JP2675373B2 - Automotive bumper core material - Google Patents

Automotive bumper core material

Info

Publication number
JP2675373B2
JP2675373B2 JP63311685A JP31168588A JP2675373B2 JP 2675373 B2 JP2675373 B2 JP 2675373B2 JP 63311685 A JP63311685 A JP 63311685A JP 31168588 A JP31168588 A JP 31168588A JP 2675373 B2 JP2675373 B2 JP 2675373B2
Authority
JP
Japan
Prior art keywords
propylene
particles
core material
butene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63311685A
Other languages
Japanese (ja)
Other versions
JPH02158441A (en
Inventor
正和 荒居
紘 遠藤
敏宏 後藤
利男 八木
雅典 田中
正憲 斎藤
茂樹 松野
Original Assignee
三菱化学ビーエーエスエフ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学ビーエーエスエフ株式会社 filed Critical 三菱化学ビーエーエスエフ株式会社
Priority to JP63311685A priority Critical patent/JP2675373B2/en
Priority to US07/321,217 priority patent/US4908393A/en
Priority to DE68911963T priority patent/DE68911963T2/en
Priority to KR1019890003553A priority patent/KR970010470B1/en
Priority to EP89105116A priority patent/EP0334313B1/en
Priority to US07/446,671 priority patent/US5032620A/en
Publication of JPH02158441A publication Critical patent/JPH02158441A/en
Application granted granted Critical
Publication of JP2675373B2 publication Critical patent/JP2675373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、耐衝撃性、強度に優れる自動車用バ
ンパー芯材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an automobile bumper core material having excellent heat resistance, impact resistance and strength.

〔従来技術〕(Prior art)

自動車用バンパーとしては軽量化の面から金属に代つ
て、樹脂製のもの、とりわけ芯材が樹脂発泡体で外皮が
非発泡の樹脂のバンパーが使用されている。かかる発泡
体製バンパー芯材の素材樹脂としてポリウレタンフオー
ム、ポリスチレン、架橋ポリエチレン、エチレン・プロ
ピレンランダム共重合体が使用されている(フオームタ
イムズ,56年7月25日刊第842号、29頁;実開昭55−1632
54号、usp4,350,378号、特開昭58−221745号、特開昭60
−189660号)。
As a bumper for an automobile, a resin bumper is used instead of a metal bumper, in particular, a resin foam core is used as a core material and a non-foam outer resin is used as a bumper. Polyurethane foam, polystyrene, cross-linked polyethylene, and ethylene / propylene random copolymer are used as the material resin for the foam bumper core material (Form Times, July 25, 1981, No. 842, p. 29; actual development). 55-1632
54, usp4,350,378, JP58-221745, JP60
-189660).

エチレン含量が1〜12重量%のエチレン・プロピレン
ランダム共重合体を基材樹脂とする密度が0.03〜0.065g
/cm3の型内ビーズ成形発泡体よりなるバンパー芯材は、
軽量性の面でポリウレタンフオームより優れ、寸法回復
性、耐熱性の面でポリスチレン発泡体より優れ、耐熱
性、強度の面で架橋ポリエチレン発泡体よりも優れるの
で近時、バンパー芯材としての需要が伸びている。
Density of ethylene-propylene random copolymer with ethylene content of 1-12% by weight as base resin 0.03-0.065g
Bumper core material made of in-mold bead molding foam of / cm 3
It is superior to polyurethane foam in terms of lightness, superior to polystyrene foam in terms of dimensional recovery and heat resistance, and superior to cross-linked polyethylene foam in terms of heat resistance and strength, so demand for bumper core material is increasing in recent years. It is growing.

〔発明が解決しようとする課題〕 自動車の軽量化を更に期待するには、同じ強度を示す
発泡体であれば密度がより小さい発泡体の方が好まし
い。更に自動車は輸出されることもあり、砂漠や熱帯で
使用されることもあり、その場合は苛酷な耐熱性が要求
され、80℃においても十分なバンパー芯材機能を発揮す
ることが望まれている。
[Problems to be Solved by the Invention] In order to further reduce the weight of automobiles, a foam having the same strength is preferably a foam having a smaller density. In addition, automobiles may be exported or used in the desert or in the tropics. In that case, severe heat resistance is required, and it is desired to exert sufficient bumper core material function even at 80 ° C. There is.

本発明は、強度、エネルギー吸収性能、耐熱性の優れ
た自動車用バンパー芯材を提供することを目的とする。
An object of the present invention is to provide a bumper core material for automobiles, which has excellent strength, energy absorption performance and heat resistance.

〔課題を解決する具体的手段〕[Specific means to solve the problem]

上記目的を達するバンパー芯材として、密度0.02〜0.
08g/cm3、50%圧縮時の圧縮応力(20℃測定)が2.5kg/c
m2以上、20℃におけるエネルギー吸収効率が60%以上、
20℃のエネルギー吸収量E20に対する80℃のエネルギー
吸収量E80の割合(E80/E20)が0.5以上のブテン−1含
量が3〜12重量%のプロピレン・1−ブテンランダム共
重合体製発泡体よりなる自動車用バンパー芯材が利用で
きる。
As a bumper core material that achieves the above purpose, a density of 0.02 to 0.
08g / cm 3, 50% -compression of the compressive stress (20 ° C. Measurements) is 2.5 kg / c
m 2 or more, energy absorption efficiency at 20 ℃ is 60% or more,
Propylene / 1-butene random copolymer having a butene-1 content of 3 to 12% by weight, in which the ratio (E 80 / E 20 ) of the energy absorption amount E 80 at 80 ° C. to the energy absorption amount E 20 at 20 ° C. is 0.5 or more. An automobile bumper core material made of a foamed product can be used.

