JPS60245650A - Preparation of foamed particle of noncrosslinked polypropylene resin - Google Patents

Preparation of foamed particle of noncrosslinked polypropylene resin

Info

Publication number
JPS60245650A
JPS60245650A JP10243184A JP10243184A JPS60245650A JP S60245650 A JPS60245650 A JP S60245650A JP 10243184 A JP10243184 A JP 10243184A JP 10243184 A JP10243184 A JP 10243184A JP S60245650 A JPS60245650 A JP S60245650A
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
temperature
resin particles
inorganic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10243184A
Other languages
Japanese (ja)
Other versions
JPH0464332B2 (en
Inventor
Shohei Yoshimura
吉村 正平
Hideki Kuwabara
英樹 桑原
Toru Yamaguchi
徹 山口
Masato Kanbe
神部 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP10243184A priority Critical patent/JPS60245650A/en
Priority to US06/726,669 priority patent/US4704239A/en
Priority to BE0/214908A priority patent/BE902278A/en
Priority to CA000480172A priority patent/CA1244200A/en
Priority to EP85302980A priority patent/EP0164855B2/en
Priority to DE8585302980T priority patent/DE3575151D1/en
Publication of JPS60245650A publication Critical patent/JPS60245650A/en
Publication of JPH0464332B2 publication Critical patent/JPH0464332B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled foamed particles having good moldability, by applying pressure with an inorganic gas to particles of a noncrosslinked polypropylene resin in a liquid dispersion medium, and releasing them from the pressurized zone, in a specified temperature range, into a lower-pressure zone. CONSTITUTION:Particles of a noncrosslinked polypropylene resin are dispersed in a liquid dispersion medium, and pressure is applied to this dispersion with an inorganic gas. Then, the particles of the secondarily crystallized, noncrosslinked polypropylene resin containing the inorganic gas, together with the liquid dispersion medium, are released, in the temperature range in which the secondary crystals will exist, from the pressurized zone into a lower-pressure zone, causing to foam. The examples of the noncrosslinked polypropylene resins to be used are a propylene-ethylene random copolymer and propylene-butene random copolymer, preferably a propylene-ethylene random copolymer containing 1-10wt% ethylene. As the inorganic gas, preferably a nitrogen-containing gas such as nitrogen or air is used.

Description

【発明の詳細な説明】 本発明は無架橋ポリプロピレン系樹脂発泡粒子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing expanded non-crosslinked polypropylene resin particles.

従来、揮発性有機発泡剤を含有する重合体粒子を密閉容
器内で水に分散させ、容器内の圧力を該発泡剤の蒸気圧
又はそれ以上の圧力に保持しながら、重合体の軟化温度
以上に加熱した後、加圧容器内より低圧の雰囲気に放出
し、発泡させる方法は知られている。この場合、揮発性
有機発泡剤としては、例えば、プロパン、ブタン、ペン
タン、トリクロロフロロメタン、ジクロロジフロロメタ
ン等が一般に知られている。しかしながらこのような揮
発性有機発泡剤を使用することは、発泡剤によっては、
毒性や可燃性のため危険性を有し、また危険性という点
ではさほど問題にならないものであっても、高価で、実
用上の問題を含む上、さらには、オゾン層を破壊する等
環境汚染の問題をも有するものであった。その上、これ
ら揮発性有機発泡剤は重合体粒子を膨潤させるために発
泡時の発泡適性温度範囲が狭く、発泡温度の発泡倍率に
及ぼす影響が大であり、発泡倍率のコントロールが困難
であるという問題があった。
Conventionally, polymer particles containing a volatile organic blowing agent are dispersed in water in a closed container, and the pressure inside the container is maintained at the vapor pressure of the blowing agent or higher, while the temperature is increased to a temperature higher than the softening temperature of the polymer. There is a known method in which foaming is carried out by heating the material to a temperature of 100% and then releasing it into a low-pressure atmosphere from inside a pressurized container. In this case, generally known volatile organic blowing agents include propane, butane, pentane, trichlorofluoromethane, dichlorodifluoromethane, and the like. However, the use of such volatile organic blowing agents may result in
It is dangerous because it is toxic and flammable, and even if it is not a big problem in terms of danger, it is expensive and has practical problems, and furthermore, it causes environmental pollution such as depleting the ozone layer. It also had the following problems. Furthermore, since these volatile organic blowing agents swell the polymer particles, the suitable temperature range for foaming during foaming is narrow, and the foaming temperature has a large effect on the foaming ratio, making it difficult to control the foaming ratio. There was a problem.

