JPH0547579B2 - - Google Patents

Info

Publication number
JPH0547579B2
JPH0547579B2 JP59045222A JP4522284A JPH0547579B2 JP H0547579 B2 JPH0547579 B2 JP H0547579B2 JP 59045222 A JP59045222 A JP 59045222A JP 4522284 A JP4522284 A JP 4522284A JP H0547579 B2 JPH0547579 B2 JP H0547579B2
Authority
JP
Japan
Prior art keywords
particles
water
weight
polyolefin resin
foam particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59045222A
Other languages
Japanese (ja)
Other versions
JPS60188435A (en
Inventor
Hiroshi Endo
Takanori Suzuki
Masanori Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP4522284A priority Critical patent/JPS60188435A/en
Publication of JPS60188435A publication Critical patent/JPS60188435A/en
Publication of JPH0547579B2 publication Critical patent/JPH0547579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明はポリオレフイン系樹脂発泡体粒子の製
造方法に関するものである。本発明の方法により
製造された発泡体粒子をスチーム孔を有する金型
の型窩内に充填し、スチーム加熱して発泡体粒子
同志を融着させて得られる発泡体製品は粒子同志
の融着が強固であり、機械的強度に優れたもので
あり、温泉配管の保温材、太陽熱温水器の保温
材、冷蔵庫やテレビの包装緩衝材として有用であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyolefin resin foam particles. A foam product obtained by filling the mold cavity of a mold having steam holes with the foam particles produced by the method of the present invention, and heating the foam particles with steam to fuse the foam particles together. It is strong and has excellent mechanical strength, making it useful as a heat insulating material for hot spring piping, a heat insulating material for solar water heaters, and a packaging material for refrigerators and televisions.

ポリオレフイン発泡体は断熱材、包装緩衝材と
して優れ、広汎な分野に使用されている。しか
し、このポリスチレン発泡体は圧縮歪の回復率が
小さいこと、および耐熱性が高々70〜80℃であ
る。
Polyolefin foams are excellent as insulation materials and packaging cushioning materials, and are used in a wide range of fields. However, this polystyrene foam has a low compression strain recovery rate and a heat resistance of 70 to 80°C at most.

かかる欠点は、ポリプロピレン発泡体や架橋ポ
リエチレン発泡体を用いることにより解決される
が、これらポリオレフイン発泡体を形成する原料
の発泡体粒子を製造するには、ポリオレフイン樹
脂は膨張剤の逸散速度が早いので得られにくい欠
点があり、また、得られても高々嵩密度が0.1〜
0.5g/cm3の低発泡の製品しか得られない欠点が
あつた。
These drawbacks can be solved by using polypropylene foam or cross-linked polyethylene foam, but in order to produce the foam particles that are the raw materials for forming these polyolefin foams, polyolefin resins have a high rate of expansion agent dissipation. Therefore, it has the disadvantage that it is difficult to obtain, and even if it is obtained, the bulk density is at most 0.1 ~
The disadvantage was that only a low foaming product of 0.5 g/cm 3 could be obtained.

かかる欠点を解決する方法として、無機フイラ
ーを10〜70重量%含有するポリオレフイン樹脂粒
子を密封容器内の分散媒である水に分散させ、こ
の分散液を分散液の飽和蒸気圧以上の圧力および
ポリオレフインの軟化点以上に加熱した温度条件
下に高圧を保持して分散媒である水をポリオレフ
イン樹脂粒子内に浸透させ、ついでこの分散液を
高圧の密封容器内から大気圧中に噴出させて嵩密
度が0.05〜0.07g/cm3と高発泡なポリオレフイン
発泡体粒子を製造する方法が提案された(特公昭
49−2183号)。
As a method to solve this drawback, polyolefin resin particles containing 10 to 70% by weight of an inorganic filler are dispersed in water, which is a dispersion medium, in a sealed container, and the dispersion is heated to a pressure higher than the saturated vapor pressure of the dispersion and Water, which is a dispersion medium, is infiltrated into the polyolefin resin particles by maintaining high pressure under a temperature condition heated above the softening point of A method for producing polyolefin foam particles with a high foaming rate of 0.05 to 0.07 g/ cm3 was proposed (Tokuko Sho
49-2183).

この方法は分散媒たる水を発泡剤として利用し
ており、ジクロロシフルオロメタン、ブタン、ヘ
キサン等の有機膨脹剤を用いて発泡させる方法と
比較して安価に発泡体粒子を製造できる利点があ
る。しかし、無機フイラーの存在は発泡体粒子の
型物成形時の粒子同志の融着を阻害するので好ま
しくない。
This method uses water as a dispersion medium as a blowing agent, and has the advantage of being able to produce foam particles at a lower cost than methods that use foaming agents such as dichlorocyfluoromethane, butane, hexane, etc. . However, the presence of an inorganic filler is not preferable because it inhibits the fusion of the foam particles during molding.

フイラーなしで我々が該発明を追試したところ
の結果では水を吸収する無機フイラーを配合しな
いポリオレフイン樹脂を用いた場合、約18倍の発
泡倍率の樹脂発泡体粒子が得られるが、発泡体粒
子の中には、発泡倍率が2〜3倍のもの(粒径が
小さい)2〜8%含有されることが明らかとなつ
た。発泡体粒子の形状が不揃いなことは、型物成
形時に充填率が不揃いとなる原因となり、一定し
た機械的物性を有する型物成形品を得ることがで
きない。
When we repeated the invention without a filler, we found that when using a polyolefin resin that does not contain an inorganic filler that absorbs water, resin foam particles with an expansion ratio of about 18 times can be obtained. It was revealed that the particles contained 2 to 8% of particles with an expansion ratio of 2 to 3 times (small particle size). Irregular shapes of foam particles cause uneven filling rates during molding, making it impossible to obtain molded products with consistent mechanical properties.

本発明は、かかる発泡体粒子の形状不揃い、い
いかえれば樹脂粒子の発泡が均一に行われない問
題を解決するためになされたもので、その第1の
発明は密閉容器内で炭素数12〜22の高級脂肪酸の
金属塩を0.4〜10重量%含有するポリオレフイン
系樹脂粒子を水に分散させ、該樹脂粒子の軟化温
度以上、融点より25℃高い温度以下の温度に加熱
し、該粒子に水を含浸させ、ついで、密閉容器内
の水面下に設けた吐出口を解放し、膨脹剤を含有
するポリオレフイン系樹脂粒子と分散媒である水
とを同時に容器内よりも低圧の雰囲気に放出して
ポリオレフイン系樹脂発泡体粒子を製造する方法
を提供するものである。
The present invention was made in order to solve the problem of irregular shapes of foam particles, in other words, the foaming of resin particles is not uniformly performed. Polyolefin resin particles containing 0.4 to 10% by weight of metal salts of higher fatty acids are dispersed in water, heated to a temperature above the softening temperature of the resin particles and below 25°C higher than the melting point, and water is poured into the particles. The polyolefin resin particles containing the swelling agent and water as a dispersion medium are simultaneously discharged into an atmosphere at a lower pressure than the inside of the container by opening the discharge port provided below the water surface in the sealed container. The present invention provides a method for producing resin foam particles.

第2の発明は、第1の発明の形状の揃つた発泡
体樹脂粒子を得る方法において、(a)高級脂肪酸の
金属塩0.4〜5重量%の他に、(b)グリセリン、ソ
ルビタン、ポリグリセリンより選ばれたアルコー
ルと炭素数が12〜22の高級脂肪酸とのエステルを
0.05〜2重量%含有するポリオレフイン粒子を用
い、より発泡倍率の高い発泡体粒子を製造する方
法を提供するものである。
A second invention is a method for obtaining foam resin particles with a uniform shape according to the first invention, in which (a) 0.4 to 5% by weight of a metal salt of a higher fatty acid is added to (b) glycerin, sorbitan, polyglycerin, etc. An ester of a selected alcohol and a higher fatty acid with 12 to 22 carbon atoms.
The object of the present invention is to provide a method for producing foam particles having a higher expansion ratio using polyolefin particles containing 0.05 to 2% by weight.

本発明において、ポリオレフイン系樹脂粒子の
樹脂としては、低密度ポリエチレン、直鎖状低密
度ポリエチレン、高密度ポリエチレン、エチレ
ン・酢酸ビニル共重合体、ポリプロピレン、エチ
レン・プロピレンブロツクコポリマー、エチレ
ン・プロピレンランダムコポリマー、エチレン・
ブテン・プロピレンランダムターポリマー、シラ
ン架橋ポリプロピレン、架橋ポリエチレン等が用
いられる。これらは混合であつてもよい。特に、
エチレン(4〜10重量%)・プロピレンランダム
コポリマー、エチレン・ブテン・プロピレンラン
ダムターポリマー、シラン架橋ポリプロピレン等
のプロピレン系樹脂が耐熱性に優れた発泡体粒子
を与えるとともに成形性に富むので好ましい。
In the present invention, the resin of the polyolefin resin particles includes low density polyethylene, linear low density polyethylene, high density polyethylene, ethylene/vinyl acetate copolymer, polypropylene, ethylene/propylene block copolymer, ethylene/propylene random copolymer, ethylene·
Butene/propylene random terpolymer, silane crosslinked polypropylene, crosslinked polyethylene, etc. are used. These may be mixed. especially,
Propylene resins such as ethylene (4 to 10% by weight)/propylene random copolymer, ethylene/butene/propylene random terpolymer, and silane-crosslinked polypropylene are preferred because they provide foamed particles with excellent heat resistance and excellent moldability.

次に、(a)高級脂肪酸の金属塩としては、炭素数
が12〜22の高級脂肪酸(例えばステアリン酸、オ
レイン酸、パルミチン酸、ミリスチン酸、ラウリ
ン酸等)の金属塩(Zn、Al、K、Na、Ca)、特
にステアリン酸アルミニウム、ステアリン酸亜鉛
が好ましい。この高級脂肪酸の金属塩は樹脂粒子
中に0.4〜10重量%、好ましくは0.5〜2重量%の
割合で配合される。
Next, (a) metal salts of higher fatty acids include metal salts (Zn, Al, K , Na, Ca), particularly aluminum stearate and zinc stearate. This higher fatty acid metal salt is blended into the resin particles at a ratio of 0.4 to 10% by weight, preferably 0.5 to 2% by weight.

また、(b)炭素数が12〜22の高級脂肪酸とグリセ
リン、ポリグリセリン、ソルビタンとのエステル
としては、グリセリンモノステアレート、グリセ
リンジステアレート、グリセリントリステアレー
ト、ソルビタンオレエート、ソルビタンラウレー
ト、グリセリンモノオレエート、ポリグリセリン
オレエート、グリセリルトリリシノレート、グリ
セリルアセチルリシノレート、グリセリンモノパ
ルミチルエート等が挙げられる。
In addition, (b) esters of higher fatty acids having 12 to 22 carbon atoms and glycerin, polyglycerin, and sorbitan include glycerin monostearate, glycerin distearate, glycerin tristearate, sorbitan oleate, sorbitan laurate, Examples include glycerin monooleate, polyglycerin oleate, glyceryl triricinolate, glyceryl acetyl ricinoleate, and glycerin monopalmitylate.

このエステルは樹脂粒子中、0.05〜5重量%、
好ましくは0.5〜2重量%の割合で用いる。
This ester is 0.05 to 5% by weight in the resin particles,
It is preferably used in a proportion of 0.5 to 2% by weight.

これら高級脂肪酸の金属塩(a)、エステル(b)の量
が多い場合は、得られたポリオレフイン系発泡体
粒子をスチーム孔を有する型窩内に充填し、スチ
ーム加熱により発泡体粒子同志を融着させて発泡
体製品を成形すると発泡体粒子同志の融着度が低
く、強度の低いものしか得られない。
When the amount of these higher fatty acid metal salts (a) and esters (b) is large, the resulting polyolefin foam particles are filled into a mold cavity with steam holes, and the foam particles are fused together by steam heating. If a foam product is molded by adhesion, the degree of fusion between the foam particles is low and only a product with low strength can be obtained.

ポリオレフイン系樹脂粒子1個の重量は0.01〜
20mgである。これら樹脂粒子は前述の高級脂肪酸
の金属塩、エステルの他にタルク、クレイ、硅そ
う土、炭酸カルシウム、酸化チタン、硫酸バリウ
ム、ゼオライト等の無機充填剤、安定剤、紫外線
吸収剤、揮発性膨脹剤等を含有していてもよい。
The weight of one polyolefin resin particle is 0.01~
It is 20mg. These resin particles include, in addition to the metal salts and esters of higher fatty acids mentioned above, inorganic fillers such as talc, clay, silica, calcium carbonate, titanium oxide, barium sulfate, and zeolite, stabilizers, ultraviolet absorbers, and volatile expansion agents. It may contain agents etc.

揮発性膨脹剤は発泡倍率を向上させるのに使用
する。かかる膨脹剤としては、例えば、プロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン等の
脂肪族炭化水素類;トリクロロフロロメタン、ジ
クロロジフロロメタン、ジクロロテトラフロロエ
タン、メチルクロライド、エチルクロライド、メ
チレンクロライド等のハロゲン化炭化水素等沸点
が80℃以下の有機化合物を用いることができる。
Volatile blowing agents are used to increase expansion ratio. Examples of such expanding agents include aliphatic hydrocarbons such as propane, butane, pentane, hexane, and heptane; halogens such as trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride, and methylene chloride; An organic compound having a boiling point of 80° C. or lower, such as carbonized hydrocarbon, can be used.

この揮発性膨脹剤をあらかじめポリオレフイン
系樹脂粒子に含浸させてから樹脂粒子を水に分散
させてもよいが、製造プロセスの面からはポリオ
レフイン系樹脂粒子を密閉容器内で水に分散さ
せ、次いで密閉容器内に膨脹剤を供給し、該密封
容器内の圧力を該膨脹剤の蒸気圧あるいはそれ以
上の圧力に保持しながら該プロピレン系共重合体
樹脂粒子の軟化温度以上に加熱した後、該御尾、
圧力を一定時間保ち、ついで密閉容器内の水面下
に設けた吐出口を解放し、膨脹剤を含有するポリ
オレフイン系樹脂粒子と水とを同時に容器内より
も低圧の雰囲気に放出してポリオレフイン系樹脂
発泡体粒子を製造する方法(特開昭57−12035号、
同57−25336号、同57−90027号、同57−195131
号、同58−1732号、同58−23834号、同58−25334
号、同58−33435号、同58−55231号、同58−
76229号、同58−76231号、同58−76232号、同58
−76233号、同58−76234号、同58−87027号公報
参照)の方が好ましい。
It is also possible to impregnate the polyolefin resin particles with this volatile swelling agent in advance and then disperse the resin particles in water, but from the viewpoint of the manufacturing process, the polyolefin resin particles are dispersed in water in a closed container, and then the container is sealed. After supplying an expanding agent into a container and heating it to a temperature equal to or higher than the softening temperature of the propylene copolymer resin particles while maintaining the pressure inside the sealed container at the vapor pressure of the expanding agent or higher, tail,
The pressure is maintained for a certain period of time, and then the discharge port provided below the water surface in the sealed container is opened, and the polyolefin resin particles containing the expanding agent and water are simultaneously discharged into an atmosphere at a lower pressure than the inside of the container, thereby producing the polyolefin resin. Method for producing foam particles (Japanese Unexamined Patent Publication No. 12035/1983,
No. 57-25336, No. 57-90027, No. 57-195131
No. 58-1732, No. 58-23834, No. 58-25334
No. 58-33435, No. 58-55231, No. 58-
No. 76229, No. 58-76231, No. 58-76232, No. 58
-76233, No. 58-76234, and No. 58-87027) are more preferable.

ポリオレフイン系樹脂粒子を水に分散させる分
散剤としては、酸化チタン、酸化アルミニウム、
炭酸カルシウム、塩基性炭酸マグネシウム、炭酸
亜鉛、第三リン酸カルシウム等の水難溶性の無機
系分散剤を用いる。分散剤は水に分散されたポリ
オレフイン系樹脂粒子が軟化点以上に加熱された
際、互いに融着しないよう防止する役目をなして
おり、無機系分散剤は高温で安定であるので、ポ
リビニルアルコール、メチルカルボキシセルロー
ス、N−ポリビニルピロリドン等の熱安定性の悪
い水溶性高分子系保護コロイド剤と比較してよく
使用される。
Dispersants for dispersing polyolefin resin particles in water include titanium oxide, aluminum oxide,
A sparingly water-soluble inorganic dispersant such as calcium carbonate, basic magnesium carbonate, zinc carbonate, or tribasic calcium phosphate is used. Dispersants play a role in preventing polyolefin resin particles dispersed in water from fusing together when heated above their softening point. Inorganic dispersants are stable at high temperatures, so polyvinyl alcohol, It is more commonly used than water-soluble polymeric protective colloid agents with poor thermal stability such as methylcarboxycellulose and N-polyvinylpyrrolidone.

第三リン酸カルシウムを分散剤として用いる場
合は、懸濁助剤を併用するとよい。かかる懸濁助
剤としては、ドデシルベンゼンスルホン酸ナトリ
ウム、アルカンスルホン酸ナトリウム、アルキル
硫酸エステルナトリウム、オレフイン硫酸エステ
ルナトリウム、アシルメチルタウリン、ジアルキ
ルスルホコハク酸ナトリウム等の陰イオン性界面
活性剤;ポリオキシエチレンアルキルエーテル、
ポリオキシエチレン脂肪酸エステル、ポリオキシ
エチレンアルキルフエノールエーテル、ソルビタ
ン脂肪酸エステル、ポリオキシエチレンソルビタ
ン脂肪酸エステル等の非イオン性界面活性剤;ア
ルキルベタイン、アルキルジエチレントリアミノ
酢酸等の両性界面活性剤等があげられる。
When tricalcium phosphate is used as a dispersant, a suspension aid may be used in combination. Such suspension aids include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium alkanesulfonate, sodium alkyl sulfate, sodium olefin sulfate, acylmethyltaurine, sodium dialkylsulfosuccinate; polyoxyethylene alkyl; ether,
Examples include nonionic surfactants such as polyoxyethylene fatty acid ester, polyoxyethylene alkyl phenol ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester; amphoteric surfactants such as alkyl betaine and alkyl diethylene triaminoacetic acid.

特に好ましいものは、水酸化カルシウムの水溶
液とリン酸水溶液とを混合して水難溶性の塩を形
成させた溶液を懸濁剤(A)とし、ドデシルベンゼン
スルホン酸ソーダを懸濁助剤としたものである。
Particularly preferred is a solution in which an aqueous solution of calcium hydroxide and an aqueous phosphoric acid solution are mixed to form a slightly water-soluble salt as the suspending agent (A), and sodium dodecylbenzenesulfonate is used as the suspending aid. It is.

上記(A)の懸濁剤は、水酸化カルシウム1モルに
対し、リン酸を0.60〜0.67モルの割合で水溶液中
で反応させて得られるもので、その水難溶性塩を
含む水溶液のPHは8.5〜11.5である。水難溶性塩
の水溶液は、平均粒径が0.01〜0.8ミクロンの第
三リン酸カルシウム{Ca3(PO42}を主成分とす
るものでヒドロキシアパルタイト{〔Ca3
(PO423・Ca(OH)2}を含むこともある。
The suspension agent (A) above is obtained by reacting phosphoric acid in an aqueous solution at a ratio of 0.60 to 0.67 mol to 1 mol of calcium hydroxide, and the pH of the aqueous solution containing the poorly water-soluble salt is 8.5. ~11.5. The aqueous solution of the poorly water-soluble salt is mainly composed of tricalcium phosphate {Ca 3 (PO 4 ) 2 } with an average particle size of 0.01 to 0.8 microns, and contains hydroxyapartite {[Ca 3
(PO 4 ) 2 ] 3・Ca(OH) 2 } may also be included.

この(A)の難水溶性の塩を含む水溶液は、その難
水溶性の塩の含有率を0.01〜0.3重量%とするこ
とによりポリオレフイン系樹脂粒子の分散媒とし
て利用できる。0.01重量%未満ではポリオレフイ
ン系樹脂粒子同志のブロツキングが生じやすい。
また、0.3重量%を越えては得られる発泡体粒子
の融着性が阻害される。分散媒である水にメタノ
ール、エタノール、グリセリン、エチレングリコ
ール等の水溶性媒体を配合することもできる。
The aqueous solution containing the poorly water-soluble salt (A) can be used as a dispersion medium for polyolefin resin particles by adjusting the content of the poorly water-soluble salt to 0.01 to 0.3% by weight. If it is less than 0.01% by weight, blocking between the polyolefin resin particles tends to occur.
Moreover, if it exceeds 0.3% by weight, the fusion properties of the resulting foam particles will be inhibited. A water-soluble medium such as methanol, ethanol, glycerin, or ethylene glycol can also be blended with water as a dispersion medium.

懸濁助剤である界面活性剤は、分散媒である水
の0.0001〜0.005重量%の割合で用いる。0.0001重
量%未満では、加熱加圧下でポリオレフイン系樹
脂粒子のブロツキングが生じやすいという問題が
ある。逆に0.005重量%を越えてもブロツキング
防止効果のより向上は求められないので経済的に
不利である。
The surfactant, which is a suspension aid, is used in an amount of 0.0001 to 0.005% by weight of water, which is a dispersion medium. If it is less than 0.0001% by weight, there is a problem that blocking of the polyolefin resin particles tends to occur under heat and pressure. On the other hand, even if it exceeds 0.005% by weight, it is economically disadvantageous because no further improvement in the anti-blocking effect is required.

ポリオレフイン系樹脂粒子100重量部に対する
分散媒の水の量は200〜1000重量部、好ましくは
250〜500重量部である。200重量部未満では加熱、
加圧時にポリオレフイン同志がブロツキングしや
すい。1000重量部を越えてはポリオレフイン系樹
脂発泡体粒子の生産性が低下し、経済的でない。
The amount of water as a dispersion medium is 200 to 1000 parts by weight, preferably 100 parts by weight of polyolefin resin particles.
It is 250-500 parts by weight. If it is less than 200 parts by weight, heating,
Polyolefins tend to block together when pressurized. If it exceeds 1000 parts by weight, the productivity of the polyolefin resin foam particles decreases and is not economical.

平均粒径が0.01〜0.8ミクロンという微細な第
三リン酸カルシウムの難水溶塩を懸濁剤とし、界
面活性剤を分散助剤として水に分散されたポリオ
レフイン系樹脂粒子の水分散液に、必要によりガ
ス状の膨脹剤または液状の膨脹剤が供給され、こ
の分散液は密閉容器内でポリオレフイン系樹脂の
軟化点以上の温度であつて融点より25℃高い温度
以下の温度に加熱されるとともに分散媒である水
の蒸気圧となり、ついで密閉容器内の下部に設け
られたスリツト、ノズル等の吐出口より分散媒で
ある水とともにポリオレフイン系樹脂粒子を密閉
容器より低圧域、一般には大気圧中に放出するこ
とにより嵩密度が0.026〜0.2g/cm3のポリオレフ
イン系樹脂発泡体粒子を製造することができる。
If necessary, a gas is added to an aqueous dispersion of polyolefin resin particles dispersed in water using a fine, slightly water-soluble salt of tricalcium phosphate with an average particle size of 0.01 to 0.8 microns as a suspending agent and a surfactant as a dispersion aid. This dispersion is heated in a closed container to a temperature above the softening point of the polyolefin resin and below 25°C higher than the melting point, and a dispersion medium is supplied. The vapor pressure of the water reaches a certain level, and then the polyolefin resin particles are released from the closed container into a low pressure region, generally atmospheric pressure, along with water as a dispersion medium through the discharge port of a slit, nozzle, etc. provided at the bottom of the closed container. As a result, polyolefin resin foam particles having a bulk density of 0.026 to 0.2 g/cm 3 can be produced.

上記分散液の加熱により圧力は上昇し、水(膨
脹剤を使用するときは水および揮発性膨脹剤)は
ポリオレフイン系樹脂粒子に含浸し、樹脂粒子は
発泡性樹脂粒子となる。加熱により密閉容器内の
圧力は高くなるが、水のポリオレフイン系樹脂粒
子への含浸を容易とするため、および後の分酸液
の吐出口よりの噴出を容易とするために密閉容器
内に窒素、空気、ヘリウム、アルゴン等の無機ガ
スを供給して加圧するとよい。その無機ガスの加
圧は1〜50Kg/cm2G、好ましくは5〜25Kg/cm2
G、より好ましくは5〜10Kg/cm2Gとなるように
行う。この無機ガスによる加圧は分散液の吐出後
に、密閉容器内にポリオレフイン系樹脂粒子が残
存するのを防止できるとともに、微細、均一なセ
ルを有するポリオレフイン系樹脂発泡体粒子を得
るのに有意義である。
As the dispersion is heated, the pressure increases, water (if an expanding agent is used, water and a volatile expanding agent) impregnates the polyolefin resin particles, and the resin particles become expandable resin particles. Although the pressure inside the sealed container increases due to heating, nitrogen is added to the sealed container in order to facilitate the impregnation of water into the polyolefin resin particles and to facilitate the subsequent spouting of the acid separating solution from the discharge port. It is preferable to pressurize by supplying an inorganic gas such as air, helium, or argon. The pressurization of the inorganic gas is 1 to 50 Kg/cm 2 G, preferably 5 to 25 Kg/cm 2
G, more preferably 5 to 10 kg/cm 2 G. Pressurization by this inorganic gas can prevent the polyolefin resin particles from remaining in the closed container after discharging the dispersion liquid, and is significant in obtaining polyolefin resin foam particles having fine and uniform cells. .

加熱温度は、ポリオレフイン系樹脂粒子の示差
熱分析(DSC)を行ない、第1図に示すDSCチ
ヤートの結晶融解温度のピーク(いわゆる融点、
a)を求め、このピーク温度より約10℃低い温度
(b)からこのピークが下降してDSCのチヤートの
底辺に到達した温度(c)より約10℃高い温度の間の
温度を選択すればよい。好ましくは、(c)の温度が
よい。例えば融点が164℃のプロピレンホモ重合
体の場合は、加熱温度を154〜193℃に設定する。
また、融点が135℃のプロピレン・エチレン・ブ
テン−1共重合体のときは125〜160℃を、融点が
110℃のエチレンホモ重合体のときは100〜135℃
の温度に設定する。但し、ここで具体的に示した
加熱温度は膨脹剤や有機溶剤を含まない樹脂粒子
で測定した融点を目安に加熱温度を選択したもの
である。
The heating temperature was determined by differential thermal analysis (DSC) of the polyolefin resin particles, and the peak of the crystal melting temperature (so-called melting point) of the DSC chart shown in Figure 1 was determined.
Find a) and set the temperature approximately 10℃ lower than this peak temperature.
From (b), it is sufficient to select a temperature that is approximately 10°C higher than the temperature (c) at which this peak descends and reaches the bottom of the DSC chart. Preferably, temperature (c) is preferred. For example, in the case of a propylene homopolymer with a melting point of 164°C, the heating temperature is set at 154 to 193°C.
In addition, in the case of a propylene-ethylene-butene-1 copolymer with a melting point of 135℃, the melting point is 125 to 160℃.
100-135℃ for ethylene homopolymer at 110℃
Set the temperature to However, the heating temperature specifically shown here was selected based on the melting point measured for resin particles containing no expanding agent or organic solvent.

このようにして得られた発泡体粒子は表面に付
着した水を除去するために30〜65℃の部屋で乾燥
され、緩衝材、容器等の成形に賦される。
The foam particles thus obtained are dried in a room at 30 to 65°C to remove water adhering to the surface, and then used to mold cushioning materials, containers, etc.

型成形方法としては、従来公知の種々の方法が
利用できる。その例を次に示す。
As the molding method, various conventionally known methods can be used. An example is shown below.

ポリオレフイン系樹脂発泡体粒子を型内に充
填した後、発泡体粒子の体積を15〜50%減ずる
よう圧縮し、次いで1〜5Kg/cm2Gのスチーム
を導いて発泡体粒子同志を融着させ、その後、
型を冷却し、製品を得る。
After filling polyolefin resin foam particles into a mold, the foam particles are compressed to reduce their volume by 15 to 50%, and then steam of 1 to 5 kg/cm 2 G is introduced to fuse the foam particles together. ,after that,
Cool the mold and obtain the product.

発泡体粒子に揮発性膨脹剤を予じめ含浸させ
て発泡体粒子に2次発泡性を付与し、これを型
に充填し、スチーム成形する。
The foam particles are pre-impregnated with a volatile swelling agent to impart secondary foamability to the foam particles, which are then filled into a mold and steam-molded.

発泡体粒子を密閉室内に入れ、次いで空気、
窒素ガス等の無機ガスを室内に圧入することに
より発泡体粒子のセル内の圧力を高めて2次発
泡性を付与し、この2次発泡性を付与した発泡
体粒子を型に充填し、スチーム成形する。
The foam particles are placed in a closed chamber, then air,
By injecting an inorganic gas such as nitrogen gas into the chamber, the pressure inside the cells of the foam particles is increased to give them secondary foaming properties, and the foam particles with secondary foaming properties are filled into a mold and steamed. Shape.

上記〜の2つ以上の組み合せ。 A combination of two or more of the above.

このようにして成形されたポリオレフイン系樹
脂発泡体製品は発泡体粒子同志の融着が優れたも
のであり、機械的強度が高い。
The polyolefin resin foam product molded in this manner has excellent fusion between foam particles and high mechanical strength.

以下、実施例により更に本発明を詳細に説明す
る。なお、例中の部、%は重量基準である。
Hereinafter, the present invention will be explained in further detail with reference to Examples. Note that parts and percentages in the examples are based on weight.

実施例 1 水酸化カルシウム0.0716部を水100部に融解し
た水溶液と、濃度17%のリン酸の水溶液0.372部
を混合したところ、粒径が0.05〜0.3ミクロンの
塩が0.1%析出した(PH9.2)。これにドデシルベ
ンゼンスルホン酸ソーダを添加し、次の分散液を
調整した。
Example 1 When an aqueous solution of 0.0716 parts of calcium hydroxide dissolved in 100 parts of water and 0.372 parts of an aqueous solution of 17% phosphoric acid were mixed, 0.1% of salt with a particle size of 0.05 to 0.3 microns was precipitated (PH9. 2). Sodium dodecylbenzenesulfonate was added to this to prepare the following dispersion.

難水溶塩濃度 0.1% 分散液のPH 9.2 ドデシルベンゼンスルホン酸濃度 0.003% この分散液100重量部を底部に吐出ノズルを備
えるオートクレーブ内に移した後、粒子1個の重
さが約1mg、ステアリン酸アルミニウムを0.5重
量%、安定剤0.5重量%を含有するエチレン(4
%)・プロピレン(96%)ランダム共重合体粒子
(融点137℃)33部をオートクレーブ内に添加し、
オートクレーブ内に窒素ガスオートクレーブ内の
内圧が10Kg/cm2Gとなるまで供給した。
Concentration of poorly soluble salts: 0.1% PH of dispersion: 9.2 Concentration of dodecylbenzenesulfonic acid: 0.003% After transferring 100 parts by weight of this dispersion into an autoclave equipped with a discharge nozzle at the bottom, each particle weighs approximately 1 mg, stearic acid Ethylene (4%) containing 0.5% aluminum and 0.5% stabilizer by weight
%) and propylene (96%) random copolymer particles (melting point 137°C) were added into the autoclave.
Nitrogen gas was supplied into the autoclave until the internal pressure within the autoclave reached 10 Kg/cm 2 G.

次いでオートクレーブを、約60分かけて135℃
まで分散液を加温し、更に同温で20分間保持し
た。この時のオートクレーブ内の圧力は約30Kg/
cm2Gであつた。
Then autoclave at 135℃ for about 60 minutes.
The dispersion was heated to a temperature of 100.degree. C. and then kept at the same temperature for 20 minutes. The pressure inside the autoclave at this time is approximately 30Kg/
It was cm 2 G.

その後、更に150℃迄加熱し、同温度で2時間
保持したのち、オートクレーブの底部にある吐出
ノズルの弁を開き、分散液を大気圧中に2秒で放
出して発泡を行わしめた。(示差熱分析によると、
この放出前の発泡性ポリプロピレン粒子は、約4
%の水を粒子内に含有していた)。分散液がオー
トクレーブ内から放出されおわつた瞬間、いいか
えれば気相部が排出されはじめる瞬間のオートク
レーブの内圧は約9Kg/cm2Gであつた。また、分
散液放出の間、オートクレーブの温度は150℃で
あつた。
Thereafter, the dispersion was further heated to 150° C. and maintained at the same temperature for 2 hours, and then the valve of the discharge nozzle at the bottom of the autoclave was opened to discharge the dispersion into atmospheric pressure for 2 seconds to effect foaming. (According to differential thermal analysis,
The expandable polypropylene particles before release are about 4
% of water contained within the particles). The internal pressure of the autoclave was approximately 9 kg/cm 2 G at the moment when the dispersion liquid was discharged from the autoclave and the gas phase began to be discharged. Additionally, the temperature of the autoclave was 150° C. during dispersion discharge.

このようにして得られたポリプロピレン発泡体
粒子の嵩密度は約0.13g/cm3であつた。また、発
泡体粒子の粒状もほぼ同一であり、発泡体粒子同
志のブロツキングは見受けられなかつた。
The bulk density of the polypropylene foam particles thus obtained was approximately 0.13 g/cm 3 . Further, the granularity of the foam particles was almost the same, and no blocking between the foam particles was observed.

この発泡体粒子を40℃の部屋で2日放置して水
分を乾燥させた後、これを密閉室内に入れ、3
Kg/cm2Gの空気を48時間圧入させ、2次発泡性を
粒子に付与した(加圧熟成)。
The foam particles were left in a room at 40°C for 2 days to dry the moisture, then placed in a sealed room for 3 days.
Kg/cm 2 G of air was injected for 48 hours to impart secondary foamability to the particles (pressure ripening).

この2次発泡性を付与した発泡体粒子をスチー
ム孔を有する型窩内に充填し、次いで型窩内に
4.5Kg/cm2Gのスチームを導き、2次発泡を行わ
せるとともに、発泡体粒子同志を融着させ、次い
で冷却し、嵩密度が約0.11g/cm3、縦200mm、横
300mm、高さ50mmのポリプロピレン発泡体製品を
得た。
The foam particles imparted with secondary foamability are filled into a mold cavity with steam holes, and then placed into the mold cavity.
Steam of 4.5Kg/cm 2 G was introduced to perform secondary foaming, fuse the foam particles together, and then cool the foam to a shape with a bulk density of approximately 0.11g/cm 3 , length 200mm, and width.
A polypropylene foam product of 300 mm and 50 mm height was obtained.

この製品を手で半分に割つて、発泡体粒子の融
着度を調べたところ、70%であつた。
When this product was broken in half by hand and the degree of fusion of the foam particles was examined, it was found to be 70%.

なお、融着度は製品を割つた際、発泡体粒子同
志の界面ですべてが剥離している時、融着度を0
%とし、発泡体粒子が100%凝集破壊して剥離し
たときの融着度を100%とした。
The degree of fusion is defined as 0 when all foam particles are separated at the interface when the product is broken.
%, and the degree of fusion when the foam particles were 100% cohesive failure and peeled off was defined as 100%.

実施例 2 樹脂粒子としてステアリン酸亜鉛を0.5重量%、
ステアリン酸カルシウム0.05重量%、安定剤を
0.5重量%含有するエチレン(4重量%)・プロピ
ランリンダム共重合体粒子を用いる他は実施例1
と同様にして発泡体粒子を得た。
Example 2 0.5% by weight of zinc stearate as resin particles,
Calcium stearate 0.05% by weight, stabilizer
Example 1 except that ethylene (4% by weight)/propylan lindum copolymer particles containing 0.5% by weight were used.
Foam particles were obtained in the same manner as described above.

得られたポリプロピレン発泡体粒子の嵩密度は
約0.11g/cm3であり、粒径は揃つていた。また、
発泡体粒子同志のブロツキングは見受けられなか
つた(放出前の発泡性粒子は約3.8%の水を吸収
していた)。
The bulk density of the obtained polypropylene foam particles was about 0.11 g/cm 3 and the particle sizes were uniform. Also,
No blocking between the foam particles was observed (the foam particles had absorbed approximately 3.8% water before release).

この発泡体粒子を用い、実施例1と同様にして
加熱熟成して2次発泡力を付与し、ついでスチー
ム成形して嵩密度が約0.10g/cm3の発泡体製品を
得た。
These foam particles were heated and aged in the same manner as in Example 1 to impart secondary foaming power, and then steam-molded to obtain a foam product having a bulk density of about 0.10 g/cm 3 .

この製品の発泡体粒子の密着度は約65%であつ
た。
The degree of adhesion of the foam particles of this product was approximately 65%.

実施例 3 樹脂粒子として、ステアリン酸アルミニウムを
1.0重量%、グリセリンモノステアレートを1.0重
量%、安定剤を0.5重量%含有するエチレン(4
重量%)・プロピレンランダム共重合体粒子を用
いる他は実施例1と同様にして発泡体粒子を得
た。
Example 3 Aluminum stearate was used as resin particles
Ethylene (4%) containing 1.0% by weight, 1.0% by weight of glycerin monostearate and 0.5% by weight of stabilizers
Foam particles were obtained in the same manner as in Example 1, except that propylene random copolymer particles (% by weight) were used.

得られたポリプロピレン発泡体粒子の嵩密度は
約0.061g/cm3であり、粒径は揃つていた。また、
発泡体粒子同志のブロツキングは見受けられなか
つた(放出前の発泡性粒子は約3.6%の水を吸収
していた)。
The bulk density of the obtained polypropylene foam particles was about 0.061 g/cm 3 and the particle sizes were uniform. Also,
No blocking between foam particles was observed (the foam particles had absorbed approximately 3.6% water before release).

この発泡体粒子を用い、実施例1と同様にして
加圧熟成して2次発泡力を付与し、ついでスチー
ム成形して嵩密度が約0.06g/cm3の発泡体製品を
得た。
These foam particles were aged under pressure in the same manner as in Example 1 to impart secondary foaming power, and then steam-molded to obtain a foam product having a bulk density of about 0.06 g/cm 3 .

この製品の発泡体粒子の融着度は約60%であつ
た。
The degree of fusion of the foam particles of this product was approximately 60%.

比較例 1 樹脂粒子として、安定剤を0.5重量%含有する
エチレン(4重量%)・プロピレンランダム共重
合体粒子を用い、かつ、分散液の放出温度を155
℃とする他は実施例1と同様にして発泡体粒子を
得た。
Comparative Example 1 Ethylene (4% by weight)/propylene random copolymer particles containing 0.5% by weight of stabilizer were used as resin particles, and the release temperature of the dispersion was set to 155%.
Foam particles were obtained in the same manner as in Example 1 except that the temperature was changed to .degree.

得られたポリプロピレン発泡体粒子の平均嵩密
度は約0.05g/cm3であり、発泡倍率が2〜3倍の
発泡体粒子を約5%、発泡倍率が20〜25倍のもの
を約2%含んでいて粒径が不揃いであつた(放出
前の発泡性粒子は約4.4%の水を吸収していた)。
The average bulk density of the obtained polypropylene foam particles is about 0.05 g/cm 3 , about 5% for foam particles with an expansion ratio of 2 to 3 times, and about 2% for those with an expansion ratio of 20 to 25 times. (The expandable particles before release had absorbed approximately 4.4% water).

この発泡体粒子を用い、実施例1と同様にして
加圧熟成して2次発泡力を付与し、ついでスチー
ム成形して嵩密度が約0.047g/cm3の発泡体製品
を得た。
These foam particles were aged under pressure in the same manner as in Example 1 to impart secondary foaming power, and then steam-molded to obtain a foam product having a bulk density of approximately 0.047 g/cm 3 .

この製品の発泡体粒子の融着度は約70%であつ
た。
The degree of fusion of the foam particles of this product was about 70%.

実施例 4 エチレン・プロピレンランダム共重合体として
エチレン(9重量%)・プロピレンランダム共重
合体を用い、かつ、分散液の放出温度を155℃と
する他は実施例1と同様にして粒状の揃つたポリ
プロピレン発泡体粒子を得た。
Example 4 The same procedure as in Example 1 was used except that an ethylene (9% by weight)/propylene random copolymer was used as the ethylene/propylene random copolymer, and the dispersion temperature was set at 155°C. Polypropylene foam particles were obtained.

この発泡体粒子の嵩密度は約0.045g/cm3であ
つた。
The bulk density of the foam particles was approximately 0.045 g/cm 3 .

実施例 5 樹脂粒子としてステアリン酸アルミニウムを
1.0重量%、グリセリンモノオレエートを1.0重量
%含有するエチレン(4重量%)・プロピレンラ
ンダム共重合体を用いる他は実施例1と同様にし
て粒状の揃つたポリプロピレン発泡体粒子を得
た。
Example 5 Aluminum stearate as resin particles
Polypropylene foam particles with uniform granularity were obtained in the same manner as in Example 1, except that an ethylene (4% by weight)/propylene random copolymer containing 1.0% by weight and 1.0% by weight of glycerin monooleate was used.

この発泡体粒子の嵩密度は約0.056g/cm3であ
つた。
The bulk density of the foam particles was approximately 0.056 g/cm 3 .

実施例 6 樹脂粒子としてステアリン酸アルミニウムを
1.0重量%、ソルビタンモノオレエートを0.5重量
%、安定剤0.2重量%を含有するエチレン(4重
量%)・プロピレンランダム共重合体粒子を用い
る他は実施例1と同様にして粒状の揃つたポリプ
ロピレン発泡体粒子を得た。
Example 6 Aluminum stearate as resin particles
Polypropylene with uniform granules was prepared in the same manner as in Example 1, except that ethylene (4% by weight)/propylene random copolymer particles containing 1.0% by weight, 0.5% by weight of sorbitan monooleate, and 0.2% by weight of stabilizer were used. Foam particles were obtained.

この発泡体粒子の嵩密度は約0.052g/cm3であ
つた。
The bulk density of the foam particles was approximately 0.052 g/cm 3 .

実施例 7 ソルビタンセノオレエートの代りにポリグリセ
リンモノオレエートを用いる他は実施例6と同様
にして粒状の揃つたポリプロピレン発泡体粒子を
得た。
Example 7 Polypropylene foam particles with uniform granularity were obtained in the same manner as in Example 6, except that polyglycerol monooleate was used instead of sorbitan senooleate.

この発泡体粒子の嵩密度は約0.050g/cm3であ
つた。
The bulk density of the foam particles was approximately 0.050 g/cm 3 .

実施例 8 水酸化カルシウム0.0716部を水100部に溶解し
た水溶液と、濃度17%のリン酸の水溶液0.372部
を混合したところ、粒径が0.05〜0.3ミクロンの
塩が0.1%析出した(PH9.2)。これにドデシルベ
ンゼンスルホン酸ソーダを添加し、次の分散液を
調整した。
Example 8 When an aqueous solution of 0.0716 parts of calcium hydroxide dissolved in 100 parts of water and 0.372 parts of an aqueous solution of 17% phosphoric acid were mixed, 0.1% of salt with a particle size of 0.05 to 0.3 microns was precipitated (PH9. 2). Sodium dodecylbenzenesulfonate was added to this to prepare the following dispersion.

難水溶塩濃度 0.1% 分散液のPH 9.2 ドデシルベンゼンスルホン酸濃度 0.003% この分散液100重量部を底部に吐出ノズルを備
えるオートクレーブ内に移した後、粒子1個の重
さが約1mgであり、ステアリン酸アルミニウムを
0.5重量%、安定剤を0.2重量%を含有するエチレ
ン(4%)・プロピレン(96%)ランダム共重合
体粒子(融点137℃)33部をオートクレーブ内に
添加し、オートクレーブ内に窒素ガスをオートク
レーブ内の内圧が10Kg/cm2Gとなるまで供給し
た。
Concentration of poorly soluble salts: 0.1% PH of dispersion: 9.2 Concentration of dodecylbenzenesulfonic acid: 0.003% After transferring 100 parts by weight of this dispersion into an autoclave equipped with a discharge nozzle at the bottom, each particle weighed approximately 1 mg, aluminum stearate
33 parts of ethylene (4%)/propylene (96%) random copolymer particles (melting point 137°C) containing 0.5% by weight and 0.2% by weight of stabilizer were added into the autoclave, and nitrogen gas was introduced into the autoclave. The supply was continued until the internal pressure within the tank reached 10 kg/cm 2 G.

次いでオートクレーブ内にブタンガス18部を撹
拌下に添加したのち、約60分かけて130℃まで分
散液を加温し、更に同温度で20分間保持した。こ
の時のオートクレーブ内の圧力は約30Kg/cm2Gで
あつた。
Next, 18 parts of butane gas was added into the autoclave with stirring, and the dispersion was heated to 130° C. over about 60 minutes, and further maintained at the same temperature for 20 minutes. At this time, the pressure inside the autoclave was approximately 30 kg/cm 2 G.

その後、オートクレーブの底部にある吐出ノズ
ルの弁を開き、分散液を大気圧中に2秒で放出し
て発泡を行わしめた。分散液がオートクレーブ内
から放出されおわつた瞬間、いいかえれば気相部
が排出されはじめる瞬間のオートクレーブの内圧
は約9Kg/cm2Gであつた。また、分散液放出の
間、オートクレーブの温度は130℃であつた。
Thereafter, the valve of the discharge nozzle at the bottom of the autoclave was opened, and the dispersion was discharged into atmospheric pressure for 2 seconds to effect foaming. The internal pressure of the autoclave was approximately 9 kg/cm 2 G at the moment when the dispersion liquid was discharged from the autoclave and the gas phase began to be discharged. Also, during dispersion discharge, the temperature of the autoclave was 130°C.

このようにして得られたポリプロピレン発泡体
粒子の嵩密度は約0.027g/cm3であつた。また、
発泡体粒子同志のブロツキングは見受けられなか
つた。
The bulk density of the polypropylene foam particles thus obtained was approximately 0.027 g/cm 3 . Also,
No blocking between foam particles was observed.

なお、放出前の発泡性粒子は示差熱分析による
と約0.18重量%の水を吸収していた。
According to differential thermal analysis, the expandable particles before release had absorbed approximately 0.18% by weight of water.

この発泡体粒子を40℃の部屋で2日放置して水
分を乾燥させた後、これを密閉室内に入れ、3
Kg/cm2Gの空気を48時間圧入させ、2次発泡性を
粒子に付与した。
The foam particles were left in a room at 40°C for 2 days to dry the moisture, then placed in a sealed room for 3 days.
Kg/cm 2 G of air was injected for 48 hours to impart secondary foamability to the particles.

この2次発泡性を付与した発泡体粒子をスチー
ム孔を有する型窩内に充填し、次いで型窩内に
4.5Kg/cm2Gのスチームを導き、2次発泡を行わ
せるととに、発泡体粒子同志を融着させ、次いで
冷却し、嵩密度が約0.025g/cm3、縦200mm、横
300mm、高さ50mmのポリプロピレン発泡体製品を
得た。
The foam particles imparted with secondary foamability are filled into a mold cavity with steam holes, and then placed into the mold cavity.
Steam of 4.5Kg/cm 2 G was introduced to perform secondary foaming, and the foam particles were fused together, and then cooled to a shape with a bulk density of about 0.025g/cm 3 , length 200mm, and width.
A polypropylene foam product of 300 mm and 50 mm height was obtained.

この製品を手で半分に割つて、発泡体粒子の融
着度を調べたところ、70%であつた。
When this product was broken in half by hand and the degree of fusion of the foam particles was examined, it was found to be 70%.

実施例 9 微粒の酸化アルミニウムを0.3重量%含有する
水100重量部を底部に吐出ノズルを備えるオート
クレーブ内に移した後、粒子1個の重さが約1mg
であり、ステアリン酸アルミニウムを1.0重量%、
グリセリンモノステアレートを1.0重量%および
安定剤0.2重量%を含有するエチレン(4%)・プ
ロピレン(96%)ランダム共重合体粒子(融点
137℃)33部をオートクレーブ内に添加した。
Example 9 After 100 parts by weight of water containing 0.3% by weight of fine particles of aluminum oxide was transferred into an autoclave equipped with a discharge nozzle at the bottom, each particle weighed approximately 1 mg.
and 1.0% by weight of aluminum stearate,
Ethylene (4%)/propylene (96%) random copolymer particles containing 1.0% by weight of glycerin monostearate and 0.2% by weight of stabilizer (melting point
137°C) was added into the autoclave.

次いでオートクレーブ内にジクロロジフロロメ
タン19部を撹拌下に添加したのち、約60分かけて
122℃まで分酸液を加温し、更に同温度で20分間
保持した。この時のオートクレーブ内の圧力は約
33Kg/cm2Gであつた。
Next, 19 parts of dichlorodifluoromethane was added to the autoclave with stirring, and the mixture was heated for about 60 minutes.
The acid separation solution was heated to 122°C and further maintained at the same temperature for 20 minutes. The pressure inside the autoclave at this time is approximately
It was 33Kg/cm 2 G.

その後、130℃に加熱し、同温度に2時間保持
した後、窒素ガスをオートクレーブ内に供給して
背圧をかけながらオートクレーブの底部にある吐
出ノズルの弁を開き、分散液を大気圧中に2秒で
放出して発泡を行わしめた。分散液がオートクレ
ーブ内から放出されおわつた瞬間、いいかえれば
気相部が排出されはじめる瞬間のオートクレーブ
の内圧は約21Kg/cm2Gであつた。
After that, it was heated to 130℃ and kept at the same temperature for 2 hours, and then the dispersion was brought into atmospheric pressure by opening the discharge nozzle valve at the bottom of the autoclave while applying back pressure by supplying nitrogen gas into the autoclave. It was released in 2 seconds to complete foaming. The internal pressure of the autoclave was approximately 21 kg/cm 2 G at the moment when the dispersion liquid was discharged from the autoclave and the gas phase began to be discharged.

このようにして得られたポリプロピレン発泡体
の嵩密度は約0.068g/cm3であつた。また、発泡
体粒子同志のブロツキングは見受けられなかつ
た。
The bulk density of the polypropylene foam thus obtained was approximately 0.068 g/cm 3 . Further, no blocking between foam particles was observed.

この発泡体粒子を40℃の部屋で2日放置して水
分を乾燥させた後、これを密閉室内に入れ、3
Kg/cm2Gの空気を48時間圧入させ、2次発泡性を
粒子に付与した。
The foam particles were left in a room at 40°C for 2 days to dry the moisture, then placed in a sealed room for 3 days.
Kg/cm 2 G of air was injected for 48 hours to impart secondary foamability to the particles.

この2次発泡性を付与した発泡体粒子をスチー
ム孔を有する型窩内に充填し、次いで型窩内に
4.5Kg/cm2Gのスチームを導き、2次発泡を行わ
せるとともに、発泡体粒子同志を融着させ、次い
で冷却し、嵩密度が約0.067g/cm3、縦200mm、横
300mm、高さ50mmのポリプロピレン発泡体製品を
得た。
The foam particles imparted with secondary foamability are filled into a mold cavity with steam holes, and then placed into the mold cavity.
Steam of 4.5Kg/cm 2 G was introduced to perform secondary foaming, fuse the foam particles together, and then cool the foam to a shape with a bulk density of about 0.067g/cm 3 , length 200mm, width
A polypropylene foam product of 300 mm and 50 mm height was obtained.

この製品を手で半分に割つて、発泡体粒子の融
着度を調べたところ、50%であつた。
When this product was broken in half by hand and the degree of fusion of the foam particles was examined, it was found to be 50%.

実施例 10 水酸化カルシウム0.0716部を水100部に溶解し
た水溶液と、濃度17%のリン酸の水溶液0.372部
を混合したところ、粒径が0.05〜0.3ミクロンの
塩が0.1%析出した(PH9.2)。これにドデシルベ
ンゼンスルホン酸ソーダを添加し、次の分酸液を
調整した。
Example 10 When an aqueous solution of 0.0716 parts of calcium hydroxide dissolved in 100 parts of water was mixed with 0.372 parts of an aqueous solution of 17% phosphoric acid, 0.1% of salt with a particle size of 0.05 to 0.3 microns was precipitated (PH9. 2). Sodium dodecylbenzenesulfonate was added to this to prepare the following acid solution.

難水溶塩濃度 0.1% 分散液のPH 9.2 ドデシルベンゼンスルホン酸濃度 0.003% この分散液100重量部を底部に吐出ノズルを備
えるオートクレーブ内に移した後、粒子1個の重
さが約1mgであり、ステアリン酸アルミニウムを
1.0重量%、グリセリンモノステアレートを1.0重
量%、安定剤を0.1重量%含有する架橋低密度ポ
リエチレン粒子(融点110℃)33部をオートクレ
ーブ内に添加し、オートクレーブ内に窒素ガスを
オートクレーブ内の内圧が10Kg/cm2Gとなるまで
供給した。
Concentration of poorly soluble salts: 0.1% PH of dispersion: 9.2 Concentration of dodecylbenzenesulfonic acid: 0.003% After transferring 100 parts by weight of this dispersion into an autoclave equipped with a discharge nozzle at the bottom, each particle weighed approximately 1 mg, aluminum stearate
33 parts of cross-linked low-density polyethylene particles (melting point 110°C) containing 1.0% by weight, 1.0% by weight of glycerin monostearate, and 0.1% by weight of stabilizer were added into the autoclave, and nitrogen gas was introduced into the autoclave to reduce the internal pressure inside the autoclave. was supplied until it reached 10Kg/cm 2 G.

次いで約45分かけて103℃まで分散液を加温し、
更に同温度で20分間保持したのち、120℃迄加熱
し、同温度で60分保持した。この時のオートクレ
ーブ内の圧力は約25Kg/cm2Gであつた。
The dispersion was then heated to 103°C over approximately 45 minutes.
After further holding at the same temperature for 20 minutes, it was heated to 120°C and held at the same temperature for 60 minutes. At this time, the pressure inside the autoclave was approximately 25 kg/cm 2 G.

その後、オートクレーブの底部にある吐出ノズ
ルの弁を開き、分散液を大気圧中に2秒で放出し
て発泡を行わしめた。分散液がオートクレーブ内
より放出おわつた瞬間いいかえれば気相部が排出
されはじめた瞬間のオートクレーブの内圧は約7
Kg/cm2Gであつた。
Thereafter, the valve of the discharge nozzle at the bottom of the autoclave was opened, and the dispersion was discharged into atmospheric pressure for 2 seconds to effect foaming. At the moment when the dispersion liquid is released from the autoclave, the internal pressure of the autoclave is approximately 7.
It was Kg/cm 2 G.

このようにして得られた架橋ポリエチレン発泡
体嵩密度は約0.046g/cm3であつた。また、発泡
体粒子同志のブロツキングは見受けられなかつ
た。
The bulk density of the crosslinked polyethylene foam thus obtained was approximately 0.046 g/cm 3 . Further, no blocking between foam particles was observed.

この発泡体粒子を40℃の部屋で2日放置して水
分を乾燥させた後、これを密閉室内に入れ、2
Kg/cm2Gの空気を48時間圧入させ、2次発泡性を
粒子に付与させた。
After leaving the foam particles in a room at 40°C for 2 days to dry the moisture, they were placed in a sealed room for 2 days.
Kg/cm 2 G of air was injected for 48 hours to impart secondary foamability to the particles.

この2次発泡性を付与した発泡体粒子をスチー
ム孔を有する型窩内に充填し、次いで型窩内に2
Kg/cm2Gのスチームを導き、2次発泡を行わせる
とともに、発泡体粒子同志を融着させ、次いで冷
却し、嵩密度が約0.043g/cm3、縦200mm、横300
mm、高さ50mmの架橋ポリエチレン発泡体製品を得
た。
The foam particles imparted with secondary foamability are filled into a mold cavity having steam holes, and then
Kg/cm 2 G of steam is introduced to perform secondary foaming, fuse the foam particles together, and then cool the foam to a bulk density of approximately 0.043 g/cm 3 , length 200 mm, width 300 mm.
A cross-linked polyethylene foam product with a height of 50 mm and a height of 50 mm was obtained.

この製品を手で半分に割つて、発泡体粒子の融
着度を調べたところ、90%であつた。
When this product was broken in half by hand and the degree of fusion of the foam particles was examined, it was found to be 90%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は樹脂の示差熱分析のチヤートである。 FIG. 1 is a chart of differential thermal analysis of the resin.

Claims (1)

【特許請求の範囲】 1 密閉容器内で、炭素数が12〜22の高級脂肪酸
の金属塩を0.4〜10重量%含有するポリオレフイ
ン系樹脂粒子を水に分散させ、該樹脂粒子の軟化
温度以上、融点より25℃高い温度以下の温度に加
熱し、該粒子に水を吸収させ、ついで、密閉容器
内の水面下に設けた吐出口を解放し、ポリオレフ
イン系樹脂粒子と分散媒である水とを同時に容器
内よりも低圧の雰囲気に放出してポリオレフイン
系樹脂発泡体粒子を製造する方法。 2 密閉容器内で、(a)炭素数が12〜22の高級脂肪
酸の金属塩を0.4〜10重量%および(b)グリセリン、
ソルビタン、ポリグリセリンより選ばれたアルコ
ールと炭素数12〜22の高級脂肪酸とのエステルを
0.05〜5重量%含有するポリオレフイン系樹脂粒
子を水に分散させ、該樹脂粒子の軟化温度以上、
融点より25℃高い温度以下の温度に加熱し、該粒
子に水を吸収させ、ついで、密閉容器内の水面下
に設けた吐出口を解放し、ポリオレフイン系樹脂
粒子と分散媒である水とを同時に容器内よりも低
圧の雰囲気に放出してポリオレフイン系樹脂発泡
体粒子を製造する方法。 3 高級脂肪酸の金属塩がステアリン酸アルミニ
ウムまたはステアリン酸亜鉛であることを特徴と
する特許請求の範囲第1項または第2項記載のポ
リオレフイン系樹脂発泡体粒子の製造方法。 4 エステルがグリセリンモノステアレートであ
ることを特徴とする特許請求の範囲第2項記載の
ポリオレフイン系樹脂発泡体粒子の製造方法。
[Claims] 1. In a closed container, polyolefin resin particles containing 0.4 to 10% by weight of a metal salt of a higher fatty acid having 12 to 22 carbon atoms are dispersed in water, and at a temperature higher than the softening temperature of the resin particles, The particles are heated to a temperature below 25°C higher than the melting point to absorb water, and then the discharge port provided below the water surface in the sealed container is opened to separate the polyolefin resin particles and water as a dispersion medium. A method of producing polyolefin resin foam particles by simultaneously releasing the air into an atmosphere at a lower pressure than the inside of the container. 2 In a sealed container, (a) 0.4 to 10% by weight of a metal salt of a higher fatty acid having 12 to 22 carbon atoms and (b) glycerin,
Sorbitan, an ester of an alcohol selected from polyglycerin and a higher fatty acid with 12 to 22 carbon atoms.
Polyolefin resin particles containing 0.05 to 5% by weight are dispersed in water, and the temperature is higher than the softening temperature of the resin particles.
The particles are heated to a temperature below 25°C higher than the melting point to absorb water, and then the discharge port provided below the water surface in the sealed container is opened to separate the polyolefin resin particles and water as a dispersion medium. A method of producing polyolefin resin foam particles by simultaneously releasing the air into an atmosphere at a lower pressure than the inside of the container. 3. The method for producing polyolefin resin foam particles according to claim 1 or 2, wherein the metal salt of higher fatty acid is aluminum stearate or zinc stearate. 4. The method for producing polyolefin resin foam particles according to claim 2, wherein the ester is glycerin monostearate.
JP4522284A 1984-03-09 1984-03-09 Production of polyolefin resin foam particle Granted JPS60188435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4522284A JPS60188435A (en) 1984-03-09 1984-03-09 Production of polyolefin resin foam particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4522284A JPS60188435A (en) 1984-03-09 1984-03-09 Production of polyolefin resin foam particle

Publications (2)

Publication Number Publication Date
JPS60188435A JPS60188435A (en) 1985-09-25
JPH0547579B2 true JPH0547579B2 (en) 1993-07-19

Family

ID=12713236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4522284A Granted JPS60188435A (en) 1984-03-09 1984-03-09 Production of polyolefin resin foam particle

Country Status (1)

Country Link
JP (1) JPS60188435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090232A (en) * 2008-10-07 2010-04-22 Kaneka Corp Method for producing polyolefin-based resin foam particle excellent in mold filling property
JP2010106238A (en) * 2008-09-30 2010-05-13 Kaneka Corp Polyolefin resin multistage foamed particle having excellent mold fillability

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245650A (en) * 1984-05-21 1985-12-05 Japan Styrene Paper Co Ltd Preparation of foamed particle of noncrosslinked polypropylene resin
JPS60229936A (en) * 1984-04-28 1985-11-15 Japan Styrene Paper Co Ltd Production of expanded polymer particle
JPS614738A (en) * 1984-06-19 1986-01-10 Japan Styrene Paper Co Ltd Preparation of foamed polypropylene resin particle
US6596782B1 (en) 1996-04-05 2003-07-22 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded molding
JP3950557B2 (en) 1998-07-30 2007-08-01 株式会社カネカ Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
US6770682B2 (en) 1999-12-28 2004-08-03 Kaneka Corporation Expandable styrene resin beads and foams produced therefrom
US8785531B2 (en) * 2006-07-06 2014-07-22 Dow Global Technologies Llc Dispersions of olefin block copolymers
KR100830093B1 (en) * 2007-02-23 2008-05-19 한국과학기술연구원 Method for preparing polyolefin foamed particles having excellent formability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323358A (en) * 1976-08-16 1978-03-03 Badische Yuka Co Ltd Process for manufacture of expandable polyethyrene powder
JPS5876433A (en) * 1981-11-02 1983-05-09 Japan Styrene Paper Co Ltd Previously expanded particle of uncrosslinked straight chain low-density polyethylene and its preparation
JPS5991125A (en) * 1982-11-17 1984-05-25 Japan Styrene Paper Co Ltd Production of spherical polyolefin resin particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323358A (en) * 1976-08-16 1978-03-03 Badische Yuka Co Ltd Process for manufacture of expandable polyethyrene powder
JPS5876433A (en) * 1981-11-02 1983-05-09 Japan Styrene Paper Co Ltd Previously expanded particle of uncrosslinked straight chain low-density polyethylene and its preparation
JPS5991125A (en) * 1982-11-17 1984-05-25 Japan Styrene Paper Co Ltd Production of spherical polyolefin resin particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106238A (en) * 2008-09-30 2010-05-13 Kaneka Corp Polyolefin resin multistage foamed particle having excellent mold fillability
JP2010090232A (en) * 2008-10-07 2010-04-22 Kaneka Corp Method for producing polyolefin-based resin foam particle excellent in mold filling property

Also Published As

Publication number Publication date
JPS60188435A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
EP0095109B1 (en) Process for producing expanded particles of a polyolefin resin
US4689351A (en) Process for producing foamed particles of propylene copolymer resin
US4602047A (en) Process for producing foamed particles of polyolefin resin
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
EP0415744B1 (en) Process for the production of expanded particles of a polyolefin resin
KR970008856B1 (en) Expandable polymer in particle form
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
US4908393A (en) Propylene resin foamed particles and foamed mold article
JPH0547579B2 (en)
JPH0525892B2 (en)
JPS6377947A (en) Production of expanded particle of styrene-acrylonitrile-butadiene copolymer
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP2886248B2 (en) In-mold molding method for expanded polypropylene resin particles
JPS598294B2 (en) Anti-clumping expandable styrenic polymer
JP2000044717A (en) Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom
JPH11172034A (en) Non-crosslinked, straight-chain, low-density polyethylene resin expanded particle and production thereof
JPH0768402B2 (en) Propylene resin foamed particles and foamed molded product
JP2675373B2 (en) Automotive bumper core material
JPH11156879A (en) Polypropylene resin in-mold foamed molded product and its production
KR100682241B1 (en) Expandable Polystyrene Resin, Process for Preparing Thereof and Expanded Product Produced by Using Said Resin Particules
JPH07116314B2 (en) Method for producing foamed polymer molded article
JPS6047036A (en) Production of polyolefin resin foam particle
EP0764186A1 (en) Coating composition for expandable beads
JPH08225675A (en) Preparation of foamable polyolefinic resin particles
JPH0314845A (en) Preparation of pre-expanded bead of polyolefin resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees