasonic detector that detects the ultrasonic waves propagated within the thickness of the tank plate.

[発明が解決しようとする問題点] しかしながら、上記従来のタンク板検査装置は、超音波
発生器の発信端をタンク板の表面に接触させ、かつ超音
波検出器の受信端をタンク板の表面に接触させる接触式
である。このため、■超音波を被検体内に効率よく伝達
させるために水等の接触媒質が必要であり、この接触媒
質の後処理も必要となる。また、■被検体の表面の凹凸
が測定結果に影響するため、表面の凹凸除去およびみが
き等の測定面平滑化の前処理が必要となる。
[Problems to be Solved by the Invention] However, in the conventional tank plate inspection device described above, the transmitting end of the ultrasonic generator is brought into contact with the surface of the tank plate, and the receiving end of the ultrasonic detector is brought into contact with the surface of the tank plate. It is a contact type. For this reason, (1) a couplant such as water is required to efficiently transmit ultrasonic waves into the subject, and post-treatment of this couplant is also required. In addition, (1) Since the unevenness of the surface of the object to be examined affects the measurement results, pretreatment to remove the unevenness of the surface and smooth the measurement surface such as polishing is necessary.

本発明は、簡単かつ円滑にタンク板の板厚状態を検査可
能とすることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to enable inspection of the thickness of a tank plate easily and smoothly.

[問題点を解決するための手段] 本発明は、タンク板の各部に超音波を発生させ、該超音
波がタンク板の板厚内を伝播する時間を測定することに
より、タンク板の板厚を測定するタンク板検査装置にお
いて、タンク板に非接触状態で超音波を発生させる超音
波発生器と、タンク板の板厚内を伝播した超音波を非接
触状態で検出する超音波検出器とを有してなるようにし
たものである。
[Means for solving the problem] The present invention generates ultrasonic waves in each part of the tank plate, and measures the time it takes for the ultrasonic waves to propagate within the thickness of the tank plate, thereby determining the thickness of the tank plate. A tank plate inspection device that measures tank plate includes an ultrasonic generator that generates ultrasonic waves in a non-contact manner to the tank plate, and an ultrasonic detector that detects ultrasonic waves propagated within the thickness of the tank plate in a non-contact manner. It is designed to have the following.

[作用] 本発明のタンク板検査装置にあっては、超音波発生器に
より非接触にてタンク板の各部に超音波を発生させ、タ
ンク板の板厚内を伝播した超音波を超音波検出器により
非接触にて検出し、これにより超音波がタンク板の板厚
内を伝播する時間を測定し、既知のタンク板内における
超音波伝播速度を用いることにより、タンク板の板厚を
測定することになる。
[Function] In the tank plate inspection device of the present invention, ultrasonic waves are generated in each part of the tank plate in a non-contact manner by an ultrasonic generator, and the ultrasonic waves propagated within the thickness of the tank plate are detected by ultrasonic waves. The ultrasonic wave propagates through the thickness of the tank plate without contact, and the thickness of the tank plate is measured by using the known ultrasonic propagation speed within the tank plate. I will do it.

ここで、超音波発生器と超音波検出器は非接触型である
から、■接触媒質が不要であり、■被検体の表面の凹凸
を事前に平滑化する必要もなく、簡単かつ円滑に板厚状
態を検査できる。
Here, since the ultrasonic generator and ultrasonic detector are non-contact type, ■ no couplant is required, and ■ there is no need to smooth out the irregularities on the surface of the specimen in advance, allowing the plate to be easily and smoothly removed. Thickness can be inspected.

[実施例] 第1図は本発明の第1実施例に係る検査装置を示す模式
図、第2図は本発明の板厚測定原理を示す模式図、第3
図は超音波検出器の検出原理を示す模式図、第4図は超
音波検出器の他の検出原理を示す模式図である。
[Example] Fig. 1 is a schematic diagram showing an inspection device according to the first embodiment of the present invention, Fig. 2 is a schematic diagram showing the principle of plate thickness measurement of the present invention, and Fig. 3 is a schematic diagram showing the inspection device according to the first embodiment of the present invention.
The figure is a schematic diagram showing the detection principle of the ultrasonic detector, and FIG. 4 is a schematic diagram showing another detection principle of the ultrasonic detector.

検査装置10は、第1図に示すようにケーシング11に
設けられる車輪12A、12Bにてタンク底板1の表面
を自走できる。検査装置10は、ケーシング11の内部
に、超音波発生用レーザー(超音波発生器)13、超音
波検出器14.データ解析/記憶回路15、制御回路1
6、電源回路17、車輪駆動用モータ18を内蔵してい
る。
The inspection device 10 can run on the surface of the tank bottom plate 1 using wheels 12A and 12B provided on the casing 11, as shown in FIG. The inspection device 10 includes, inside a casing 11, an ultrasonic generation laser (ultrasonic generator) 13, an ultrasonic detector 14. Data analysis/memory circuit 15, control circuit 1
6. Built-in power supply circuit 17 and wheel drive motor 18.

19A−19Gは給電、信号伝送等のためのケー・プル
である。
19A-19G are cable pulls for power supply, signal transmission, etc.

検査装置10の板厚測定原理は以下の如くである(第2
図参照)。
The plate thickness measurement principle of the inspection device 10 is as follows (Second
(see figure).

(A)超音波発生用レーザー13からのレーザー光L1
を被検体としてのタンク底板1の表面に照射することに
より、タンク底板1の表面に超音波を発生させる。超音
波発生のメカニズムは、■レーザー光の放射圧、■物質
表面に生ずる熱応力、■物質蒸発の力のそれぞれによる
。検査装置10は、超音波発生用レーザー13のレーザ
ー光軸近くに設けた受光素子の信号、すなわちレーザー
照射時刻信号をデータ解析/記憶回路15に伝える。
(A) Laser light L1 from the ultrasonic generation laser 13
By irradiating the surface of the tank bottom plate 1 as a subject, ultrasonic waves are generated on the surface of the tank bottom plate 1. The mechanisms of ultrasonic generation are: 1) the radiation pressure of the laser beam, 2) the thermal stress generated on the material surface, and 2) the force of material evaporation. The inspection device 10 transmits a signal from a light receiving element provided near the laser optical axis of the ultrasonic generation laser 13, that is, a laser irradiation time signal, to the data analysis/storage circuit 15.

(B)上記(A)にてタンク底板1の表面に発生した超
音波は、板厚内部を伝播し、タンク底板1の裏面で反射
し、再び表面に戻る。検査装置1oは、上記タンク底板
1の表面に戻ってくる超音波(縦波)を超音波検出器1
4によりレーザー光L2を介して検出する。検査装置1
0は、超音波検出器14の上記検出情報をデータ解析/
記憶回路15に伝える。
(B) The ultrasonic waves generated on the surface of the tank bottom plate 1 in (A) above propagate inside the plate thickness, are reflected on the back surface of the tank bottom plate 1, and return to the surface again. The inspection device 1o detects ultrasonic waves (longitudinal waves) returning to the surface of the tank bottom plate 1 using an ultrasonic detector 1.
4 through the laser beam L2. Inspection device 1
0 performs data analysis/data analysis on the detection information of the ultrasonic detector 14.
The information is transmitted to the memory circuit 15.

(C)データ解析/記憶回路15は、レーザー照射時刻
を基準として、超音波検出器14にて縦波を検出した時
刻toを測定する。ここで、被検体としてのタンク底板
1の内部における縦波伝播速度(音速)Cは車前に知得
されている。したがって、タンク底板1の板厚はC−t
o/2により算出され、データ解析/記憶回路15に蓄
えられる。なお、縦波は、タンク底板1の表面と裏面を
減衰してなくなるまで往復をくり返すので、その縦波の
面間間隔によってもタンク底板1の板厚を検出できる。
(C) The data analysis/storage circuit 15 measures the time to when the ultrasonic detector 14 detects a longitudinal wave, with the laser irradiation time as a reference. Here, the longitudinal wave propagation velocity (sound velocity) C inside the tank bottom plate 1 as the object to be inspected is known in front of the vehicle. Therefore, the thickness of the tank bottom plate 1 is C-t
o/2 and stored in the data analysis/storage circuit 15. In addition, since the longitudinal waves repeat reciprocation until they are attenuated on the front and back surfaces of the tank bottom plate 1, the thickness of the tank bottom plate 1 can also be detected by the inter-plane spacing of the longitudinal waves.

(D)検査装置10は、制御回路16が発するモータ駆
動信号にて車輪駆動用モータ18を駆動制御するととも
に、該モータ駆動信号をデータ解析/記憶回路15に伝
える。これにより、検査装置10は、タンク底板lの各
部の位置情報を上記(C)の板厚情報とともにデータ解
析/記憶回路15に蓄え、タンク底板lの各部の板厚を
測定可能とする。
(D) The inspection device 10 drives and controls the wheel drive motor 18 using a motor drive signal issued by the control circuit 16, and transmits the motor drive signal to the data analysis/storage circuit 15. Thereby, the inspection device 10 stores the positional information of each part of the tank bottom plate l in the data analysis/storage circuit 15 together with the plate thickness information of (C) above, thereby making it possible to measure the plate thickness of each part of the tank bottom plate l.

なお、超音波発生用レーザー13としては、ジャイアン
トパルスレーザ−(例えばNd:YAGレーザ−、Qス
イッチ付、出力0.05J以下)が用いられる。
In addition, as the ultrasonic generation laser 13, a giant pulse laser (for example, a Nd:YAG laser, equipped with a Q switch, and an output of 0.05 J or less) is used.

また、超音波検出器14としては、スタビライズドマイ
ケルソン干渉方式(第3図参照)もしくはヘテロダイン
干渉方式(第4図参照)等のレーザー干渉法によるもの
が用いられる。
Further, as the ultrasonic detector 14, one based on a laser interference method such as a stabilized Michelson interference method (see FIG. 3) or a heterodyne interference method (see FIG. 4) is used.

スタビライズドマイケルソン干渉方式について説明する
。レーザー21(例えばHe −N e レーザー、出
力10mW)からのレーザー光はレンズ22A、22B
、アパッチャ−23Aを通過することにより、該レーザ
ー光のノイズ低減、およびコヒーレント性を改善され、
ビームスプリッタ−24に送られる。レーザー光はビー
ムスプリッタ−24で2つのビームに分けられ、1つは
ピエゾ素子25の表面に取付けられている反射鏡26で
反射されビームスプリッタ−24に戻る。もう1つはタ
ンク底板1の測定面で反射されビームスプリッタ−24
に戻る。この2つのビームは互いに合わさり干渉縞を作
り、この干渉縞を作ったビームの一部がアパッチャー2
3Bを通過して光検出器27に送られる。すなわち、タ
ンク底板1の表面における超音波による微小変位が干渉
縞の移動変化となり光検出器27でその変化を捕えるこ
とができる。光検出器27の出力信号は信号増巾器28
で増i1され前述のデータ解析/記憶回路15へ送られ
る。信号増巾器28からの信号の一部はローパスフィル
ター29を通ってピエゾ素子25に送られ、ピエゾ素子
25を駆動する。これにより、外部から伝達される低周
波振動、測定器自身が発生する低周波振動、大気のゆら
ぎによるレーザービームの光路の変化が除去され、レー
ザー13によって発生する高周波の超音波(約IMHz
以上)を検出することができる。なお、220〜22E
はレンズである。
The stabilized Michelson interference method will be explained. Laser light from a laser 21 (e.g. He-N e laser, output 10 mW) is transmitted through lenses 22A and 22B.
, the noise reduction and coherence of the laser beam are improved by passing through the aperture 23A,
It is sent to the beam splitter 24. The laser beam is split into two beams by the beam splitter 24, one of which is reflected by a reflecting mirror 26 attached to the surface of the piezo element 25 and returns to the beam splitter 24. The other beam is reflected by the measurement surface of the tank bottom plate 1 and is reflected by the beam splitter 24.
Return to These two beams combine with each other to create interference fringes, and a part of the beam that created these interference fringes is transmitted to the aperture 2.
3B and is sent to the photodetector 27. That is, a minute displacement caused by the ultrasonic waves on the surface of the tank bottom plate 1 results in a movement change in the interference fringes, and the photodetector 27 can detect the change. The output signal of the photodetector 27 is sent to a signal amplifier 28
The data is incremented by i1 and sent to the data analysis/storage circuit 15 mentioned above. A portion of the signal from the signal amplifier 28 passes through a low-pass filter 29 and is sent to the piezo element 25 to drive the piezo element 25. This eliminates low-frequency vibrations transmitted from the outside, low-frequency vibrations generated by the measuring instrument itself, and changes in the optical path of the laser beam due to atmospheric fluctuations.
above) can be detected. In addition, 220-22E
is a lens.

ヘテロライン干渉方式について説明する。レーザー31
(例えばHe−Neレーザー、出力10mW)からのレ
ーザー光(周波数fO)はブラッグセル32に送られる
。ブラッグセル32におけるセル物質内の音波の周波数
をfsとする。ブラッグセル32からのビームは周波数
変化なしに直進するビーム(周波数fO)と回折するビ
ーム(周波数fO−fs)にわかれる。直進するビーム
はタンク底板1の測定面で反射されブラッグセル32に
戻る。回折したビームは反射鏡33A、33Bで反射さ
れ、ブラッグセル32に戻る。タンク底板1の測定面で
反射されたビームはブラッグセル32で回折され周波数
fo+fsとなり光検出器34に送られる。また、反射
鏡33A、33Bで反射されたビームはブラッグセル3
2を直進して周波数fO−fsで光検出器34へ送られ
る。タンク底板1の測定面が超音波により振動すると、
ドツプラーシフトにより周波数はfO+fs +fmと
なる。したがって、光検出器データ解析/記憶回路15
に送られる。これによって超音波が検出される。なお、
35は発振回路、36はレンズである。
The heteroline interference method will be explained. laser 31
Laser light (frequency fO) from (for example, a He-Ne laser, output 10 mW) is sent to the Bragg cell 32. Let fs be the frequency of the sound wave within the cell material in the Bragg cell 32. The beam from the Bragg cell 32 is divided into a straight beam (frequency fO) without frequency change and a diffracted beam (frequency fO−fs). The straight beam is reflected by the measurement surface of the tank bottom plate 1 and returns to the Bragg cell 32. The diffracted beam is reflected by reflecting mirrors 33A and 33B and returns to Bragg cell 32. The beam reflected by the measurement surface of the tank bottom plate 1 is diffracted by the Bragg cell 32 and has a frequency of fo+fs, and is sent to the photodetector . In addition, the beams reflected by the reflecting mirrors 33A and 33B are transmitted to the Bragg cell 3.
2 and is sent to the photodetector 34 at a frequency fO-fs. When the measurement surface of the tank bottom plate 1 is vibrated by ultrasonic waves,
Due to the Doppler shift, the frequency becomes fO+fs+fm. Therefore, the photodetector data analysis/storage circuit 15
sent to. This allows ultrasonic waves to be detected. In addition,
35 is an oscillation circuit, and 36 is a lens.

なお、超音波発生用レーザー13のレーザー光L1、お
よび超音波検出用レーザー21.31のレーザー光L2
は、ポリゴンミラー、平板型反射鏡でタンク底板1の測
定面」−を広範囲にスキャンすることができる。
Note that the laser beam L1 of the ultrasonic generation laser 13 and the laser beam L2 of the ultrasonic detection laser 21.31
The measurement surface of the tank bottom plate 1 can be scanned over a wide range using a polygon mirror or a flat reflector.

上記第1実施例によれば、超音波発生用レーザー13と
超音波検出器14が非接触型であるから、■接触媒質が
不要であり、■被検体の表面の凹凸を事前に平滑化する
必要もなく、簡単かつ円滑に板厚状態を検査できる。
According to the first embodiment, since the ultrasonic generation laser 13 and the ultrasonic detector 14 are non-contact type, (1) no couplant is required, and (2) irregularities on the surface of the subject are smoothed in advance. It is possible to easily and smoothly inspect the plate thickness condition without any need.

また、超音波発生用レーザー13と超音波検出器14が
レーザー光にて超音波を発生/検出するものであるから
、金属に限らずあらゆる材料からなるタンク板の板厚状
態を検査できる。
Further, since the ultrasonic wave generation laser 13 and the ultrasonic detector 14 generate/detect ultrasonic waves using laser light, the thickness condition of a tank plate made of any material other than metal can be inspected.

第5図は本発明の第2実施例に係る検査装置の使用状態
を示す模式図、第6図は本発明の第2実施例に係る検査
装置を示す模式図である。
FIG. 5 is a schematic diagram showing how the inspection device according to the second embodiment of the present invention is used, and FIG. 6 is a schematic diagram showing the inspection device according to the second embodiment of the present invention.

検査装置50は、タンク屋根板2に設けられた点検孔等
のノズル3に設置されている。検査装置50は、超音波
発生用レーザー光L1および超音波検出用レーザー光L
2のための反射鏡51A、51Bをそれらに対応する反
射鏡駆動モータ52A、52Bにて回転し、レーザー光
L1、L2をタンク底板1において広範囲、高速に、二
次元的にスキャンすることによりタンク底板1の板厚状
態を検査する。モータ52A、52Bは制御回路16が
発するモータ駆動信号にて駆動制御される。19G、1
9Hは給電ケーブル、51C151Dは反射鏡である。
The inspection device 50 is installed in a nozzle 3 such as an inspection hole provided in the tank roof plate 2. The inspection device 50 includes a laser beam L1 for generating ultrasonic waves and a laser beam L for detecting ultrasonic waves.
2 are rotated by the corresponding reflector drive motors 52A and 52B, and the laser beams L1 and L2 are scanned two-dimensionally over a wide range at high speed on the tank bottom plate 1. Inspect the thickness of the bottom plate 1. The motors 52A and 52B are driven and controlled by a motor drive signal issued by the control circuit 16. 19G, 1
9H is a power supply cable, and 51C151D is a reflecting mirror.

なお、検査装置50において前記検査装置lOと実質的
に同一な部分は同一の符合を付して説明を省略する。
In addition, the parts in the inspection device 50 that are substantially the same as those in the inspection device 1O are given the same reference numerals, and the description thereof will be omitted.

第7図は本発明の第3実施例に係る検査装置の使用状態
を示す模式図、第8図は本発明の第3実施例に係る検査
装置を示す模式図である。
FIG. 7 is a schematic diagram showing how the inspection device according to the third embodiment of the present invention is used, and FIG. 8 is a schematic diagram showing the inspection device according to the third embodiment of the present invention.

検査装置60は、タンク側板4に両端を仮結合した装置
吊り下げ用ケーブル5に、車輪61A、61Bを介して
移動可能に支持されている。検査装置60は、タンク底
板1の表面上にスチームコイル等の内部品62が配設さ
れている場合にも、車輪駆動モータ63の駆動制御によ
ってタンク底板1の上方を円滑に移動できる。検査装置
60は、検査装置50におけると同様に、ポリゴンミラ
ー、反射鏡を設けることにより、超音波発生用レーザー
光L1および超音波検出用レーザー光L2をタンク底板
1において広範囲、高速に、二次元的にスキャンして、
タンク底板1の板厚状態を検査できる。なお、検査装置
60において前記検査装置10と実質的に同一な部分は
同一の符合を付して説明を省略する。
The inspection device 60 is movably supported by a device suspension cable 5 whose both ends are temporarily connected to the tank side plate 4 via wheels 61A and 61B. Even when internal parts 62 such as steam coils are disposed on the surface of the tank bottom plate 1, the inspection device 60 can smoothly move above the tank bottom plate 1 by controlling the drive of the wheel drive motor 63. Similar to the inspection device 50, the inspection device 60 is provided with a polygon mirror and a reflector to transmit the ultrasonic generation laser beam L1 and the ultrasonic detection laser beam L2 to the tank bottom plate 1 over a wide range at high speed in two dimensions. Scan the
The thickness condition of the tank bottom plate 1 can be inspected. In addition, the parts in the inspection device 60 that are substantially the same as those in the inspection device 10 are given the same reference numerals, and the description thereof will be omitted.

第9図は本発明の第4実施例に係る検査装置を示す模式
図である。
FIG. 9 is a schematic diagram showing an inspection apparatus according to a fourth embodiment of the present invention.

検査装置70は、前記検査装置10と異なり、電磁誘導
法による超音波検出方式を採用している。すなわち、こ
の検査装置70にあっては、超音波発生用レーザー13
が照射したレーザー光L1によってタンク底板lの内部
に伝播した超音波が表面へ戻ってくると、直流電磁石7
1で与えられる静磁界(B)中で被検体が機械的変位を
することになり、フレミングの右手の法則に基づく起電
力が生じ渦電流(Ie )が発生する。渦電流が発生す
ると、その渦電流の周波数に応じた磁界が発生すること
になり、この磁界を受信コイル(超音波検出器)72で
電圧信号として受信する。受信コイル72の受信情報は
データ解析/記憶回路15に伝達される。検査装置70
においても、超音波発生用レーザー13がレーザー光に
て超音波を発生させ、受信コイル72が電磁誘導作動に
て超音波を検出し、非接触にてタンク底板lの板厚状態
を検査できる。ただし、この検査装置70の適用は、被
検体が導電性材料からなる場合に限られる。なお、検査
装置70において前記検査装置10と実質的に同一な部
分は同一の符合を付して説明を省略する。
The inspection device 70 differs from the inspection device 10 in that it employs an ultrasonic detection method using electromagnetic induction. That is, in this inspection device 70, the ultrasonic generation laser 13
When the ultrasonic waves propagated inside the tank bottom plate l by the laser beam L1 irradiated by the lamp return to the surface, the DC electromagnet 7
The subject undergoes mechanical displacement in the static magnetic field (B) given by 1, and an electromotive force based on Fleming's right-hand rule is generated, generating an eddy current (Ie). When an eddy current is generated, a magnetic field is generated according to the frequency of the eddy current, and the receiving coil (ultrasonic detector) 72 receives this magnetic field as a voltage signal. The information received by the receiving coil 72 is transmitted to the data analysis/storage circuit 15. Inspection device 70
Also, the ultrasonic generating laser 13 generates ultrasonic waves using laser light, and the receiving coil 72 detects the ultrasonic waves by operating electromagnetic induction, so that the thickness state of the tank bottom plate l can be inspected without contact. However, the application of this inspection device 70 is limited to cases where the subject is made of a conductive material. In addition, the parts in the inspection device 70 that are substantially the same as those in the inspection device 10 are given the same reference numerals, and the description thereof will be omitted.

なお、本発明はタンク底板に限らず、タンク側板等の板
厚状態の検査にもタンク底板におけると同様にして適用
できる。
The present invention is not limited to tank bottom plates, but can also be applied to inspection of the thickness of tank side plates and the like in the same manner as for tank bottom plates.

また、本発明の検査動作に用いられる超音波は、縦波お
よび/または横波のいずれでもよいが、縦波がより好ま
しい。
Further, the ultrasonic waves used in the inspection operation of the present invention may be longitudinal waves and/or transverse waves, but longitudinal waves are more preferable.

[発明の効果] 以上のように、本発明によれば、非接触型の超音波発生
器と超音波検出器を用いることにより、簡単かつ円滑に
タンク板の板厚状態を検査できる。
[Effects of the Invention] As described above, according to the present invention, the thickness state of a tank plate can be easily and smoothly inspected by using a non-contact type ultrasonic generator and an ultrasonic detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る検査装置を示す模式
図、第2図は本発明の板厚測定原理を示す模式図、第3
図は超音波検出器の検出原理を示す模式図、第4図は超
音波検出器の他の検出原理を示す模式図、第5図は本発
明の第2実施例に係る検査装置の使用状態を示す模式図
、第6図は本発明の第2実施例に係る検査装置を示す模
式図、第7図は本発明の第3実施例に係る検査装置の使
用状態を示す模式図、第8図は本発明の第3¥施例に係
る検査装置を示す模式図、第9図は本発明の第4実施例
に係る検査装置を示す模式図である。 10・・・検査装置、 13・・・超音波発生用レーザー(超音波発生器)、1
4・・・超音波検出器、 50.60.70・・・検査装置、 72・・・受信コイル(超音波検出器)。 代理人 弁理士  塩 川 修 治 第 1 図 第2図 o          t。 第 3圓 第 5図 第 6圓 第7図 第8図
FIG. 1 is a schematic diagram showing the inspection device according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing the principle of plate thickness measurement of the present invention, and FIG.
The figure is a schematic diagram showing the detection principle of an ultrasonic detector, FIG. 4 is a schematic diagram showing another detection principle of the ultrasonic detector, and FIG. 5 is a usage state of the inspection device according to the second embodiment of the present invention. 6 is a schematic diagram showing the inspection device according to the second embodiment of the present invention. FIG. 7 is a schematic diagram showing the usage state of the inspection device according to the third embodiment of the present invention. The figure is a schematic diagram showing an inspection apparatus according to a third embodiment of the present invention, and FIG. 9 is a schematic diagram showing an inspection apparatus according to a fourth embodiment of the present invention. 10... Inspection device, 13... Ultrasonic generation laser (ultrasonic generator), 1
4... Ultrasonic detector, 50.60.70... Inspection device, 72... Receiving coil (ultrasonic detector). Agent Patent Attorney Osamu Shiokawa 1 Figure 2 ot. 3rd circle, Figure 5, 6th circle, Figure 7, Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)タンク板の各部に超音波を発生させ、該超音波が
タンク板の板厚内を伝播する時間を測定することにより
、タンク板の板厚を測定するタンク板検査装置において
、タンク板に非接触状態で超音波を発生させる超音波発
生器と、タンク板の板厚内を伝播した超音波を非接触状
態で検出する超音波検出器とを有してなることを特徴と
するタンク板検査装置。
(1) In a tank plate inspection device that measures the thickness of a tank plate by generating ultrasonic waves in each part of the tank plate and measuring the time it takes for the ultrasonic waves to propagate within the thickness of the tank plate, 1. A tank comprising: an ultrasonic generator that generates ultrasonic waves in a non-contact manner; and an ultrasonic detector that detects ultrasonic waves propagated within the thickness of a tank plate in a non-contact manner. Board inspection equipment.
(2)特許請求の範囲第1項において、超音波発生器は
、レーザー光をタンク板の表面に照射して該タンク板に
超音波を発生させるものであるタンク板検査装置。
(2) The tank plate inspection device according to claim 1, wherein the ultrasonic generator irradiates the surface of the tank plate with laser light to generate ultrasonic waves on the tank plate.
(3)特許請求の範囲第1項において、超音波検出器は
、タンク板の表面の超音波による微小変位をレーザー干
渉法により検出するものであるタンク板検査装置。
(3) The tank plate inspection device according to claim 1, wherein the ultrasonic detector detects minute displacements caused by ultrasonic waves on the surface of the tank plate using laser interferometry.
(4)特許請求の範囲第1項において、超音波検出器は
、タンク板の表面の超音波による微小変位を電磁誘導法
により検出するものであるタンク板検査装置。
(4) The tank plate inspection device according to claim 1, wherein the ultrasonic detector detects minute displacements caused by ultrasonic waves on the surface of the tank plate using an electromagnetic induction method.
JP62109653A 1987-05-07 1987-05-07 Tank plate inspecting device Pending JPH0192607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109653A JPH0192607A (en) 1987-05-07 1987-05-07 Tank plate inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109653A JPH0192607A (en) 1987-05-07 1987-05-07 Tank plate inspecting device

Publications (1)

Publication Number Publication Date
JPH0192607A true JPH0192607A (en) 1989-04-11

Family

ID=14515739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109653A Pending JPH0192607A (en) 1987-05-07 1987-05-07 Tank plate inspecting device

Country Status (1)

Country Link
JP (1) JPH0192607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100406A (en) * 1989-09-07 1991-04-25 Westinghouse Electric Corp <We> Ultrasonic system for measuring external form of object
JPH0547807U (en) * 1991-12-02 1993-06-25 大阪瓦斯株式会社 Ultrasonic probe
JP2002296244A (en) * 2001-03-30 2002-10-09 Kajima Corp Method and device for diagnosing concrete structure
JP2008102160A (en) * 2008-01-18 2008-05-01 Toshiba Corp Ultrasonic measuring system
WO2022264362A1 (en) * 2021-06-17 2022-12-22 株式会社島津製作所 Defect inspection system, defect inspection device, and defect inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100406A (en) * 1989-09-07 1991-04-25 Westinghouse Electric Corp <We> Ultrasonic system for measuring external form of object
JPH0547807U (en) * 1991-12-02 1993-06-25 大阪瓦斯株式会社 Ultrasonic probe
JP2002296244A (en) * 2001-03-30 2002-10-09 Kajima Corp Method and device for diagnosing concrete structure
JP2008102160A (en) * 2008-01-18 2008-05-01 Toshiba Corp Ultrasonic measuring system
WO2022264362A1 (en) * 2021-06-17 2022-12-22 株式会社島津製作所 Defect inspection system, defect inspection device, and defect inspection method

Similar Documents

Publication Publication Date Title
KR910004225B1 (en) Method and device for nondestructive evaluation
Dorighi et al. Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection
Guo et al. EMAT generation and laser detection of single lamb wave modes
US6008887A (en) Single beam laser surface velocity and displacement measurement apparatus
US4541280A (en) Efficient laser generation of surface acoustic waves
Murfin et al. Laser-ultrasound detection systems: a comparative study with Rayleigh waves
US5814730A (en) Material characteristic testing method and apparatus using interferometry to detect ultrasonic signals in a web
Jang et al. Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer
Gulino et al. Gas-coupled laser acoustic detection technique for NDT of mechanical components
JPH0192607A (en) Tank plate inspecting device
Fomitchov et al. Extrinsic and intrinsic fiberoptic Sagnac ultrasound sensors
Gulino et al. Non-contact ultrasonic inspection by gas-coupled laser acoustic detection (GCLAD)
JPH1078415A (en) Method and device for noncontact and non-destructive material evaluation, and method and device for elastic wave excitation
Vangi et al. Signal enhancement in surface crack detection with gas-coupled laser acoustic detection
RU2658112C1 (en) Method of measurement of displacement
CN112881297B (en) Speckle interference detection system and method based on photoacoustic cross coupling technology
McKie et al. Dual-beam interferometer for the accurate determination of surface-wave velocity
US5796004A (en) Method and apparatus for exciting bulk acoustic wave
JP2000065803A (en) Laser ultrasonic inspecting device and method therefor
Gulino et al. Application of the Gas-Coupled Laser Acoustic Detection technique to non-destructive monitoring of mechanical components
Noui et al. Two quantitative optical detection techniques for photoacoustic Lamb waves
JP3150239B2 (en) Measuring device for micro-periodic vibration displacement
RU116632U1 (en) DIAGNOSTIC SYSTEM FOR MEASURING FREE VIBRATIONS OF A MONITORED OBJECT
JP4059418B2 (en) Laser ultrasonic inspection method
Hess et al. Noncontact, nondestructive evaluation of realistic cracks with surface acoustic waves by scanning excitation and detection lasers