JPH05179050A - Polyolefin-based resin foam particle - Google Patents

Polyolefin-based resin foam particle

Info

Publication number
JPH05179050A
JPH05179050A JP3345398A JP34539891A JPH05179050A JP H05179050 A JPH05179050 A JP H05179050A JP 3345398 A JP3345398 A JP 3345398A JP 34539891 A JP34539891 A JP 34539891A JP H05179050 A JPH05179050 A JP H05179050A
Authority
JP
Japan
Prior art keywords
resin
particles
olefin
mold
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3345398A
Other languages
Japanese (ja)
Inventor
Toshihiro Goto
敏宏 後藤
Teruya Okuwa
輝也 大桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP3345398A priority Critical patent/JPH05179050A/en
Publication of JPH05179050A publication Critical patent/JPH05179050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject resin foam particles composed of a specified alpha-olefin-propylene copolymer and a specified ethylene-based copolymer, having a prescribed shear-sensitivity and a uniform and relatively large cell diameter, excellent in visual appearance, heat resistance and compression strength and useful as a foamed-in-place material, etc. CONSTITUTION:The objective resin foam particles are produced from a resin composition as the base resin, composed of (A) 100 pts.wt. alpha-olefin-propylene copolymer containing, as its constituting component, a 4 to 8C alpha-olefin such as butene-1 and (B) preferably 5 to 100 pts.wt. ethylene-based copolymer containing, as the constituting component, an unsaturated ester such as vinyl acetate or an unsaturated ether such as vinyl methyl ether and having 0.3 to 0.70 shear-sensitivity of viscosity measured at 200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、均一な気泡径を有し、
表面外観および物性の優れた型内発泡成形体を製造する
ことができるポリオレフィン系樹脂発泡粒子に関するも
ので、本発明の発泡粒子は、包装容器、玩具、自動車バ
ンパー用芯材、ヘルメット芯材、包装緩衝材等に用いら
れる型内発泡成形体の製造に有用である。
The present invention has a uniform bubble diameter,
The present invention relates to a polyolefin resin foamed particle capable of producing an in-mold foam molded article having excellent surface appearance and physical properties, and the foamed particle of the present invention is a packaging container, toy, core material for automobile bumper, helmet core material, packaging. It is useful for the production of in-mold foam moldings used as cushioning materials and the like.

【0002】[0002]

【従来の技術】ポリプロピレン、高密度ポリエチレン等
ポリオレフィン系樹脂発泡粒子の型内発泡成形体は、ポ
リスチレン発泡成形体と比較して耐熱性、耐薬品性、耐
衝撃性、圧縮弾性回復率等に優れているので、バンパー
用芯材、包装容器、機械部品の通い函等に利用されてい
る。
2. Description of the Related Art In-mold foam moldings of polyolefin resin foam particles such as polypropylene and high-density polyethylene are superior to polystyrene foam moldings in heat resistance, chemical resistance, impact resistance, compression elastic recovery rate, etc. Therefore, it is used as a core material for bumpers, packaging containers, carrying boxes for machine parts, etc.

【0003】しかしながら、従来のポリオレフィン系樹
脂発泡粒子は、気泡径が充分には均一でないことから、
得られる発泡成形体は、表面外観、および圧縮強度等の
物性の劣るものであり、その発泡粒子の気泡径の不均一
性を改良する方法として、従来より、エチレン・プロピ
レン共重合体に低密度ポリエチレン及び/又はエチレン
・酢酸ビニル共重合体を混合したものを基材樹脂とする
方法(特公昭59−23731号公報)、また、ポリオ
レフィン系樹脂にカルボキシル基含有ポリマーを混合す
る方法(特開昭62−115042号公報)等が提案さ
れている。
However, in the conventional polyolefin resin foamed particles, since the cell diameter is not sufficiently uniform,
The foamed molded product obtained is inferior in physical properties such as surface appearance and compressive strength. As a method for improving the nonuniformity of the bubble diameter of the foamed particles, conventionally, a low density ethylene / propylene copolymer has been used. A method in which a mixture of polyethylene and / or ethylene / vinyl acetate copolymer is used as a base resin (Japanese Patent Publication No. 59-23731), and a method in which a carboxyl group-containing polymer is mixed with a polyolefin resin (Japanese Patent Application Laid-Open No. Sho-59-37) No. 62-115042) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】ポリオレフィン系樹脂
発泡粒子の気泡径の不均一性を改良する従来の方法は、
前者方法では、低密度ポリエチレンやエチレン・酢酸ビ
ニル共重合体の混合割合の増加に伴って、気泡径均一化
の効果がなくなり、ひいては成形性の低下や発泡成形体
としての圧縮強度、耐熱性等物性の低下が生じるという
問題があり、また、後者方法では、発泡成形体の製造時
の離型不良に起因して成形体の表面外観不良という問題
がある。
The conventional method for improving the nonuniformity of the cell diameter of the polyolefin resin expanded particles is as follows.
In the former method, as the mixing ratio of low-density polyethylene or ethylene-vinyl acetate copolymer increases, the effect of uniform cell size disappears, which in turn lowers moldability, compressive strength as a foamed molded product, heat resistance, etc. There is a problem that the physical properties are deteriorated, and the latter method has a problem that the surface appearance of the molded product is poor due to a poor mold release during the production of the foamed molded product.

【0005】本発明においては、発泡粒子の気泡径が均
一で、さらに成形性および物性の優れたポリプロピレン
系樹脂型内発泡成形体を製造しうる発泡粒子を提供する
ことを目的とする。この型内発泡成形体は気泡径が均一
で成形性が優れるため成形体の外観が美麗で、さらに優
れた物性を有するため、広範囲での用途に利用できる。
An object of the present invention is to provide a foamed particle capable of producing a polypropylene resin in-mold foamed molded article having a uniform foamed cell diameter and excellent moldability and physical properties. This in-mold foamed product has a uniform cell diameter and excellent moldability, so that the appearance of the molded product is beautiful, and since it has excellent physical properties, it can be used in a wide range of applications.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために検討した結果、炭素数4〜8のα−オ
レフィンを含有するα−オレフィン・プロピレン共重合
体(A)と、不飽和エステル又は不飽和エーテルを共重
合モノマーとするエチレン系共重合体(B)、からなり
200℃で測定した粘度のせん断感度(N)が0.30
〜0.70である樹脂組成物を基材樹脂とするポリオレ
フィン系樹脂発泡粒子をもって成形された型内発泡成形
体が気泡径が均一で成形性に優れるため成形体の外観が
美麗で、さらに圧縮強度や耐熱性等の物性に優れること
を見出し、発明を完成するに至った。
Means for Solving the Problems As a result of investigations for solving the above problems, the present inventors have found that an α-olefin / propylene copolymer (A) containing an α-olefin having 4 to 8 carbon atoms is used. , An ethylene-based copolymer (B) containing an unsaturated ester or an unsaturated ether as a copolymerization monomer, and a shear sensitivity (N) of viscosity measured at 200 ° C. is 0.30.
The in-mold foamed molded product molded with polyolefin resin foamed particles using a resin composition having a resin composition of up to 0.70 as a base resin has a uniform cell diameter and excellent moldability, so the molded product has a beautiful appearance and is further compressed. They found that they have excellent physical properties such as strength and heat resistance, and completed the invention.

【0007】本発明において第1成分であるα−オレフ
ィン・プロピレン共重合体(A)の原料のα−オレフィ
ンとしては、ブテン−1、ペンテン−1、オクテン−
1、4−メチルペンテン−1等の炭素数4〜8の単量体
が用いられ、これらの一種又は二種以上をプロピレンと
共重合したものが用いられる。そのα−オレフィン含有
量は3〜17重量%が好ましい。本発明のα−オレフィ
ン・プロピレン共重合体としては、特にブテン−1を3
〜12重量%含有するブテン−1・プロピレン共重合体
が好ましい。
In the present invention, as the α-olefin as a raw material of the α-olefin / propylene copolymer (A) which is the first component, butene-1, pentene-1, octene-
Monomers having 4 to 8 carbon atoms such as 1,4-methylpentene-1 are used, and those obtained by copolymerizing one or more of these with propylene are used. The α-olefin content is preferably 3 to 17% by weight. As the α-olefin / propylene copolymer of the present invention, especially butene-1 is 3
A butene-1 / propylene copolymer containing about 12 to 12% by weight is preferable.

【0008】本発明において第2成分である不飽和エス
テル又は不飽和エーテルを共重合モノマーとするエチレ
ン系共重合体(B)のうち、不飽和エステルとしては、
酢酸ビニル、ビニルブチレート、ビニルピバレート、ビ
ニルカーボネート等のビニルエステル類や、メチルアク
リレート、エチルアクリレート、n−ブチルアクリレー
ト、t−ブチルアクリレート、2−エチルヘキシルアク
リレート等のアクリレート系エステル類や、メチルメタ
クリレート、n−ブチルメタクリレート、t−ブチルメ
タクリレート、シクロヘキシルメタクリレート、2−エ
チルヘキシルメタクリレート等のメタクリレート系エス
テル類や、ジエチルフマレート、ジ−n−ブチルフマレ
ート等のフマレート系エステル類の一種又は二種以上が
用いられる。また不飽和エーテルとしては、ビニルメチ
ルエーテル、ビニルn−ブチルエーテル、ビニルフェニ
ルエーテル、ビニルβ−ヒドロキシエーテル等の一種又
は二種以上が用いられる。本発明においては(B)成分
として、特に酢酸ビニル成分が3〜30重量%のエチレ
ン−酢酸ビニル共重合体やエチルアクリレート成分が3
〜30重量%のエチレン−エチルアクリレート共重合体
が好ましい。
Among the ethylenic copolymers (B) containing the unsaturated ester or unsaturated ether as the second component in the present invention, the unsaturated ester is
Vinyl esters such as vinyl acetate, vinyl butyrate, vinyl pivalate, and vinyl carbonate; acrylate-based esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, and 2-ethylhexyl acrylate; and methyl methacrylate, n. One or more of methacrylate-based esters such as -butyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate and 2-ethylhexyl methacrylate, and fumarate-based esters such as diethyl fumarate and di-n-butyl fumarate are used. .. As the unsaturated ether, one or more kinds of vinyl methyl ether, vinyl n-butyl ether, vinyl phenyl ether, vinyl β-hydroxy ether and the like are used. In the present invention, as the component (B), an ethylene-vinyl acetate copolymer containing 3 to 30% by weight of a vinyl acetate component and an ethyl acrylate component of 3 are particularly preferable.
~ 30 wt% ethylene-ethyl acrylate copolymer is preferred.

【0009】本発明においては、上記第1成分(A)の
樹脂と第2成分(B)の樹脂からなる樹脂組成物を基材
樹脂とする。この場合、(A)の樹脂は主に型内発泡成
形体の機械的強度などの物性および耐熱性を付与するも
のであり、一方(B)の樹脂は主に発泡粒子の気泡径を
均一化し、型内発泡した成形体の成形性や表面外観を向
上させる役割をはたしている。そこで、本発明において
組成比の設定に当っては(A)、(B)のそれぞれの樹
脂の選択とともに、期待効果を充分に考慮の上決定する
必要がある。本発明においては、その組成比を限定しな
いが、一般的に、(A)の樹脂100重量部に対して、
(B)の樹脂は5〜100重量部とする。前記のように
(B)の樹脂については主に発泡粒子の気泡径の均一化
を目的としたもので、その比率が高すぎても目的とする
効果を著しくするものではなく、逆に(A)の樹脂のも
つ物性や耐熱性等の優れた性質が発現しなくなる。
In the present invention, the resin composition comprising the resin of the first component (A) and the resin of the second component (B) is used as the base resin. In this case, the resin (A) mainly imparts physical properties such as mechanical strength and heat resistance of the in-mold foam molded article, while the resin (B) mainly homogenizes the bubble diameter of the foamed particles. , Plays a role of improving the moldability and surface appearance of the molded product foamed in the mold. Therefore, in setting the composition ratio in the present invention, it is necessary to select the resins of (A) and (B) and to make a decision by sufficiently considering the expected effect. In the present invention, the composition ratio is not limited, but generally, with respect to 100 parts by weight of the resin (A),
The resin (B) is 5 to 100 parts by weight. As described above, the resin (B) is mainly intended to make the bubble diameters of the foamed particles uniform, and even if the ratio is too high, the intended effect is not remarkable, and conversely (A) The excellent properties such as the physical properties and heat resistance of the resin) are not exhibited.

【0010】本発明においては、この樹脂組成物(基材
樹脂)へ例えば酸化防止剤、紫外線吸収剤、滑剤、帯電
防止剤、難燃剤、充填材、核剤等を必要に応じて混合す
ることができる。混合する量は経済性や要求される品質
を考慮して決めるが一般的には基材樹脂に対し5重量%
以下、好ましくは2重量%以下である。本発明において
は、上記組成物の作製には、溶液混合、溶融混合および
溶融混練により作製するが、一般的には溶融混練が利用
される。例えばロール、スクリュー、バンバリミキサ
ー、ニーダー、ブレンダー、ミル等の各種混練機を使っ
て所望の温度で混練し、混練後は適度の大きさで粒状に
造粒する。この場合、ストランドカット法、水中カット
法、ホットカット法、ミストカット法、シートカット
法、凍結粉砕法、溶融噴霧法等いずれの方法を用いても
よい。
In the present invention, for example, an antioxidant, an ultraviolet absorber, a lubricant, an antistatic agent, a flame retardant, a filler, a nucleating agent and the like are mixed with the resin composition (base resin), if necessary. You can The amount to be mixed is decided in consideration of economical efficiency and required quality, but generally 5% by weight based on the base resin.
It is preferably 2% by weight or less. In the present invention, the composition is prepared by solution mixing, melt mixing and melt kneading, but melt kneading is generally used. For example, various kneaders such as rolls, screws, Banbury mixers, kneaders, blenders, and mills are used to knead the mixture at a desired temperature, and after kneading, the granules are granulated to an appropriate size. In this case, any method such as a strand cutting method, an underwater cutting method, a hot cutting method, a mist cutting method, a sheet cutting method, a freeze pulverization method, and a melt spraying method may be used.

【0011】本発明における基材樹脂の粘度のせん断感
度は、細管式レオメータ等で測定することができ、本発
明では(株)島津製作所製の島津フローテスタCFT−
500Cを用い、ダイヒーター温度200℃に設定し、
径1mm、長さ10mmのダイを用い、ピストンに加え
る荷重を変えることによりせん断速度とせん断応力を測
定し、両者の関係を両対数グラフにプロットし、最小二
乗法で二次相関関係を求め、両者の相関グラフを作成す
る。このグラフより、せん断速度が10(1/秒)と1
000(1/秒)のときのせん断応力を読み取り、次式
に従ってせん断感度を算出した。
The shear sensitivity of the viscosity of the base resin in the present invention can be measured by a capillary rheometer or the like. In the present invention, the Shimadzu Flow Tester CFT- manufactured by Shimadzu Corporation is used.
Using 500C, set the die heater temperature to 200 ℃,
Using a die with a diameter of 1 mm and a length of 10 mm, the shear rate and shear stress were measured by changing the load applied to the piston, the relationship between the two was plotted in a log-log graph, and the quadratic correlation was determined by the least squares method. Create a correlation graph for both. From this graph, the shear rate is 10 (1 / sec) and 1
The shear stress at 000 (1 / sec) was read, and the shear sensitivity was calculated according to the following formula.

【0012】[0012]

【数1】 [Equation 1]

【0013】ただし、S1 =せん断速度10(1/秒)
に対するせん断応力(dyn/cm 2 )、S2 =せん断
速度1000(1/秒)に対するせん断応力(dyn/
cm 2 )本発明において、基材樹脂の粘度のせん断感度
は0.30〜0.70の組成物が選択される。特に好ま
しくは0.35〜0.60のものである。このせん断感
度は基材樹脂組成物を構成するα−オレフィン・プロピ
レン共重合体(A)と不飽和エステル又は不飽和エーテ
ルを共重合モノマーとするエチレン系共重合体(B)の
それぞれ樹脂の分子量、分子量分布および共重合組成
や、組成物の分散状態の影響を受け、基材樹脂組成物の
マトリックスを反映する。本発明において基材樹脂の粘
度のせん断感度が0.70以上の場合、樹脂組成物の海
を構成する方の樹脂の分子量分布が狭いか又は分散状態
の不良を意味し、これら基材樹脂よりなる発泡粒子を用
いて発泡体を製造する場合の適性温度域が狭くなった
り、得られる発泡体の独立気泡率の低下がみられ好まし
くない。一方基材樹脂の粘度のせん断感度が0.3未満
の場合には、樹脂組成物の分子量分布が広過ぎるか、あ
るいは(A)(B)の混合によってある種のゲル状態を
取ってしまった事によると推定され、この場合充分な発
泡倍率が得られないか、発泡粒子を金型内で成形する場
合に発泡粒子相互の融着が悪くなる。
However, S1= Shear rate 10 (1 / sec)
Shear stress against (dyn / cm 2), S2= Shear
Shear stress (dyn /
cm 2) In the present invention, the shear sensitivity of the viscosity of the base resin
A composition of 0.30 to 0.70 is selected. Especially preferred
It is preferably 0.35 to 0.60. This feeling of shear
The degree of α-olefin propylene that constitutes the base resin composition is
Ren copolymer (A) and unsaturated ester or unsaturated ether
Of an ethylene-based copolymer (B) containing ethylene as a copolymerization monomer
Resin molecular weight, molecular weight distribution and copolymer composition
Or, affected by the dispersed state of the composition, the base resin composition
Reflect the matrix. In the present invention, the viscosity of the base resin
If the shear sensitivity of the degree is 0.70 or more, the sea of the resin composition
The molecular weight distribution of the resin constituting the resin is narrow or dispersed
It means that the foamed particles made of these base resins are used.
The temperature range for producing foams has become narrower
Therefore, the closed cell ratio of the obtained foam is reduced, which is preferable.
I don't. On the other hand, the shear sensitivity of the viscosity of the base resin is less than 0.3
In the case of, the molecular weight distribution of the resin composition is too wide,
By mixing (A) and (B), a certain gel state
It is estimated that this is due to the fact that the
If the foam ratio cannot be obtained or the expanded particles are molded in the mold,
In this case, the fusion of the foamed particles to each other becomes worse.

【0014】本発明において、発泡粒子はドカン法(特
許庁63年3月編 図説IPC)あるいは押し出し発泡
法(特開昭58−76230号公報)によって製造され
る。例えばドカン法の場合、基材樹脂粒子を密閉容器内
で水に分散させ、次いで密閉容器内に揮発性膨張剤を供
給し、該樹脂粒子の軟化点以上の温度に分散液を加熱し
た後、密閉容器内の水面下に設けた吐出口を開放し、膨
張剤が含浸された樹脂粒子を含む水分散液を密閉容器内
の圧力よりも低い圧力の雰囲気(大気中)に放出するこ
とにより製造される。この製造の際、空気や窒素ガスで
容器内を加圧して放出を容易とするのがよい。
In the present invention, the expanded particles are produced by the Dokan method (Patent Office, March 63, illustrated IPC) or the extrusion foaming method (Japanese Patent Laid-Open No. 58-76230). For example, in the case of the docan method, the base resin particles are dispersed in water in a closed container, then a volatile expanding agent is supplied in the closed container, and after heating the dispersion liquid to a temperature equal to or higher than the softening point of the resin particles, Manufactured by opening the discharge port provided below the water surface in a closed container and discharging an aqueous dispersion containing resin particles impregnated with a swelling agent into an atmosphere (atmosphere) at a pressure lower than the pressure in the closed container. To be done. At the time of this production, it is preferable to pressurize the inside of the container with air or nitrogen gas to facilitate the discharge.

【0015】本発明において、揮発性膨張剤として、例
えばブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族
炭化水素類;トリクロロフロロメタン、ジクロロフロロ
メタン、テトラクロロジフロロエタン、ジクロロテトラ
フロロメタン、メチレンクロライド、エチルクロライド
等のハロゲン化炭化水素等を、単独で、または二種以上
混合して用いることができる。また、窒素、空気、炭酸
ガス等の無機ガス類を用いることもできる。
In the present invention, as the volatile expansion agent, for example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane; trichlorofluoromethane, dichlorofluoromethane, tetrachlorodifluoroethane, dichlorotetrafluoromethane, methylene chloride. , Halogenated hydrocarbons such as ethyl chloride, etc. may be used alone or in combination of two or more. Also, inorganic gases such as nitrogen, air and carbon dioxide can be used.

【0016】この揮発性膨張剤の添加量は、膨張剤の種
類および目的とする樹脂粒子の嵩密度によって異なる
が、通常、樹脂粒子100重量部に対し、10〜80重
量部である。樹脂粒子を水に分散させる分散剤として
は、酸化アルミニウム、酸化チタン、炭酸カルシウム、
塩基性炭酸マグネシウム、第三リン酸カルシウム等の無
機系懸濁剤;ポリビニルアルコール、メチルカルボキシ
セルロース、N−ポリビニルピロリドン等の水溶性高分
子系保護コロイド剤;ドデシルベンゼンスルホン酸ナト
リウム、アルカンスルホン酸ソーダ、アルキル硫酸エス
テルナトリウム、オレフィン硫酸エステルナトリウム、
アシルメチルタウリン、ジアルキルスルホコハク酸ナト
リウム等の陰イオン性界面活性剤等があげられる。これ
らの中でも粒径が0.01〜0.8ミクロンの第三リン
酸カルシウムと、懸濁助剤のドデシルベンゼンスルホン
酸ソーダを併用するのが好ましい。この微細な第三リン
酸カルシウムは、水酸化カルシウル1モルに対し、リン
酸を0.60〜.067モルの割合で水中で反応させる
ことにより得られる。
The amount of the volatile expanding agent added varies depending on the kind of the expanding agent and the intended bulk density of the resin particles, but is usually 10 to 80 parts by weight with respect to 100 parts by weight of the resin particles. As a dispersant for dispersing resin particles in water, aluminum oxide, titanium oxide, calcium carbonate,
Inorganic suspending agents such as basic magnesium carbonate and tricalcium phosphate; water-soluble polymeric protective colloid agents such as polyvinyl alcohol, methylcarboxycellulose, N-polyvinylpyrrolidone; sodium dodecylbenzenesulfonate, sodium alkanesulfonate, alkyl Sodium sulfate ester, sodium olefin sulfate ester,
Examples thereof include anionic surfactants such as acylmethyl taurine and sodium dialkylsulfosuccinate. Among these, it is preferable to use tribasic calcium phosphate having a particle size of 0.01 to 0.8 micron in combination with a suspension aid of sodium dodecylbenzenesulfonate. This fine tribasic calcium phosphate contains phosphoric acid in an amount of 0.60 to .0 per 1 mol of calcium hydroxide. It is obtained by reacting in water at a ratio of 067 mol.

【0017】樹脂粒子100重量部に対する分散媒の水
の量は150〜1,000重量部、好ましくは200〜
500重量部である。150重量部未満では加熱、加圧
時に樹脂粒子同士がブロッキングしやすい。1,000
重量部を越えると発泡粒子の生産性が低下し、経済的で
ない。分散剤により水に分散されたポリオレフィン系樹
脂粒子の水分散液に、密閉容器中でガス状の膨張剤また
は液状の膨張剤が供給され、樹脂の軟化点以上の温度に
加熱されるとともに、この加熱により容器内の圧力は上
昇し、膨張剤が樹脂粒子に含浸される。ついで密閉容器
内の下部に設けられたスリット、ノズル等の吐出口より
水とともに樹脂粒子を密閉容器より低圧域(一般には大
気圧中)に放出することによりポリオレフィン系樹脂発
泡粒子が得られる。
The amount of water as a dispersion medium is 100 to 1,000 parts by weight, preferably 200 to 1,000 parts by weight, based on 100 parts by weight of the resin particles.
It is 500 parts by weight. If the amount is less than 150 parts by weight, the resin particles are likely to block each other during heating and pressurization. 1,000
If the amount is more than parts by weight, the productivity of the expanded beads decreases, which is not economical. An aqueous dispersion of polyolefin-based resin particles dispersed in water by a dispersant is supplied with a gaseous expander or a liquid expander in a closed container and heated to a temperature equal to or higher than the softening point of the resin. By heating, the pressure in the container rises and the expander is impregnated in the resin particles. Next, the resin particles are discharged into a low pressure region (generally at atmospheric pressure) from the closed container together with water through a discharge port such as a slit or a nozzle provided in the lower part of the closed container, to obtain polyolefin resin foamed particles.

【0018】この発泡粒子の製造において膨張剤を密閉
容器内に添加する前、あるいは添加した後に、窒素、ヘ
リウム、空気等の無機ガスを密閉容器内に供給し、圧力
を付与するのが好ましい。この無機ガスの供給は分散液
の加熱前であっても加熱後であってもよい。空気、窒素
ガス、アルゴン等の無機ガスの密閉容器内への供給は膨
張剤の樹脂粒子への含浸を容易とし、低嵩密度のポリオ
レフィン系樹脂発泡粒子を得るのに役だつ。
In the production of the expanded beads, it is preferable to supply an inorganic gas such as nitrogen, helium or air to the closed container before or after adding the expanding agent into the closed container to apply pressure. The inorganic gas may be supplied before or after heating the dispersion liquid. The supply of air, nitrogen gas, or an inorganic gas such as argon into the closed container facilitates the impregnation of the expander with the resin particles, and serves to obtain the polyolefin resin expanded particles having a low bulk density.

【0019】大気中に放出された発泡粒子は、表面に付
着した水を除去するために30〜65℃の部屋で乾燥
(養生)され、緩衝材、容器等の成形に用いられる。型
物成形法としては、従来公知の種々の方法が利用でき
る。 ポリオレフィン系樹脂発泡粒子を型内に充填した
後、発泡粒子の体積を15〜50%減ずるよう圧縮し、
次いで1〜5kg/cm2 Gのスチームを導いて発泡粒
子同士を融着させ、その後、型を冷却し、製品を得る圧
縮成形法(DOS2107683号)。 発泡粒子に揮発性液状膨張剤を予め含浸させて発泡
粒子に2次発泡能を付与した後型に充填し、スチームで
加熱し、2次発泡させるとともに粒子同士を融着させて
製品を得る方法。 発泡粒子を密閉室内に入れ、次いで空気、窒素ガス
等の無機ガスを室内に圧入することにより発泡粒子のセ
ル内の圧力を高めて2次発泡能を付与し、この2次発泡
能を付与した粒子を型に充填し、スチームで加熱し、2
次発泡させるとともに粒子同士を融着させて製品を得る
方法(いわゆる加圧熟成法;特公昭59−23731
号)。 加圧ガスで1.0〜6.0kg/cm2 Gに昇圧し
た型内に、発泡粒子をこの型内圧力より0.5kg/c
2 以上高い加圧ガスを用いて圧縮しながら、かつ複数
回に分割して逐次充填し、その充填中に型内圧力を前記
の型内圧力に保持し続け、次いで充填終了後に型内圧力
を大気圧に戻してからスチームにより加熱を行って発泡
粒子どうしを融着させ、その際に発泡粒子の式
The foamed particles released into the atmosphere are dried (cured) in a room at 30 to 65 ° C. to remove water adhering to the surface, and used for molding a cushioning material, a container and the like. Various conventionally known methods can be used as the molding method. After filling the polyolefin resin foamed particles into the mold, compress the volume of the foamed particles to reduce by 15 to 50%,
Then, a compression molding method (DOS2107683) in which 1 to 5 kg / cm 2 G of steam is introduced to fuse the expanded particles to each other and then the mold is cooled to obtain a product. A method for obtaining a product by preliminarily impregnating expanded particles with a volatile liquid expansion agent to give secondary expanded ability to the expanded particles, then filling the mold, heating with steam to perform secondary expansion, and fusing particles together .. The expanded particles were put in a closed chamber, and then an inorganic gas such as air or nitrogen gas was injected into the chamber to increase the pressure in the cells of the expanded particles to give a secondary foaming ability, and this secondary foaming ability was given. Fill the mold with particles and heat with steam, 2
Subsequent foaming and fusion of particles to obtain a product (so-called pressure aging method; JP-B-59-23731)
issue). The foamed particles were placed in a mold whose pressure was increased to 1.0 to 6.0 kg / cm 2 G with a pressurized gas and the pressure of the mold was 0.5 kg / c.
While compressing using a pressurized gas having a m 2 or higher, the mold is divided into a plurality of times and sequentially filled, and the mold pressure is kept at the mold pressure during the filling, and then the mold pressure after the completion of the filling. To atmospheric pressure and then heating with steam to fuse the expanded particles together, and at that time,

【0020】[0020]

【数2】 [Equation 2]

【0021】〔式中、W,V及びρはそれぞれ下記のも
のを表わす。 W…成形品の重量(g) V…成形品の容量(リットル) ρ…発泡粒子の大気中でのかさ密度(g/リットル)〕 で表わされる圧縮率を40〜70%に制御する方法(特
開昭62−151325号)。 加圧ガスで0.5〜5.0kg/cm2 Gに昇圧し
た型内に、予めこの型内圧力より0.5kg/cm2
上高い加圧ガスを用いて1時間以上加圧処理して得られ
たガス内圧の付与された発泡粒子を、前記の型内圧力よ
り0.5kg/cm2 以上高い加圧ガスを用いて複数回
に分割して逐次に充填し、その充填中に型内圧力を前記
の型内圧力に保持し続け、次いで充填終了後に型内圧力
を大気圧に戻してからスチームによる加熱を行って発泡
粒子を融着させ、その際の発泡粒子の同上式で表わされ
る圧縮率を40%未満(ただし0%を除く)に制御する
方法。 発泡粒子自身2次発泡能力を有する発泡粒子を常圧
下の金型キャビティ内に充填するか、加圧下の金型に充
填し、スチームで加熱し、2次発泡させるとともに粒子
同士を融着させて製品を得る方法(特開昭62−128
709号、同63−256634号、同63−2589
39号、同63−107516号)。
[In the formula, W, V and ρ represent the following, respectively. W ... Weight of molded product (g) V ... Volume of molded product (liter) ρ ... Bulk density of foamed particles in air (g / liter)] Method for controlling the compression ratio to 40 to 70% ( JP-A-62-151325). A pressurizing gas having a pressure of 0.5 to 5.0 kg / cm 2 G and a pressurizing gas higher than the internal pressure of the mold of 0.5 kg / cm 2 or more was used for 1 hour or more in advance. The obtained expanded particles to which the gas internal pressure is applied are divided into a plurality of times using a pressurized gas having a pressure of 0.5 kg / cm 2 or more higher than the above-mentioned pressure in the mold and sequentially filled, and the inside of the mold is filled during the filling. The pressure is continuously maintained at the mold pressure, and after completion of the filling, the mold pressure is returned to atmospheric pressure, and then heating with steam is performed to fuse the expanded particles, and the expanded particles are represented by the same formula as above. A method of controlling the compression rate to less than 40% (excluding 0%). The foamed particles themselves are filled with foamed particles having a secondary foaming ability in a mold cavity under normal pressure or filled in a mold under pressure and heated by steam to secondary-foam and fuse the particles together. Method for obtaining a product (Japanese Patent Laid-Open No. 62-128)
No. 709, No. 63-256634, No. 63-2589.
39, 63-107516).

【0022】以上のいずれの成形法を用いても良く、発
泡粒子の性状や成形体の形状、密度等を考慮して選択す
る。以下、実施例により更に本発明を詳細に説明する。
なお、例中の部および%は重量基準である。
Any of the above-mentioned molding methods may be used, and the molding method is selected in consideration of the properties of the expanded particles, the shape of the molded body, the density and the like. Hereinafter, the present invention will be described in more detail with reference to Examples.
The parts and% in the examples are based on weight.

【0023】[0023]

【実施例】【Example】

〔実施例1〕ブテン−1含量8.5%、MFR8g/1
0分のブテン−1・プロピレンランダム共重合体80重
量%と、酢酸ビニル含量8%、MFR4g/10分のエ
チレン・酢酸ビニル共重合体20重量%を口径65mm
の単軸押出機にて220℃で混練して組成物とした後、
直径0.8mmのダイオリフィスを通し水中カットし約
1.3mg/粒の大きさの基材樹脂粒子を作成した。こ
の基材樹脂の200℃における粘度のせん断感度は0.
45であった。
[Example 1] Butene-1 content 8.5%, MFR 8g / 1
80% by weight of butene-1 / propylene random copolymer for 0 minutes, 8% of vinyl acetate content, 20% by weight of ethylene / vinyl acetate copolymer for MFR of 4 g / 10 minutes, caliber 65 mm
After kneading at 220 ° C. with a single-screw extruder to prepare a composition,
It was cut in water through a die orifice having a diameter of 0.8 mm to prepare base resin particles having a size of about 1.3 mg / grain. The shear sensitivity of the viscosity of this base resin at 200 ° C. is 0.
It was 45.

【0024】続いて密閉容器内に水250部、上記の基
材樹脂粒子100部、粒径0.3〜0.5ミクロンの第
三リン酸カルシウム1.0部、ドデシルベンゼンスルホ
ン酸ソーダ0.007部を仕込み(充填率62%)、次
いで攪拌下で窒素ガスを密閉容器の内圧が5kg/cm
2 Gとなるまで加圧し、窒素ガスの供給を停止した。つ
いで、ブタン25部を密閉容器内に供給し、1時間かけ
て136℃まで加熱し、同温度で45分間保持したとこ
ろ、オートクレーブ内圧は23kg/cm2 Gを示し
た。
Subsequently, 250 parts of water, 100 parts of the above-mentioned base resin particles, 1.0 part of tricalcium phosphate having a particle size of 0.3 to 0.5 micron, and 0.007 part of sodium dodecylbenzenesulfonate are placed in a closed container. (Filling rate 62%), and then nitrogen gas under stirring with the internal pressure of the sealed container being 5 kg / cm.
The pressure was increased to 2 G, and the supply of nitrogen gas was stopped. Then, 25 parts of butane was fed into the closed container, heated to 136 ° C. over 1 hour, and kept at the same temperature for 45 minutes. The autoclave internal pressure was 23 kg / cm 2 G.

【0025】その後、密閉容器の底部にある吐出ノズル
の弁を開き、分散液を大気圧中に約2秒で放出して発泡
を行わしめた。分散液の最終部分が密閉容器内より放出
された瞬間の密閉容器の内圧は約10kg/cm2 Gで
あった。また分散液放出の間、密閉容器の温度を136
℃に維持した。このようにして得られた発泡粒子は、嵩
密度22g/リットル、粒径4.0mmで発泡セル径は
220ミクロンで均一なセル形状をしていた。また、発
泡粒子同士のブロッキングは見られなかった。
After that, the valve of the discharge nozzle at the bottom of the closed container was opened, and the dispersion liquid was discharged into the atmospheric pressure in about 2 seconds for foaming. The internal pressure of the closed container at the moment when the final portion of the dispersion liquid was discharged from the closed container was about 10 kg / cm 2 G. Also, during the discharge of the dispersion liquid, the temperature of the closed container was adjusted to 136
It was maintained at ° C. The foamed particles thus obtained had a bulk density of 22 g / liter, a particle size of 4.0 mm, and a foamed cell diameter of 220 μm, and had a uniform cell shape. Further, blocking of the foamed particles was not observed.

【0026】この発泡粒子を常温で2日間放置し乾燥し
た後、2m3 の加圧容器内で2kg/cm2 Gの加圧空
気で24時間加圧熟成を行ったところ発泡粒子の内圧は
0.5kg/cm2 Gであった。ついでこの発泡粒子を
スチーム孔を有する型内に充填し、2.8kg/cm2
Gのスチームを導き、発泡粒子同士を加熱融着させ、次
いで120秒水冷、35秒放冷後、金型より成形品を取
り出した。
The foamed particles were left to stand at room temperature for 2 days to be dried, and then aged under pressure with 2 kg / cm 2 G of pressurized air in a 2 m 3 pressure vessel for 24 hours. It was 0.5 kg / cm 2 G. Then, the foamed particles were filled in a mold having steam holes, and 2.8 kg / cm 2
The steam of G was introduced, the expanded particles were heat-fused to each other, then, cooled with water for 120 seconds and allowed to cool for 35 seconds, and then the molded product was taken out from the mold.

【0027】成形品は、密度23g/リットル、縦60
0mm、横900mm、厚み50mmであり、表面の間
隙も少なく凹凸もない表面外観の優れた成形品であっ
た。また、成形品中央部より破断したところ、その断面
の90%の発泡粒子が融着している優れた成形品であっ
た。
The molded product has a density of 23 g / liter and a length of 60.
It was 0 mm, 900 mm in width, and 50 mm in thickness, and it was a molded product excellent in surface appearance with few surface gaps and no irregularities. Further, when it was broken from the center of the molded product, 90% of the cross-section of the molded product was an excellent molded product in which the expanded particles were fused.

【0028】この成形品より、縦50mm、横50m
m、厚さ25mmの圧縮試験用サンプルと、縦150m
m、横150mm、厚さ50mmの耐熱試験用サンプル
をそれぞれ5点を切削して得た。圧縮試験はNDS−Z
0504に準拠し、圧縮速度10mm/分で圧縮し、5
0%圧縮した時の応力を圧縮強度として評価した。また
耐熱試験はJIS−K6767に準拠し、温度120℃
の熱風循環式乾燥機で22時間加熱した後の寸法変化を
評価した。この成形体の場合、圧縮強度は2.2kg/
cm2 で、耐熱寸法変化は−4%であった。
From this molded product, length 50 mm, width 50 m
m, thickness of 25 mm sample for compression test, length 150 m
Samples for heat resistance test of m, 150 mm in width, and 50 mm in thickness were obtained by cutting 5 points respectively. Compression test is NDS-Z
According to 0504, compress at a compression speed of 10 mm / min, and
The stress at 0% compression was evaluated as the compressive strength. The heat resistance test is based on JIS-K6767 and the temperature is 120 ° C.
The dimensional change after heating for 22 hours with the hot-air circulation type dryer was evaluated. In the case of this molded body, the compressive strength is 2.2 kg /
In cm 2 , the heat-resistant dimensional change was −4%.

【0029】〔実施例2〜6、比較例1〜5〕基材樹脂
として、表1に示す組成物を用いた以外は、実施例1と
同様にして表1、表2に示す結果を得た。
[Examples 2 to 6 and Comparative Examples 1 to 5] The results shown in Tables 1 and 2 were obtained in the same manner as in Example 1 except that the composition shown in Table 1 was used as the base resin. It was

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明の発泡粒子は気泡径が比較的大き
く均一であるため、該粒子を用いて成形した成形体の外
観が美麗であり、さらに圧縮強度や耐熱性等の物性に優
れているため、広い用途での利用が可能となる。
EFFECTS OF THE INVENTION Since the expanded beads of the present invention have a relatively large and uniform cell size, the appearance of a molded article molded from the particles is beautiful, and the physical properties such as compressive strength and heat resistance are excellent. Therefore, it can be used for a wide range of purposes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素数4〜8のα−オレフィンを含有す
るα−オレフィンプロピレン共重合体(A)、及び不飽
和エステル又は不飽和エーテルを共重合モノマーとする
エチレン系共重合体(B)からなり、200℃で測定し
た粘度のせん断感度が0.30〜0.70である樹脂組
成物を基材樹脂とするポリオレフィン系樹脂発泡粒子。
1. An α-olefin propylene copolymer (A) containing an α-olefin having 4 to 8 carbon atoms and an ethylene copolymer (B) containing an unsaturated ester or an unsaturated ether as a copolymerization monomer. And polyolefin-based resin expanded particles comprising a resin composition having a shear sensitivity of viscosity of 0.30 to 0.70 measured at 200 ° C. as a base resin.
JP3345398A 1991-12-26 1991-12-26 Polyolefin-based resin foam particle Pending JPH05179050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345398A JPH05179050A (en) 1991-12-26 1991-12-26 Polyolefin-based resin foam particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345398A JPH05179050A (en) 1991-12-26 1991-12-26 Polyolefin-based resin foam particle

Publications (1)

Publication Number Publication Date
JPH05179050A true JPH05179050A (en) 1993-07-20

Family

ID=18376330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345398A Pending JPH05179050A (en) 1991-12-26 1991-12-26 Polyolefin-based resin foam particle

Country Status (1)

Country Link
JP (1) JPH05179050A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205287A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, its production method, and apparatus for water treatment
WO2009047998A1 (en) * 2007-10-11 2009-04-16 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
JP2009221258A (en) * 2008-03-13 2009-10-01 Kaneka Corp Pre-expanded polypropylene resin particle
JP4489893B2 (en) * 2000-01-28 2010-06-23 日本エンバイロケミカルズ株式会社 Water treatment carrier, method for producing water treatment carrier and water treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205287A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, its production method, and apparatus for water treatment
JP4489892B2 (en) * 2000-01-28 2010-06-23 日本エンバイロケミカルズ株式会社 Water treatment carrier, method for producing water treatment carrier and water treatment device
JP4489893B2 (en) * 2000-01-28 2010-06-23 日本エンバイロケミカルズ株式会社 Water treatment carrier, method for producing water treatment carrier and water treatment device
WO2009047998A1 (en) * 2007-10-11 2009-04-16 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
US8063177B2 (en) 2007-10-11 2011-11-22 Kaneka Corporation Pre-expanded polypropylene resin particle, and method for production thereof
JP5375613B2 (en) * 2007-10-11 2013-12-25 株式会社カネカ Polypropylene resin pre-expanded particles and method for producing the same
JP2009221258A (en) * 2008-03-13 2009-10-01 Kaneka Corp Pre-expanded polypropylene resin particle

Similar Documents

Publication Publication Date Title
US4689351A (en) Process for producing foamed particles of propylene copolymer resin
JPS63183832A (en) Manufacture of polypropylene resin in-mold foam molding
US4968723A (en) Pre-expanded particles of non-crosslinked linear low density polyethylene
JPS61115940A (en) Polypropylene foam particle
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JPS6049039A (en) Manufacture of polyolefin resin expanded beads
JPS61103944A (en) Foamable polypropylene particle
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JP3436801B2 (en) Polypropylene resin foam particles
JPH05179050A (en) Polyolefin-based resin foam particle
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPS60188435A (en) Production of polyolefin resin foam particle
JP2777429B2 (en) Pre-expanded polypropylene resin particles and method for producing the same
JPS60221440A (en) Production of foamed particles of propylene resin
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
JPH0657435B2 (en) In-mold foam molding of polypropylene resin
JPH07228721A (en) Production of polypropylene resin foam particle
JPS5968215A (en) Manufacture of polyolefin resin molded body foamed in mold
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP6993601B1 (en) Polyolefin-based resin foamed particles, their manufacturing method, and polyolefin-based resin foamed particle molded body
JP2675373B2 (en) Automotive bumper core material
JPH0768402B2 (en) Propylene resin foamed particles and foamed molded product
JPH05255531A (en) Production of molded polymer foam
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A02 Decision of refusal

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A521 Written amendment

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041227

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050128