(基材樹脂) 本発明のバンパー芯材は、1−ブテンを3〜12重量%
含有するプロピレンを主成分とするプロピレン系樹脂発
泡粒子型内成形体である。このプロピレン系樹脂は、1
−ブテンとプロピレンとの二元ランダム共重合体、1−
ブテン3〜12重量%と、エチレン0.5〜5重量%とプロ
ピレンとの三元ランダム共重合体、1−ブテン3〜12重
量%と、4−メチルペンテン−1 0.5〜5重量%とプロ
ピレンとの三元共重合体、1−ブテン・ヘキセン−1・
プロピレン三元ランダム共重合体、1−ブテンとプロピ
レンとエチレンと4−メチルペンテン−1またはヘキセ
ン−1との4元共重合体等が使用できる。
(Base Resin) The bumper core material of the present invention contains 1 to 1 to 3 to 12% by weight of butene.
It is a propylene-based resin expanded particle type in-molded product containing propylene as a main component. This propylene resin is 1
-A binary random copolymer of butene and propylene, 1-
Tertiary random copolymer of 3-12 wt% butene, 0.5-5 wt% ethylene and propylene, 3-12 wt% 1-butene, 4-methylpentene-1 0.5-5 wt% propylene Terpolymer, 1-butene hexene-1.
A propylene ternary random copolymer, a quaternary copolymer of 1-butene, propylene, ethylene and 4-methylpentene-1 or hexene-1 can be used.

このプロピレン・1−ブテンランダム共重合体の結晶
化度は40%以上で、結晶潜熱は6〜28cal/gのものが好
ましい。
The propylene / 1-butene random copolymer preferably has a crystallinity of 40% or more and a latent heat of crystallization of 6 to 28 cal / g.

共重合体の1−ブテン含量は3〜12重量%、好ましく
は4〜10重量%である。1−ブテン含量が3重量%未満
の共重合体は、発泡体のセルが細かくなり、融点も高く
なるため、発泡粒子の製造及び発泡粒子の加熱融着の加
熱温度または加熱圧力が高くなりすぎてしまう。1−ブ
テン含量が12重量%を越えるものは、型物成形体の圧縮
強度や耐熱性が劣る。
The 1-butene content of the copolymer is 3 to 12% by weight, preferably 4 to 10% by weight. A copolymer having a 1-butene content of less than 3% by weight has fine cells and a high melting point, so that the heating temperature or heating pressure for the production of expanded particles and the heat fusion of the expanded particles becomes too high. Will end up. If the 1-butene content exceeds 12% by weight, the molded product has poor compressive strength and heat resistance.

このプロピレン・1−ブテンランダム共重合体の1−
ブテン含量は、共重合体粒子を熱プレスにより190℃で
1分間2kg/cm2Gの圧力をかけて0.5mm厚のシートを得、2
0℃で1日放置したものを試料とし、これを赤外線吸収
スペクトル分析して求めた。
1-of this propylene / 1-butene random copolymer
The butene content is 2 mm / cm 2 G pressure at 190 ° C. for 1 minute by hot pressing the copolymer particles to obtain a 0.5 mm thick sheet.
The sample was allowed to stand at 0 ° C. for 1 day, and the sample was determined by infrared absorption spectrum analysis.

プロピレン・1−ブテンランダム共重合体には50重量
%を超えない範囲で必要に応じて、他のポリオレフイン
系樹脂とブレンドして用いることもできる。例えば、ホ
モのポリプロピレン、エチレン−プロピレンランダム共
重合体、エチレン−プロピレンブロック共重合体、エチ
レン−プロピレンゴム、高圧法低密度ポリエチレン、直
鎖法低密度ポリエチレン、中・高密度ポリエチレン、エ
チレン・酢酸ビニル共重合体、エチレン・アクリル酸メ
チル共重合体、エチレン・アクリル酸エチル共重合体、
エチレン・アクリル酸共重合体等を添加してもよい。
If necessary, the propylene / 1-butene random copolymer may be blended with another polyolefin resin in a range not exceeding 50% by weight. For example, homopolypropylene, ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene rubber, high pressure low density polyethylene, straight chain low density polyethylene, medium / high density polyethylene, ethylene / vinyl acetate Copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer,
You may add ethylene-acrylic acid copolymer etc.