また、無架橋ポリプロピレン系樹脂を揮発性有機発泡剤
を用いて発泡させる場合、得られる発泡粒子の成形性に
難点がある。即ち、この発泡粒子の成形体は、低密度で
吸水率が小さく、しかも収縮率の小さい寸法安定性に優
れた成形体が得られる場合もある反面、収縮率の大きい
成形体しか得られない場合もあり、必ずしも安定して良
好な成形体が得難いという問題点を有している。
Furthermore, when a non-crosslinked polypropylene resin is foamed using a volatile organic foaming agent, there is a problem in the moldability of the resulting expanded particles. In other words, in some cases, molded products made of expanded particles have low density, low water absorption, and excellent dimensional stability with a low shrinkage rate, but on the other hand, only molded products with a high shrinkage rate can be obtained. However, there is a problem in that it is difficult to obtain a stable and good molded product.

本発明者らは、これらの問題を解決すべく鋭意研究した
結果、無発泡重合体粒子用発泡剤としては従来まったく
考慮されなかった無機ガスを発泡剤として用いることに
より、重合体の予備発泡時の発泡適正温度範囲が拡大さ
れて、予備発泡操作を容易かつ安定に行うことができ、
その」二独立気泡率の高い成形性にもすぐれた発泡粒子
が得られ、しかも工程の安全性が増加されると共に環境
汚染の問題も防止される等の従来法では達成し得なかっ
た種々の効果が達成されることを見出した。更に、無架
橋ポリプロピレン系樹脂から得られる予備発泡粒子を用
いた場合の成形性に与える影響が樹脂の二次結晶化と関
係することを見出した。
As a result of intensive research to solve these problems, the present inventors have discovered that by using an inorganic gas as a blowing agent, which has not been considered as a blowing agent for non-foamed polymer particles, it is possible to The suitable temperature range for foaming has been expanded, making it possible to perform pre-foaming operations easily and stably.
It has various advantages that could not be achieved with conventional methods, such as obtaining foamed particles with a high double closed cell ratio and excellent moldability, increasing process safety and preventing environmental pollution problems. It was found that the effect was achieved. Furthermore, it has been found that the influence on moldability when using pre-expanded particles obtained from non-crosslinked polypropylene resin is related to secondary crystallization of the resin.

本発明はこれらの知見に基づいて完成されたものである
The present invention was completed based on these findings.

即ち、本発明によれば、無架橋ポリプロピレン系樹脂を
発泡させるに際し、 (i)無架橋ポリプロピレン系樹脂粒子を液状分散媒に
分散させる工程、 1i)無架橋ポリプロピレン系樹脂粒子を無機ガスにて
加圧する工程、 1ii)無機ガスを含有し、二次結晶化した無架橋ポリ
プロピレン系樹脂粒子を液状分散媒と共に二次結晶が存
在する温度域で、かつ加圧帯域がら低圧帯域に放出させ
て発泡させる工程、からなることを特徴とする無架橋ポ
リプロピレン系樹脂発泡粒子の製造方法が提供される。
That is, according to the present invention, when foaming non-crosslinked polypropylene resin, the following steps are performed: (i) dispersing non-crosslinked polypropylene resin particles in a liquid dispersion medium; 1i) adding non-crosslinked polypropylene resin particles with an inorganic gas; Pressuring step, 1ii) Foaming the non-crosslinked polypropylene resin particles containing an inorganic gas and having undergone secondary crystallization together with a liquid dispersion medium in a temperature range where secondary crystals exist and from the pressurizing zone to the low pressure zone. Provided is a method for producing expanded non-crosslinked polypropylene resin particles, comprising the steps of:

本発明における無架橋ポリプロピレン系樹脂としては、
プロピレン単独重合体、プロピレン−エチレンランダム
共重合体、プロピレン−エチレンブロック共重合体、プ
ロピレン−ブテンランダム共重合体、プロピレン−エチ
レン−ブテンランダム共重合体等が挙げられるが、本発
明の場合、殊にプロピレン−エチレンランダム共重合体
特にエチレン分が1重量%以上10重量%未満のものが
好適に用いられるにの様なポリプロピレン系樹脂粒子の
粒径は、一般に、0 、3m+〜5+nm、好ましくは
0 、5mm 〜3mm程度である。
As the non-crosslinked polypropylene resin in the present invention,
Examples include propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer, etc., but in the case of the present invention, especially The particle size of the polypropylene resin particles is generally 0.3 m+ to 5+ nm, preferably 0.3 m+ to 5+ nm. It is about 0.5 mm to 3 mm.

なお1本発明においていう樹脂の融点とは、DSC法に
て約6mgのサンプルを10°C/分の速度で220℃
まで昇温し、その後10℃/分で約50℃まで降温し、
再度220℃まで昇温した時に得られる吸熱曲線のピー
クの温度である。また樹脂の融解終了温度とは、二度目
に得られた吸熱曲線のベースラインにもどった温度をい
う。
Note that the melting point of the resin as used in the present invention refers to the melting point of a resin at a rate of 10°C/min of approximately 6 mg at 220°C using the DSC method.
The temperature was raised to 50°C at a rate of 10°C/min.
This is the peak temperature of the endothermic curve obtained when the temperature is raised again to 220°C. Further, the melting end temperature of the resin refers to the temperature at which the endothermic curve obtained for the second time returns to the baseline.

本発明においては、前記ポリプロピレン系樹脂の加熱時
における融着を防止するために、融着防止剤を用いる。
In the present invention, an anti-fusing agent is used to prevent the polypropylene resin from fusing during heating.

この融着防止剤は、実質的に非水溶性でかつ加熱時にお
いて非溶融性のものであれば、有機及び無機系を問わず
使用可能であるが、一般には無機系のものの使用が好ま
しい。代表的な融着防止剤の例を示すと、例えば、酸化
アルミニウム、酸化チタン、水酸化アルミニウム、塩基
性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム
等が挙げられる。このような融着防止剤は、通常、粒径
0.001〜100μm、好ましくは0.001〜30
μmの微粒子で用いられる。この融着防止剤の添月旦は
、樹脂粒子100重量部に対し、通常、0.01〜10
重量部の範囲である。
This anti-fusing agent may be organic or inorganic as long as it is substantially water-insoluble and does not melt when heated, but it is generally preferable to use an inorganic anti-fusing agent. Typical anti-fusing agents include aluminum oxide, titanium oxide, aluminum hydroxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, and the like. Such an anti-fusing agent usually has a particle size of 0.001 to 100 μm, preferably 0.001 to 30 μm.
Used for micron particles. The amount of the anti-fusing agent is usually 0.01 to 10 parts by weight per 100 parts by weight of the resin particles.
Parts by weight range.

本発明の方法を実施するには、加圧容器内に、前記した
ポリプロピレン系樹脂と融着防止剤と水性媒体を配合す
ると共に、容器内容物(配合物)を無機ガににより加圧
すると共にまた加熱を行う。
To carry out the method of the present invention, the above-described polypropylene resin, anti-fusing agent, and aqueous medium are mixed in a pressurized container, and the contents (compound) of the container are pressurized with an inorganic gas. Perform heating.

この場合、無機ガスとしては、窒素ガス、空気、炭酸ガ
ス、アルゴン、酸化窒素等の種々のものが挙げられるが
、本発明の場合、殊に、窒素ガスや空気等の窒素含有ガ
スの使用が好ましい。この無機ガスによる容器内容物の
加圧は任意の時期に行うことができ、ポリプロピレン系
樹脂、融着防止剤及び水性媒体の配合直後や、昇温中、
あるいは発泡温度に達した時等に行うことができる。ま
た、本発明における加熱による容器内容物の昇温速度は
、通常1〜b る。
In this case, the inorganic gas may include various gases such as nitrogen gas, air, carbon dioxide, argon, and nitrogen oxide. preferable. Pressurizing the contents of the container with this inorganic gas can be performed at any time, such as immediately after blending the polypropylene resin, anti-fusing agent, and aqueous medium, or during heating.
Alternatively, it can be carried out when the foaming temperature is reached. Further, the rate of temperature increase of the contents of the container by heating in the present invention is usually 1 to b.

本発明においては、容器内容物を加圧帯域から低圧帯域
に放出させて発泡させる場合、加圧内容物はその中に含
まれる樹脂に二次結晶が存在する温度域に保持すること
が必要である。一般に、樹脂の融点以上、融解終了温度
未満の温度域では二次結晶が存在し、この範囲の温度域
において発泡を行う場合には成形性の良好な発泡粒子を
得ることができる。樹脂の融解終了温度以上の温度域に
おいて発泡を行う場合、二次結晶が消失し、非結晶状態
になってしまうと、成形性の良好な発泡粒子を得ること
ができない。従って、樹脂の融解終了温度以上の温度域
において発泡を行う場合、このような二次結晶の消失を
回避するために、容器内容物を樹脂の融解終了温度未満
の温度に充分保持し、二次結晶化を充分起させた後、発
泡温度に昇温させ、発泡を行う。このような発泡方法に
より、容器内容物に含まれる樹脂には、その発泡温度が
融解終了温度以上であっても、二次結晶が存在し、成形
性の良好な発泡粒子を得ることができる。
In the present invention, when the contents of the container are discharged from the pressurized zone to the low pressure zone and foamed, the pressurized contents must be maintained in a temperature range where secondary crystals exist in the resin contained therein. be. Generally, secondary crystals exist in a temperature range above the melting point of the resin and below the melting end temperature, and when foaming is carried out in this temperature range, foamed particles with good moldability can be obtained. When foaming is carried out in a temperature range equal to or higher than the melting end temperature of the resin, if the secondary crystals disappear and become amorphous, expanded particles with good moldability cannot be obtained. Therefore, when foaming is carried out in a temperature range above the melting end temperature of the resin, in order to avoid such disappearance of secondary crystals, the contents of the container should be sufficiently maintained at a temperature below the melting end temperature of the resin, and the secondary crystals After sufficiently causing crystallization, the temperature is raised to the foaming temperature and foaming is performed. By such a foaming method, even if the foaming temperature of the resin contained in the contents of the container is higher than the melting end temperature, secondary crystals are present and foamed particles with good moldability can be obtained.

なお、樹脂中における二次結晶の存在は、樹脂発泡粒子
の示差走査熱量測定によって得られる050曲線によっ
て判定することができる。この場合、樹脂発泡粒子の示
差走査熱量測定によって得られる050曲線とは、ポリ
プロピレン系樹脂発泡粒子1〜3+ngを示差走査熱量
計によって10℃/分の昇温速度で220℃まで昇温し
たときに得られる050曲線であり、例えば、試料を室
温から220℃まで10℃/分の昇温速度で昇温した時
に得られる050曲線を第1回目の050曲線とし、次
いで220℃から10℃/分の降温速度で40℃付近ま
で降温し、再度10℃/分の昇温速度で220℃まで昇
温した時に得られる050曲線を第2回目の050曲線
とし、これらの050曲線から固有ピーク、高温ピーク
をめることができる。また、この場合、固有ピークとは
、発泡粒子を構成するポリプロピレン系樹脂固有の吸熱
ピークであり、ポリプロピレン系樹脂の、いわゆる融解
時の吸熱によるものであると考えられる。この固有ピー
クは第1回目の050曲線にも第2回目の050曲線に
も現われ、ピークの頂点の温度は第1回目と第2回目で
多少異なる場合があるが、その差は5℃未満通常は2℃
未満である。
The presence of secondary crystals in the resin can be determined based on the 050 curve obtained by differential scanning calorimetry of expanded resin particles. In this case, the 050 curve obtained by differential scanning calorimetry of foamed resin particles refers to the 050 curve obtained when 1 to 3+ ng of expanded polypropylene resin particles are heated to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter. For example, the first 050 curve is the 050 curve obtained when the sample is heated from room temperature to 220°C at a rate of 10°C/min, and then the temperature is increased from 220°C to 10°C/min. The second 050 curve is the 050 curve obtained when the temperature is lowered to around 40°C at a cooling rate of You can hit the peak. Further, in this case, the characteristic peak is an endothermic peak unique to the polypropylene resin constituting the expanded particles, and is thought to be due to the so-called endotherm of the polypropylene resin during melting. This characteristic peak appears in both the first 050 curve and the second 050 curve, and the temperature at the top of the peak may be slightly different between the first and second runs, but the difference is usually less than 5°C. is 2℃
less than

一方、高温ピークとは、第1回目の050曲線で上記固
有ピークより高温側に現われる吸熱ピークである。樹脂
中における二次結晶の存在は、050曲線にこの高温ピ
ークが現われるが否がで判定され、実質的な高温ピーク
が現われない場合には、樹脂中には二次結晶が存在しな
いものと判定される。
On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the above-mentioned characteristic peak in the first 050 curve. The presence of secondary crystals in the resin is determined by whether or not this high temperature peak appears on the 050 curve. If no substantial high temperature peak appears, it is determined that there are no secondary crystals in the resin. be done.

本発明の場合、前記第2回目のDsc曲線に現われる固
有ピークの温度と第1回目の050曲線に現われる高温
ピークの温度との差は大きいことが望ましく、第2回目
の050曲線の固有ピークの頂点の温度と高温ピークの
頂点の温度との差は5℃以上、好ましくは10℃以上で
ある。
In the case of the present invention, it is desirable that the difference between the temperature of the characteristic peak appearing in the second Dsc curve and the temperature of the high temperature peak appearing in the first 050 curve is large; The difference between the temperature at the peak and the temperature at the peak of the high temperature peak is 5°C or more, preferably 10°C or more.

本発明において、無架橋ポリプロピレン系樹脂と水性媒
体と融着防止剤との配合物は、前記の加圧及び加熱によ
って、発泡性のものに変換される。
In the present invention, a blend of a non-crosslinked polypropylene resin, an aqueous medium, and an anti-fusing agent is converted into a foamable composition by the above-mentioned pressurization and heating.

そして、この発泡性配合物は、これを前記加圧容器内よ
りも低い低圧帯域(通常は大気圧又は大気圧未満)に放
出することによって、無架橋ポリプロピレン系樹脂の発
泡粒子を与える。本発明の場合、発泡剤としては加圧媒
体として用いた無機ガスが作用する。即ち、この無機ガ
スは、加圧及び加熱工程において、樹脂粒子内に含浸さ
れる。この含浸量は加圧子る圧力が高いほど多いが、一
般に100kg/c+#G以下の圧力で加圧するのが発
泡時の粒子の変形などの面で好ましく、通常は70 k
g / cn? G以下の加圧で行われる。また、この
無機ガスによる加圧は、少なくとも15kg/cnYG
、好ましくは20kg/cnfG以上である。加圧する
時間は、加圧する圧力によっても変わるが、樹脂の融点
以上においては数秒〜1時間程度であり通常は5〜30
分間保持することによって達成される。
The foamable formulation is then discharged into a low pressure zone (usually at or below atmospheric pressure) lower than in the pressurized container to provide expanded particles of non-crosslinked polypropylene resin. In the case of the present invention, the inorganic gas used as the pressurizing medium acts as the blowing agent. That is, this inorganic gas is impregnated into the resin particles during the pressurization and heating steps. The amount of impregnation increases as the pressure increases, but it is generally preferable to pressurize at a pressure of 100kg/c+#G or less in order to prevent deformation of particles during foaming, and usually 70kg/c+#G or less.
g/cn? It is carried out under pressure of G or less. Moreover, the pressurization by this inorganic gas is at least 15 kg/cnYG.
, preferably 20 kg/cnfG or more. The pressurizing time varies depending on the pressure applied, but at temperatures above the melting point of the resin, it is about several seconds to an hour, and usually 5 to 30 hours.
This is achieved by holding for a minute.

以上説明した様に、本発明においては発泡剤として無機
ガスを用いたことにより発泡適性温度範囲が拡大される
上、発泡のコントロールが容易となり、かつ無機ガスは
安価で安全であるため、取扱い易く、且つ経済的に有利
である。本発明により得られる発泡粒子は、それ自体で
緩衝材等として利用されるが1通常、発泡成形用の予備
発泡粒子として用いられるのが好ましく、金型に充填し
、加熱発泡させることにより、発泡成形体を与える。
As explained above, in the present invention, by using an inorganic gas as a blowing agent, the suitable temperature range for foaming is expanded, foaming can be easily controlled, and since inorganic gas is cheap and safe, it is easy to handle. , and economically advantageous. The foamed particles obtained by the present invention can be used by themselves as a cushioning material, etc. 1 Usually, it is preferable to use them as pre-expanded particles for foam molding. Give a molded body.

次に、本発明を実施例及び比較例にて詳細に説実施例 5Qのオートクレーブに第1表に示すプロピレン系樹脂
粒子1ooo g、水3000 g、融着防止剤として
微粉状の酸化アルミニウム3gを配合し、攪拌しながら
第1表に示す第1回目保持温度まで昇温し、30分間保
持した。その後昇温しで発泡温度にて無機ガスにて加圧
し30分間保持した。その後容器の一端を開放し発泡を
行った。その際に得られる発泡粒子の発泡倍率を第1表
に示す。
Next, the present invention will be explained in detail with reference to Examples and Comparative Examples. In the autoclave of Example 5Q, 100 g of propylene resin particles shown in Table 1, 3000 g of water, and 3 g of fine powder aluminum oxide as an anti-fusing agent were added. The mixture was mixed and heated to the first holding temperature shown in Table 1 while stirring, and held for 30 minutes. Thereafter, the temperature was raised, and the pressure was applied with an inorganic gas at the foaming temperature and maintained for 30 minutes. After that, one end of the container was opened to perform foaming. Table 1 shows the expansion ratio of the expanded particles obtained at that time.

次に、各々の発泡粒子に1 、5 kg / c+# 
Gの粒子内圧を空気で保持させ、300mm X 30
0mm X 50mmの金型に充填し、3.5kg/c
t#Gめ蒸気圧力にて成形を行った。
Then 1,5 kg/c+# for each foamed particle
G particle internal pressure is maintained with air, 300mm x 30
Filled into a 0mm x 50mm mold, 3.5kg/c
Molding was performed at a steam pressure of t#G.

得られた成形体の評価を第1表に示す。なお、表−1に
示したE/Pは、エチレン−プロピレンランダム共重合
体を示し、その後のカッコ内の数字はエチレン含量(重
量%)を示し、またB/Pは1−ブテン−プロピレンラ
ンダム共重合体を示し、その後のカッコ内の数字はブテ
ン含量(重量%)を示す。
Evaluations of the obtained molded bodies are shown in Table 1. In addition, E/P shown in Table 1 indicates ethylene-propylene random copolymer, the number in parentheses after that indicates ethylene content (wt%), and B/P indicates 1-butene-propylene random copolymer. The copolymer is indicated, and the number in parentheses thereafter indicates the butene content (% by weight).

比較例 実施例と同一の配合物を、攪拌しなから第1表に示す容
器内最高温度までいったん昇温し、その後、発泡温度に
て無機ガスで加圧し30分間保持した。その後容器の一
端を開放し発泡を行った。その際に得られる発泡粒子の
発泡倍率を第1表に示す。次に、この発泡粒子を実施例
と同様にして成形した。この場合の成形体の評価を第1
表に合せて示す。
Comparative Example The same formulation as in Example was heated without stirring to the maximum temperature in the container shown in Table 1, and then pressurized with an inorganic gas at the foaming temperature and held for 30 minutes. After that, one end of the container was opened to perform foaming. Table 1 shows the expansion ratio of the expanded particles obtained at that time. Next, the expanded particles were molded in the same manner as in the example. The evaluation of the molded object in this case is
Shown in the table.

軟に、発泡粒子に関し、示差走査熱量測定によって得ら
れるそのDSC曲線を図面に示す。第1図は本発明によ
って得られる発泡粒子(実施例1)に関するもので、第
2図は比較例の発泡粒子(比較例I)に関するものであ
る。第1図及び第2図において、曲線】及び曲線2は、
試料としての発泡粒子を測定(第1回目の測定)するこ
とによって得られたDSC曲線を示し、曲線1′及び2
′は第1回目の測定後の試料を再び測定(第2回目の測
定)することによって得られるDSC曲線を示す。第1
図と第2図を対比してわかるように、本発明の発泡粒子
の場合、第1回目の測定結果製水す曲線1においては、
固有ピークBの他に、高温ピークAが現われ、この高温
ビークAの存在により、発泡粒子には二次結晶が存在す
ることが確認される。一方、比較例の発泡粒子の場合、
第1回目の測定結果を示す曲線2においては、固有ピー
クbが現われるのみで、高温ピークは現われず、発泡粒
子には二次結晶が含まれないことが確認される。比較例
の発泡粒子に二次結晶が存在しない理由は、原料未発泡
粒子が、二次結晶化促進温度(融点〜融解終了温度未満
)において十分な熱処理を受けずに、融解終了温度以上
の温度で発泡されたことによる。なお、2回目の測定に
おいては、本発明及び比較例の発泡粒子にもに、高温ピ
ークは現われず、固有ピークB’ 、b’ のみが現わ
れる。
The DSC curve obtained by differential scanning calorimetry for soft, expanded particles is shown in the drawing. FIG. 1 shows expanded particles obtained according to the present invention (Example 1), and FIG. 2 shows expanded particles of a comparative example (Comparative Example I). In FIG. 1 and FIG. 2, curve ] and curve 2 are
The DSC curves obtained by measuring expanded particles as a sample (first measurement) are shown, and curves 1' and 2
' indicates a DSC curve obtained by measuring the sample again after the first measurement (second measurement). 1st
As can be seen by comparing the figure and FIG. 2, in the case of the foamed particles of the present invention, in the water production curve 1 as a result of the first measurement,
In addition to the characteristic peak B, a high temperature peak A appears, and the presence of this high temperature peak A confirms that secondary crystals are present in the expanded particles. On the other hand, in the case of the foamed particles of the comparative example,
In curve 2 showing the first measurement results, only the characteristic peak b appears and no high temperature peak appears, confirming that the expanded particles do not contain secondary crystals. The reason why there are no secondary crystals in the foamed particles of the comparative example is that the raw material unfoamed particles were not sufficiently heat-treated at the secondary crystallization promoting temperature (melting point to less than the melting end temperature) and were heated to a temperature above the melting end temperature. This is due to foaming. In the second measurement, no high-temperature peak appears in the foamed particles of the present invention and the comparative example, and only characteristic peaks B' and b' appear.

以上のことから、発泡粒子において、二次結晶化した熱
架橋ボレプロピレン系樹脂を高圧帯域から低圧帯域へ放
出させて発泡させることによって、成形性の良好な発泡
粒子が得られることがわかる。
From the above, it can be seen that foamed particles with good moldability can be obtained by releasing the secondary crystallized thermally crosslinked volepropylene resin from the high pressure zone to the low pressure zone and foaming the expanded particles.

【図面の簡単な説明】[Brief explanation of drawings]

図面は発泡粒子の示差走査熱量測定によって得られるO
SC曲線を示す。第1図は本発明品及び第2図は比較品
についてのDSC曲線である。 特許出願人 日本スチレンペーパー株式会社代 理 人
 弁理士 池 浦 敏 明
The figure shows O obtained by differential scanning calorimetry of expanded particles.
The SC curve is shown. FIG. 1 shows DSC curves for the product of the present invention and FIG. 2 shows the DSC curves for the comparative product. Patent applicant Nippon Styrene Paper Co., Ltd. Agent Patent attorney Toshiaki Ikeura

Claims (7)

【特許請求の範囲】[Claims] (1)無檗橋ポリプロピレン系樹脂粒子を発泡させるに
際し、 1)無架橋ポリプロピレン系樹脂粒子を液状分散媒に分
散させる工程、 (ii)無架橋ポリプロピレン系樹脂粒子を無機ガスに
て加圧する工程、 (iij)無機ガスを含有し、二次結晶化した無架橋ポ
リプロピレン系樹脂粒子を液状分散媒と共に二次結晶が
存在する温度域でかつ加圧帯域から低圧帯域に放出させ
て発泡させる工程からなることを特徴とする無架橋ポリ
プロピレン系樹脂発泡粒子の製造方法。
(1) When foaming the non-crosslinked polypropylene resin particles, 1) a step of dispersing the non-crosslinked polypropylene resin particles in a liquid dispersion medium, (ii) a step of pressurizing the non-crosslinked polypropylene resin particles with an inorganic gas, (iii) Consists of a step of foaming non-crosslinked polypropylene resin particles containing an inorganic gas and having undergone secondary crystallization together with a liquid dispersion medium in a temperature range where secondary crystals exist and from a pressurized zone to a low pressure zone. A method for producing expanded non-crosslinked polypropylene resin particles, characterized in that:
(2)無架橋ポリプロピレン系樹脂粒子がプロピレン成
分を50重量%以上含有するランダム共重合体である特
許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the non-crosslinked polypropylene resin particles are a random copolymer containing 50% by weight or more of a propylene component.
(3)無架橋ポリプロピレン系樹脂粒子がプロピレン−
エチレンランダム共重合体である特許請求の範囲第1項
又は第2項記載の方法。
(3) Non-crosslinked polypropylene resin particles are propylene-
The method according to claim 1 or 2, which is an ethylene random copolymer.
(4)無架橋ポリプロピレン系樹脂粒子がプロピレン−
ブテンランダム共重合体である特許請求の範囲第1項又
は第2項記載の方法。
(4) Non-crosslinked polypropylene resin particles are propylene-
The method according to claim 1 or 2, wherein the method is a butene random copolymer.
(5)無機ガスが空気である特許請求の範囲第1項〜第
4項記載のいずれかの方法。
(5) The method according to any one of claims 1 to 4, wherein the inorganic gas is air.
(6)無機ガスが窒素である特許請求の範囲第1項〜第
4項記載のいずれかの方法。
(6) The method according to any one of claims 1 to 4, wherein the inorganic gas is nitrogen.
(7)発泡時の加圧帯域の温度が該樹脂粒子の融点以上
である特許請求の範囲第1項〜第6項記載のいずれかの
方法。
(7) The method according to any one of claims 1 to 6, wherein the temperature of the pressurizing zone during foaming is equal to or higher than the melting point of the resin particles.
JP10243184A 1984-04-28 1984-05-21 Preparation of foamed particle of noncrosslinked polypropylene resin Granted JPS60245650A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10243184A JPS60245650A (en) 1984-05-21 1984-05-21 Preparation of foamed particle of noncrosslinked polypropylene resin
US06/726,669 US4704239A (en) 1984-04-28 1985-04-24 Process for the production of expanded particles of a polymeric material
BE0/214908A BE902278A (en) 1984-04-28 1985-04-25 PROCESS FOR PRODUCING EXPANDED PARTICLES OF A POLYMERIC MATERIAL.
CA000480172A CA1244200A (en) 1984-04-28 1985-04-26 Process for the production of expanded particles of a polymeric material
EP85302980A EP0164855B2 (en) 1984-04-28 1985-04-26 Process for the production of expanded particles of a polymeric material
DE8585302980T DE3575151D1 (en) 1984-04-28 1985-04-26 METHOD FOR PRODUCING FOAMED POLYMER BEADS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10243184A JPS60245650A (en) 1984-05-21 1984-05-21 Preparation of foamed particle of noncrosslinked polypropylene resin

Publications (2)

Publication Number Publication Date
JPS60245650A true JPS60245650A (en) 1985-12-05
JPH0464332B2 JPH0464332B2 (en) 1992-10-14

Family

ID=14327273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10243184A Granted JPS60245650A (en) 1984-04-28 1984-05-21 Preparation of foamed particle of noncrosslinked polypropylene resin

Country Status (1)

Country Link
JP (1) JPS60245650A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075208A1 (en) 2007-12-11 2009-06-18 Kaneka Corporation Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
JP5324967B2 (en) * 2008-08-05 2013-10-23 株式会社カネカ Thermoplastic resin expanded particles and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492183A (en) * 1972-04-20 1974-01-10
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS56167424A (en) * 1980-05-29 1981-12-23 Sekisui Chem Co Ltd Manufacture of foaming polyethylene
JPS60188435A (en) * 1984-03-09 1985-09-25 Badische Yuka Co Ltd Production of polyolefin resin foam particle
JPS60221440A (en) * 1984-04-19 1985-11-06 Badische Yuka Co Ltd Production of foamed particles of propylene resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492183A (en) * 1972-04-20 1974-01-10
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS56167424A (en) * 1980-05-29 1981-12-23 Sekisui Chem Co Ltd Manufacture of foaming polyethylene
JPS60188435A (en) * 1984-03-09 1985-09-25 Badische Yuka Co Ltd Production of polyolefin resin foam particle
JPS60221440A (en) * 1984-04-19 1985-11-06 Badische Yuka Co Ltd Production of foamed particles of propylene resin

Also Published As

Publication number Publication date
JPH0464332B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US4704239A (en) Process for the production of expanded particles of a polymeric material
JP3195676B2 (en) Method for producing expanded polyolefin resin particles
GB2080813A (en) Process for producing foamed olefin resin articles
US4695593A (en) Prefoamed propylene polymer-base particles, expansion-molded article produced from said particles and production process of said article
US4761431A (en) Pre-expanded particles of propylene resin
US5130341A (en) Process for the production of foamed poymer particles
JPH0386736A (en) Production of foamed polyolefin resin particle
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPH0386737A (en) Production of foamed polyolefin resin particle
JPS60245650A (en) Preparation of foamed particle of noncrosslinked polypropylene resin
JPH0464542B2 (en)
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JPH0291133A (en) Prefoamed polypropylene resin particle and preparation thereof
JPS6244778B2 (en)
JPH0510374B2 (en)
JP2599103B2 (en) Method for producing expanded polypropylene resin particles
JPS5851019B2 (en) Method for manufacturing polyolefin resin foam moldings
JP2874772B2 (en) Method for producing expanded polymer particles
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JPS63258939A (en) Polypropylene resin prefoamed beads
JPH03281638A (en) Method for pre-expanding thermoplastic resin particle
JP3218333B2 (en) Expanded polyolefin resin particles and method for producing the same
JPS6341942B2 (en)
JPH02158441A (en) Core material for automobile bumper

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term