更に樹脂中には、ゼオライト、シリカ、タルク等の無
機フイラー、顔料、熱安定剤、染料、滑剤、帯電防止剤
を含むことができる。これらは、発泡粒子をスチームで
加熱して相互に融着させて成形体を成型する場合の融着
を良好とするために5重量%以下、好ましくは2重量%
以下とすべきである。
Further, the resin may contain an inorganic filler such as zeolite, silica and talc, a pigment, a heat stabilizer, a dye, a lubricant and an antistatic agent. These are 5% by weight or less, preferably 2% by weight or less in order to achieve good fusion when the foamed particles are heated with steam and fused to each other to form a molded body.
Should be:

プロピレン・1−ブテンランダム共重合体粒子1個の
重量は0.01〜20mgである。造粒にはストランドカツト方
式、水中カツト方式、シートカツト方式、凍結粉砕、溶
融噴霧方式等いずれの方式でもよく、生産性、経済性、
成形性、品質を考慮して決める。また、再造粒してもよ
い。
The weight of one propylene / 1-butene random copolymer particle is 0.01 to 20 mg. For granulation, any method such as strand cutting method, underwater cutting method, sheet cutting method, freeze crushing, and melt spraying method may be used.
Decide in consideration of moldability and quality. Moreover, you may re-granulate.

(発泡粒子) プロピレン・1−ブテンランダム共重合体の発泡粒子
は、特公昭49−2183号、同57−195131号、同58−1732
号、同58−23834号、同58−25334号、同58−33435号、
同58−55231号、同58−76229号、同58−76231号、同58
−76232号、同58−76233号、同58−76234号、同58−870
27号、同62−151325号等の特許公報群に記載されるよう
にプロピレン系樹脂粒子を密閉容器内で水に分散させ、
次いで密閉容器内に揮発性有機膨脹剤を供給し、該密閉
容器内の圧力を該膨脹剤の蒸気圧あるいはそれ以上の圧
力に保持しながら該プロピレン樹脂粒子の軟化温度以上
に加熱した後、該温度、圧力を一定時間保ち、ついで密
閉容器内の水面下に設けた吐出口を解放し、揮発性膨脹
剤を含有するプロピレン系樹脂粒子と水とを同時に容器
内よりも低圧の雰囲気に放出してプロピレン系樹脂発泡
粒子は製造される。
(Expanded Particles) Expanded particles of a propylene / 1-butene random copolymer are described in JP-B Nos. 49-2183, 57-195131 and 58-1732.
No. 58-23834, No. 58-25334, No. 58-33435,
58-55231, 58-76229, 58-76231, 58
-76232, 58-76233, 58-76234, 58-870
No. 27, No. 62-151325 and the like, propylene-based resin particles are dispersed in water in a closed container as described in Patent Publications,
Then, a volatile organic expander is supplied into the closed container, and while heating the pressure in the closed container to the vapor pressure of the expander or a pressure higher than the softening temperature of the propylene resin particles, The temperature and pressure are maintained for a certain period of time, then the discharge port provided below the water surface in the closed container is opened, and the propylene-based resin particles containing the volatile expanding agent and water are simultaneously released into an atmosphere at a pressure lower than that in the container. As a result, expanded propylene resin particles are produced.

揮発性膨脹剤としては、例えばプロパン、ブタン、ペ
ンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;ト
リクロロフロロメタン、ジクロロジフロロメタン、ジク
ロロテトラフロロエタン、メチルクロライド、エチルク
ロライド、メチレンクロライド等のハロゲン化炭化水素
等の沸点が80℃以下の有機化合物を単独で、または二種
以上混合して用いることができる。
Examples of the volatile expanding agent include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane; halogen such as trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride and methylene chloride. Organic compounds having a boiling point of 80 ° C. or lower, such as chemical hydrocarbons, can be used alone or in combination of two or more.

この揮発性膨脹剤の添加量は、膨脹剤の種類および目
的とする樹脂粒子の嵩密度によつて異なるが、通常、樹
脂粒子100重量部に対し、10〜50重量部である。
The amount of the volatile expanding agent added varies depending on the type of the expanding agent and the intended bulk density of the resin particles, but is usually 10 to 50 parts by weight with respect to 100 parts by weight of the resin particles.

樹脂粒子を水に分散させる分散剤としては、酸化アル
ミニウム、酸化チタン、炭酸カルシウム、塩基性炭酸マ
グネシウム、第三リン酸カルシウム、ピロリン酸カルシ
ウム、等の無機系懸濁剤;ポリビニルアルコール、メチ
ルカルボキシセルロース、N−ポリビニルピロリドン等
の水溶性高分子系保護コロイド剤;ドデシルベンゼンス
ルホン酸ナトリウム、アルカンスルホン酸ソーダ、アル
キル硫酸エステルナトリウム、オレフイン硫酸エステル
ナトリウム、アシルメチルタウリン、ジアルキルスルホ
コハク酸ナトリウム等の陰イオン性界面活性剤等があげ
られる。これらの中でも無機系懸濁剤の粒径が0.01〜0.
8ミクロンの第三リン酸カルシウムと、懸濁助剤のドデ
シルベンゼンスルホン酸ソーダを併用するのが好まし
い。この微細な第三リン酸カルシウムは、水酸化カルシ
ウム1モルに対し、リン酸を0.60〜0.67モルの割合で水
中で反応させることにより得られる。
As the dispersant for dispersing the resin particles in water, inorganic suspending agents such as aluminum oxide, titanium oxide, calcium carbonate, basic magnesium carbonate, tricalcium phosphate, calcium pyrophosphate, etc .; polyvinyl alcohol, methylcarboxycellulose, N- Water-soluble polymeric protective colloid agent such as polyvinylpyrrolidone; anionic surfactants such as sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfate ester, sodium olein sulfate ester, acylmethyl taurine, sodium dialkylsulfosuccinate Etc. Among them, the particle size of the inorganic suspension agent is 0.01 to 0.
It is preferred to use 8 micron tribasic calcium phosphate in combination with the suspension aid sodium dodecylbenzene sulfonate. This fine tribasic calcium phosphate can be obtained by reacting phosphoric acid in water at a ratio of 0.60 to 0.67 mol with respect to 1 mol of calcium hydroxide.

樹脂粒子100重量部に対する分散媒の水の量は150〜1,
000重量部、好ましくは200〜500重量部である。150重量
部未満では加熱、加圧時に樹脂粒子同志がブロツキング
しやすい。1,000重量部を越えては発泡粒子の生産性が
低下し、経済的でない。
The amount of water as the dispersion medium is 100 to 1, based on 100 parts by weight of the resin particles.
000 parts by weight, preferably 200 to 500 parts by weight. If it is less than 150 parts by weight, resin particles are likely to block during heating and pressurization. If the amount exceeds 1,000 parts by weight, the productivity of expanded beads decreases, which is not economical.

分散媒により水に分散されたプロピレン・1−ブテン
共重合体樹脂粒子の水分散液に、ガス状の膨脹剤または
液状の膨脹剤が供給され、この水分散液は密閉容器内で
樹脂の軟化点以上の温度であつて融点より20℃高い温度
以下の温度に加熱されるとともに、この加熱により容器
内の圧力は上昇し、膨脹剤が共重合体粒子に含浸され
る。ついで密閉容器内の下部に設けられたスリツト、ノ
ズル等の吐出口より水とともに共重合体樹脂粒子を密閉
容器より低圧域(一般には大気圧中)に放出することに
より嵩密度が8〜100kg/m3のプロピレン・1−ブテンラ
ンダム共重合体発泡粒子を製造することができる。
A gaseous expander or a liquid expander is supplied to an aqueous dispersion of propylene / 1-butene copolymer resin particles dispersed in water by a dispersion medium, and this aqueous dispersion softens the resin in a closed container. While being heated to a temperature equal to or higher than the point and equal to or lower than 20 ° C. higher than the melting point, the pressure in the container is increased by this heating and the expander is impregnated in the copolymer particles. Then, the bulk density is 8 to 100 kg / by discharging the copolymer resin particles together with water from the discharge port such as a slit and a nozzle provided in the lower part of the closed container into the low pressure region (generally at atmospheric pressure) from the closed container. It is possible to produce m 3 propylene / 1-butene random copolymer expanded particles.

この発泡粒子の製造において膨脹剤を密閉容器内に添
加する前、あるいは添加した後に、窒素、ヘリウム、空
気等の無機ガスを密閉容器内に供給し、圧力を付与す
る。この無機ガスの供給は分散液の加熱前であつても加
熱後であつてもよい。
In the production of the expanded beads, an inorganic gas such as nitrogen, helium or air is supplied into the closed container before or after the expansion agent is added into the closed container to apply pressure. The inorganic gas may be supplied before heating the dispersion or after heating it.

空気、窒素ガス、アルゴン等の無機ガスの密閉容器内
への供給は膨脹剤の樹脂粒子への含浸を容易として、低
嵩密度のプロピレン・1−ブテン共重合体発泡粒子を得
るに役だつ。
The supply of air, nitrogen gas, or an inorganic gas such as argon into the closed container facilitates the impregnation of the expander into the resin particles and serves to obtain the propylene / 1-butene copolymer expanded particles having a low bulk density.

分散液の加熱温度は、プロピレン・1−ブテン共重合
体樹脂粒子の示差走査熱量計にて、結晶融解温度のピー
ク(いわゆる融点)を求め、このピーク温度より約20℃
低い温度を下限とし、このピーク温度より20℃高い温度
を上限とした間の温度、好ましくはこのピーク温度より
3〜15℃低い温度を選択すればよい。
The heating temperature of the dispersion liquid was determined by the differential scanning calorimeter of the propylene / 1-butene copolymer resin particles to find the peak of the crystal melting temperature (so-called melting point).
A lower temperature is set as a lower limit and a temperature higher than this peak temperature by 20 ° C. is set as an upper limit, preferably a temperature lower by 3 to 15 ° C. than the peak temperature.

分散液を密閉容器内で保持する時間は、加圧圧力、保
持温度、目的とする発泡倍率に依存するが、30分〜12時
間、好ましくは1〜3時間である。
The time for holding the dispersion liquid in the closed container is 30 minutes to 12 hours, preferably 1 to 3 hours, although it depends on the pressure applied, the holding temperature and the target expansion ratio.

大気中に放出された発泡粒子は、表面に付着した水を
除去するために30〜65℃の部屋で乾燥(養生)され、バ
ンパー芯材の成形に賦される。
The expanded particles released into the atmosphere are dried (cured) in a room at 30 to 65 ° C to remove the water adhering to the surface, and then applied to the molding of the bumper core material.

バンパー芯材を成形する型内ビーズ成形法としては、
従来公知の種々の方法が利用できる。その例を次に示
す。
As the in-mold bead molding method for molding the bumper core material,
Various conventionally known methods can be used. An example is shown below.

.プロピレン・1−ブテンランダム共重合体発泡粒子
を型内に充填した後、発泡粒子の体積を15〜50%減ずる
よう圧縮し、次いで1〜5kg/cm2Gのスチームを導いて発
泡粒子同志を融着させ、その後、型を冷却し、製品を得
る圧縮成形法(DOS2107683号)。
. After filling the propylene / 1-butene random copolymer expanded particles in the mold, compress it so that the volume of the expanded particles is reduced by 15-50%, and then introduce 1-5 kg / cm 2 G of steam to expand the expanded particles. A compression molding method (DOS2107683) to obtain a product by fusing and then cooling the mold.

.発泡粒子に揮発性液状膨脹剤を予じめ含浸させて発
泡粒子に2次発泡性を付与した予備発泡粒子を型に充填
し、スチームで加熱し、二次発泡させるとともに粒子同
志を融着させて製品を得る。
. The mold is filled with pre-expanded particles obtained by impregnating the expanded particles with a volatile liquid expander in advance and imparting the secondary expandability to the expanded particles, and heating with steam to perform secondary expansion and fuse the particles together. To get the product.

.発泡粒子を密閉室内に入れ、次いで空気、窒素ガス
等の無機ガスを室内に圧入することにより発泡粒子のセ
ル内の圧力を高めて2次発泡性を付与し、この2次発泡
性を付与した予備発泡粒子を型に充填し、スチームで加
熱し、二次発泡させるとともに粒子同志を融着させて製
品を得る、(いわゆる加圧熟成法;特公昭59−43492
号)。
. The expanded particles were placed in a closed chamber, and then an inorganic gas such as air or nitrogen gas was pressed into the chamber to increase the pressure in the cells of the expanded particles to impart secondary foamability, and to impart this secondary foamability. Pre-expanded particles are filled in a mold, heated with steam to secondary-expand, and the particles are fused together to obtain a product (so-called pressure aging method; JP-B-59-43492).
issue).

.発泡粒子を型内に充填しスチーム加熱により発泡粒
子どうしを融着させて型物発泡体を成形する方法におい
て、加圧ガスで1.0〜6.0kg/cm2Gに昇圧した型内に、前
記の発泡粒子を前記の型内圧力より0.5kg/cm2以上高い
加圧ガスを用いて圧縮しながら充填し、その充填中に型
内圧力を前記の型内圧力に保持し続け、次いで充填終了
後に型内圧力を大気圧に戻してから前記の加熱を行なつ
て発泡粒子どうしを融着させ、その際の発泡粒子の式 〔式中、W,V及びσはそれぞれ下記のものを表わす。
. In the method of filling the foamed particles in the mold and fusing the foamed particles with each other by steam heating to form a molded product foam, in the mold pressurized to 1.0 to 6.0 kg / cm 2 G with a pressurized gas, the The expanded particles are filled while being compressed using a pressurized gas that is 0.5 kg / cm 2 or more higher than the in-mold pressure, and the in-mold pressure is continuously maintained at the in-mold pressure during the filling, and then after the filling is completed. After returning the pressure in the mold to atmospheric pressure, the above-mentioned heating is performed to fuse the foamed particles together, and the formula of the foamed particles at that time [In the formula, W, V and σ represent the following, respectively.

W…成形品の重量(g) V…成形品の容量(l) σ…発泡粒子の大気中でのかさ密度(g/l)〕 で表わされる圧縮率を40〜70%に制御することを特徴と
する発泡粒子の型内成形法(特開昭62−151325号)。
W ... weight of molded product (g) V ... capacity of molded product (l) σ ... bulk density (g / l) of foamed particles in the atmosphere] It is necessary to control the compression ratio to 40 to 70%. In-mold molding method of characteristic expanded particles (JP-A-62-151325).

.プロピレン・1−ブテンランダム共重合体発泡粒子
を型内に充填しスチーム加熱により発泡粒子どうしを融
着させて型物発泡体を成形する方法において、加圧ガス
で0.5〜5.0kg/cm2Gに昇圧した型内に、予め前記の型内
圧力より0.5kg/cm2以上高い加圧ガスを用いて1時間以
上加圧処理して得られたガス内圧の付与された前記の発
泡粒子を、前記の型内圧力より0.5kg/cm2以上高い圧力
の加圧ガスを用いて充填し、その充填中に型内圧力を前
記の型内圧力に保持し続け、次いで充填終了後に型内圧
力を大気圧に戻してから前記の加熱を行なつて発泡粒子
を融着させ、その際の発泡粒子の式 〔式中、W,V及びσはそれぞれ下記のものを表わす。
. Propylene / 1-butene Random Copolymer Expanded particles are filled in a mold, and steam heating is used to fuse the expanded particles together to form a molded foam, which is 0.5 to 5.0 kg / cm 2 G with a pressurized gas. The foamed particles to which the gas internal pressure was applied, which was obtained by pressurizing the gas for 1 hour or more in advance using a pressurized gas whose pressure was 0.5 kg / cm 2 or more higher than the pressure in the mold, Filling with a pressurized gas of 0.5 kg / cm 2 or more higher than the in-mold pressure, and keeping the in-mold pressure at the in-mold pressure during the filling, and then the in-mold pressure after completion of the filling. After returning to atmospheric pressure, the above-mentioned heating is performed to fuse the expanded particles, and the formula of the expanded particles at that time [In the formula, W, V and σ represent the following, respectively.

W…成形品の重量(g) V…成形品の容量(l) σ…発泡粒子の大気中でのかさ密度(g/l)〕 で表わされる圧縮率を40%未満(ただし0%を除く)に
制御することを特徴とするプロピレン・1−ブテンラン
ダム共重合体発泡粒子の型内成形法。
W: Weight of molded product (g) V: Volume of molded product (l) σ: Bulk density of expanded particles in air (g / l)] Compressibility less than 40% (excluding 0%) ) In-mold molding method of expanded propylene / 1-butene random copolymer particles.

(バンパー芯材) このようにして成形されたプロピレン・1−ブテン共
重合体発泡型物製品のバンパー芯材は発泡粒子同志の融
着が優れたものであり、機械的強度が高い。
(Bumper Core Material) The bumper core material of the propylene / 1-butene copolymer foamed molded product molded in this manner has excellent fusion of foamed particles and has high mechanical strength.

このバンパー芯材の密度は0.02〜0.08g/cm3、好まし
くは0.030〜0.075g/cm3である。0.02g/cm3未満ではエネ
ルギー吸収性能に劣り、0.08g/cm3を越えるとプロピレ
ン・エチレン共重合体等の他材料に対する軽量化メリツ
トがない。
The density of the bumper core material is 0.02 to 0.08 g / cm 3 , preferably 0.030 to 0.075 g / cm 3 . If it is less than 0.02 g / cm 3 , the energy absorption performance is inferior, and if it exceeds 0.08 g / cm 3 , there is no weight reduction advantage over other materials such as propylene / ethylene copolymer.

バンパー芯材としては軽量化の面から密度が小さいこ
との他に (1)肉厚を薄くするためには強度が高いこと (2)エネルギー吸収効率が常温で60%以上であること (3)高温域で充分なエネルギー吸収性能を示すこと (4)耐薬品性に優れること 等が要求される。
As a bumper core material, in addition to having a low density in terms of weight reduction, (1) High strength to reduce the wall thickness (2) Energy absorption efficiency of 60% or more at room temperature (3) Sufficient energy absorption performance at high temperatures (4) Excellent chemical resistance is required.

本発明のバンパー芯材は、縦80mm、横80mm、高さ50mm
の試料片を切りとり、これを20mm/分の速度で圧縮して
得られる第1図に示す応力・歪曲線において (i)50%歪時の圧縮応力(A点)は20℃で測定時、2.
5kg/cm2以上と高い。
The bumper core material of the present invention has a length of 80 mm, a width of 80 mm, and a height of 50 mm.
In the stress-strain curve shown in Fig. 1 obtained by cutting the sample piece of No. 1 and compressing it at a speed of 20 mm / min. (I) The compressive stress at 50% strain (point A) was measured at 20 ° C, 2.
It is as high as 5kg / cm 2 or more.

(ii)エネルギー吸収効率(OABの面積/OABCの面積)は
60%以上 (iii)20℃のエネルギー吸収量(E20)に対する80℃の
エネルギー吸収量(E80)の割合(E80/E20)が0.5以上
である。
(Ii) Energy absorption efficiency (OAB area / OABC area)
60% or more (iii) The ratio (E 80 / E 20 ) of the energy absorption amount (E 80 ) at 80 ° C to the energy absorption amount (E 20 ) at 20 ° C is 0.5 or more.

物性を示し、従来のエチレン・プロピレンランダム共重
合体の発泡体製バンパー芯材よりも強度が高いので、
(a)バンパー芯材の密度が同一という制約条件下では
バンパー芯材の肉厚が薄くできる利点を、(b)バンパ
ー芯材の肉厚が同一という制約条件下では密度のより小
さい発泡体を使用することができ、バンパー芯材をより
軽量化できる。更に、このバンパー芯材は高温でも充分
なエネルギー吸収性能を示す。
Since it shows physical properties and has higher strength than the conventional foamed bumper core material of ethylene / propylene random copolymer,
(A) The advantage that the wall thickness of the bumper core can be reduced under the constraint that the density of the bumper core is the same, and (b) the foam having a smaller density can be obtained under the constraint that the thickness of the bumper core is the same. It can be used, and the bumper core material can be made lighter. Furthermore, this bumper core material exhibits sufficient energy absorption performance even at high temperatures.

以下、実施例により更に本発明を詳細に説明する。な
お、例中の部、%は重量基準である。
Hereinafter, the present invention will be described in more detail with reference to Examples. The parts and% in the examples are based on weight.

実施例1 1−ブテン含量が5.2重量%、230℃で測定したMFRが
9.7g/10分、結晶潜熱が22.6cal/gのプロピレン・1−ブ
テンランダム共重合体粒子(粒子1個の平均重量は約1m
g)を用いて発泡粒子を得た。
Example 1 1-butene content was 5.2% by weight and MFR measured at 230 ° C was
9.7 g / 10 minutes, propylene / 1-butene random copolymer particles with a crystal latent heat of 22.6 cal / g (the average weight of one particle is about 1 m
g) was used to obtain expanded particles.

すなわち、密閉容器内に、水250部、上記プロピレン
・1−ブテン共重合体粒子100部、ピロリン酸カルシウ
ム1.0部、ドデシルベンゼンスルホン酸ソーダ0.007部を
仕込み(充填率62%)、次いで撹拌下で窒素ガスを密閉
容器の内圧が5kg/cm2Gとなるまで加圧し、窒素ガスの供
給を停止した。ついで、イソブタン18部を密閉容器内に
供給し、1時間かけて140℃まで熱し、同温度で45分間
保持したところ、オートクレーブ内圧は26kg/cm2Gを示
した。
That is, in a closed container, 250 parts of water, 100 parts of the propylene / 1-butene copolymer particles, 1.0 part of calcium pyrophosphate, and 0.007 part of sodium dodecylbenzene sulfonate (0.007 part) are charged (filling rate 62%), and then stirred under nitrogen. The gas was pressurized until the internal pressure of the closed container reached 5 kg / cm 2 G, and the supply of nitrogen gas was stopped. Then, 18 parts of isobutane was supplied into a closed container, heated to 140 ° C. over 1 hour, and kept at the same temperature for 45 minutes, and the internal pressure of the autoclave was 26 kg / cm 2 G.

その後、密閉容器の底部にある吐出ノズルの弁を開
き、分散液を大気圧中に約2秒で放出して発泡を行なわ
しめた。分散後の最終部分が密閉容器内より放出された
瞬間の密閉容器の内圧は約10kg/cm2Gであつた。また、
分散液放出の間、密閉容器の温度を140℃に維持した。
Then, the valve of the discharge nozzle at the bottom of the closed container was opened, and the dispersion liquid was discharged into the atmospheric pressure in about 2 seconds for foaming. The internal pressure of the closed container at the moment when the final portion after dispersion was released from the closed container was about 10 kg / cm 2 G. Also,
The temperature of the closed vessel was maintained at 140 ° C. during discharge of the dispersion.

このようにして得られたプロピレン・1−ブテン共重
合体発泡粒子は、嵩密度が30kg/m3、粒径3.3mm、発泡セ
ル径150ミクロンであつた。また、発泡粒子同志のブロ
ツキングは見受けられなかつた。
The expanded particles of the propylene / 1-butene copolymer thus obtained had a bulk density of 30 kg / m 3 , a particle size of 3.3 mm, and an expanded cell diameter of 150 μm. Moreover, the blocking of foamed particles was not found.

この発泡粒子を40℃の部屋で2日放置させ乾燥させた
後、これをスチーム孔を有する型内に充填し、発泡粒子
を50%圧縮し、ついで3.0kg/cm2Gのスチームを導き、発
泡粒子同志を加熱融着させ、次いで10秒水冷、30秒放冷
後、金型より成形品を取り出し、密度が0.062g/cm3、縦
1500mm、横200mm、厚み150mmのバンパー芯材を得た。
The foamed particles are left to dry in a room at 40 ° C for 2 days, then filled in a mold having steam holes, the foamed particles are compressed by 50%, and then 3.0 kg / cm 2 G of steam is introduced, The foamed particles were heated and fused together, then cooled in water for 10 seconds and allowed to cool for 30 seconds, then the molded product was taken out from the mold and had a density of 0.062 g / cm 3 , vertical.
A bumper core material of 1500 mm, width 200 mm, and thickness 150 mm was obtained.

このバンパー芯材より縦80mm、横80mm、高さ50mmの試
験片を切り出し、20℃、80℃での応力・歪曲線を求め、
50%歪時の応力、エネルギー吸収効率、エネルギー吸収
量、20℃と80℃のエネルギー吸収量比を求めた。
A test piece measuring 80 mm in length, 80 mm in width and 50 mm in height was cut out from this bumper core material, and the stress / strain curve at 20 ° C and 80 ° C was obtained.
The stress at 50% strain, energy absorption efficiency, energy absorption, and the ratio of energy absorption between 20 ° C and 80 ° C were calculated.

結果を表1に示す。 Table 1 shows the results.

実施例2〜4、比較例1〜3 表1に示すポリプロピレン系樹脂、即ち、 ・プロピレン・ブテン−1ランダム共重合体(BPF) ・プロピレン・エチレンランダム共重合体(EPF) ・プロピレン・エチレンブロツク共重合体(EPB) を用い、実施例1に準じて表1に示す物性のバンパー芯
材を得た。
Examples 2 to 4 and Comparative Examples 1 to 3 Polypropylene resins shown in Table 1, namely, propylene / butene-1 random copolymer (BPF), propylene / ethylene random copolymer (EPF), propylene / ethylene block. Using the copolymer (EPB), a bumper core material having the physical properties shown in Table 1 was obtained according to Example 1.

【図面の簡単な説明】 第1図は発泡体の応力・歪曲線を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a stress-strain curve of a foam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 利男 三重県四日市市川尻町1000番地 三菱油 化バーデイツシエ株式会社内 (72)発明者 田中 雅典 三重県四日市市川尻町1000番地 三菱油 化バーデイツシエ株式会社内 (72)発明者 斎藤 正憲 三重県四日市市川尻町1000番地 三菱油 化バーデイツシエ株式会社内 (72)発明者 松野 茂樹 三重県四日市市川尻町1000番地 三菱油 化バーデイツシエ株式会社内 (56)参考文献 特開 昭61−254649(JP,A) 特開 昭56−98214(JP,A) 特開 昭62−153334(JP,A) 特開 昭63−43942(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toshio Yagi Toshio Yagi 1000, Kawajiri-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Bar Dessie Co., Ltd. (72) Inventor Masanori Saito 1000 Kawajiri-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Barditsie Co., Ltd. (72) Inventor Shigeki Matsuno 1000, Kawajiri-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Barditsie Co., Ltd. (56) References JP-A-61-254649 (JP, A) JP-A-56-98214 (JP, A) JP-A-62-153334 (JP, A) JP-A-63-43942 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】密度0.02〜0.08g/cm3、50%圧縮時の圧縮
応力(20℃測定)が2.5kg/cm3以上、20℃におけるエネ
ルギー吸収効率が60%以上、20℃のエネルギー吸収量
(E20)に対する80℃のエネルギー吸収量(E80)の割合
(E80/E20)が0.5以上の1−ブテン含量が3〜12重量%
のプロピレン・1−ブテンランダム共重合体製発泡体よ
りなる自動車用バンパー芯材。
1. A density of 0.02 to 0.08 g / cm 3 , a compression stress at 50% compression (measured at 20 ° C.) of 2.5 kg / cm 3 or more, an energy absorption efficiency at 20 ° C. of 60% or more, an energy absorption of 20 ° C. the amount (E 20) energy absorption of 80 ° C. for percentage (E 80 / E 20) is 0.5 or more 1-butene content of 3 to 12% by weight of (E 80)
A bumper core material for automobiles, which is made of the propylene / 1-butene random copolymer foam.
JP63311685A 1988-03-24 1988-12-09 Automotive bumper core material Expired - Fee Related JP2675373B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63311685A JP2675373B2 (en) 1988-12-09 1988-12-09 Automotive bumper core material
US07/321,217 US4908393A (en) 1988-03-24 1989-03-09 Propylene resin foamed particles and foamed mold article
DE68911963T DE68911963T2 (en) 1988-03-24 1989-03-22 Propylene resin foam particle and molded foam article.
KR1019890003553A KR970010470B1 (en) 1988-03-24 1989-03-22 Propylene resin foamed particles and foamed mold article
EP89105116A EP0334313B1 (en) 1988-03-24 1989-03-22 Propylene resin foamed particles and foamed mold article
US07/446,671 US5032620A (en) 1988-03-24 1989-12-06 Propylene resin foamed particles and foamed mold article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311685A JP2675373B2 (en) 1988-12-09 1988-12-09 Automotive bumper core material

Publications (2)

Publication Number Publication Date
JPH02158441A JPH02158441A (en) 1990-06-18
JP2675373B2 true JP2675373B2 (en) 1997-11-12

Family

ID=18020234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311685A Expired - Fee Related JP2675373B2 (en) 1988-03-24 1988-12-09 Automotive bumper core material

Country Status (1)

Country Link
JP (1) JP2675373B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442777B2 (en) 1998-02-03 2010-03-31 株式会社ジェイエスピー Energy absorber for automobiles made of molded polycarbonate resin particles
WO2016060162A1 (en) 2014-10-15 2016-04-21 株式会社カネカ Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
EP3814411A1 (en) * 2018-06-14 2021-05-05 LyondellBasell Advanced Polymers Inc. Foamable polyolefin compositions and methods thereof

Also Published As

Publication number Publication date
JPH02158441A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
CA1108350A (en) Expanded particulate material of polyolefin resin
CA1213112A (en) Expanded particles of polyolefin resin and process for producing same
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
US4483809A (en) Process for preparing polyolefin foam
EP0334313B1 (en) Propylene resin foamed particles and foamed mold article
US4602047A (en) Process for producing foamed particles of polyolefin resin
EP1403305A1 (en) Method for producing polypropylene type resin foamed particle
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPH1077359A (en) Expanded resin bead
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP2675373B2 (en) Automotive bumper core material
EP0317995B1 (en) Process for preparing foamed article from propylene resin
EP0928806A1 (en) Expanded resin beads
JP3514046B2 (en) Pre-expanded particles of polypropylene resin
JPH0768402B2 (en) Propylene resin foamed particles and foamed molded product
JPS6259642A (en) Pre-expanded particle of modified polyethylene resin and production thereof
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JPH11172034A (en) Non-crosslinked, straight-chain, low-density polyethylene resin expanded particle and production thereof
JPH11156879A (en) Polypropylene resin in-mold foamed molded product and its production
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold
JPH05179050A (en) Polyolefin-based resin foam particle
JP3550897B2 (en) Polypropylene resin foam molding
JPS625455B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees