JPH0547556A - Semi-hard magnetic film and manufacture thereof - Google Patents

Semi-hard magnetic film and manufacture thereof

Info

Publication number
JPH0547556A
JPH0547556A JP22368291A JP22368291A JPH0547556A JP H0547556 A JPH0547556 A JP H0547556A JP 22368291 A JP22368291 A JP 22368291A JP 22368291 A JP22368291 A JP 22368291A JP H0547556 A JPH0547556 A JP H0547556A
Authority
JP
Japan
Prior art keywords
film
mol
acid
magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22368291A
Other languages
Japanese (ja)
Other versions
JP2669212B2 (en
Inventor
Fumio Goto
文男 後藤
Takehiko Yamamoto
武彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22368291A priority Critical patent/JP2669212B2/en
Publication of JPH0547556A publication Critical patent/JPH0547556A/en
Application granted granted Critical
Publication of JP2669212B2 publication Critical patent/JP2669212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide an electroless plating method of stably manufacturing an isotropic semi-hard magnetic film so as to replace a semi-hard magnetic film large in saturation magnetization, possessed of a coercive force of 30-300Oe and suitable for a base layer used in a vertical recording medium but having such a problem that magnetic anisotropy occurs causing coercive force to vary. CONSTITUTION:An in-plane magnetic isotropic thin film at least composed of Co, Mn, and B as component elements is provided. The film is formed through an electroless plating bath which is obtained by adding citric acid groups or malic acid groups as complexing agent to an aqueous solution which contains cobalt ions and manganese ions as metal ions and dimethylamine volan or diethylamine volan as reducing agent for the metal ions concerned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直記録に適用される
磁気記録媒体の下地層などに用いられるセミハ―ド磁性
膜およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-hard magnetic film used as an underlayer of a magnetic recording medium applied to perpendicular recording and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、一般の磁気ディスク装置、磁気テ
―プ装置などの磁気記録装置においては、磁気記録媒体
の長手方向に磁化することにより記録を行ってきたが、
この方式では記録密度の増加に伴って媒体内の反磁界が
増大して残留磁化の減衰と回転を生じ、再生出力が著し
く減少するという欠点が存在する。このため記録密度が
増加するほど反磁界が小さくなり、高密度記録が可能な
垂直記録方式と、この垂直記録に適した磁気記録媒体と
して膜厚に垂直な方向に磁化容易なCoCrスパッタ膜
が提案されている(特開昭52−134706号公
報)。このような垂直記録を効率良く行うため、2層構
造磁性膜を有する磁気記録体が提案されている(特公昭
58−91号公報)。2層構造磁性膜は垂直磁気記録層
(磁気記録媒体)と低保磁力の下地層からなり、この下
地層は垂直磁気記録層の裏面の磁極を打ち消す作用をす
るため減磁作用が減少し、再生出力の増大を図ることが
できる。2層構造磁性膜の下地層としては、主としてス
パッタ法によるFeNi膜(パ―マロイ)、MoFeN
i膜(モリブデンパ―マロイ)、CoZr膜、CoZr
Nb膜などの軟磁性膜が使用される。しかし、垂直磁気
記録層(磁気記録媒体)の下地層として軟磁性膜を用い
る場合、再生出力は向上するが、低保磁力のため磁壁移
動が起こりやすく、ノイズが発生しやすい。このため軟
磁性膜のかわりに、コバルトまたはコバルト−ニッケル
合金のセミハ―ド磁性膜を使用することが提案されてい
る(特開平2−18710号公報)。そしてこのセミハ
―ド磁性膜の保磁力は、30 Oe より小さいとスパイク
ノイズの原因となり、300 Oe より大きいと下地層へ
の記録が難しくなるため(裏面の磁極を打ち消す作用が
減じるため)、30〜300 Oe の範囲であることが好
ましいとされている。
2. Description of the Related Art Conventionally, in a magnetic recording device such as a general magnetic disk device or a magnetic tape device, recording has been performed by magnetizing in the longitudinal direction of a magnetic recording medium.
In this method, there is a drawback that the demagnetizing field in the medium increases with the increase of the recording density, the residual magnetization is attenuated and rotated, and the reproduction output is significantly reduced. Therefore, the demagnetizing field becomes smaller as the recording density increases, and a perpendicular recording method that enables high-density recording and a CoCr sputtered film that is easy to magnetize in the direction perpendicular to the film thickness are proposed as a magnetic recording medium suitable for this perpendicular recording. (Japanese Patent Application Laid-Open No. 52-134706). In order to efficiently perform such perpendicular recording, a magnetic recording body having a two-layer magnetic film has been proposed (Japanese Patent Publication No. 58-91). The two-layer magnetic film is composed of a perpendicular magnetic recording layer (magnetic recording medium) and an underlayer having a low coercive force. This underlayer acts to cancel the magnetic pole on the back surface of the perpendicular magnetic recording layer, and thus the demagnetization effect is reduced. It is possible to increase the reproduction output. The underlayer of the two-layer magnetic film is mainly composed of a FeNi film (permalloy) formed by a sputtering method and MoFeN.
i film (molybdenum permalloy), CoZr film, CoZr
A soft magnetic film such as an Nb film is used. However, when a soft magnetic film is used as an underlayer of the perpendicular magnetic recording layer (magnetic recording medium), the reproduction output is improved, but the domain wall movement is likely to occur due to the low coercive force, and noise is likely to occur. For this reason, it has been proposed to use a semi-hard magnetic film of cobalt or cobalt-nickel alloy instead of the soft magnetic film (JP-A-2-18710). If the coercive force of this semi-hard magnetic film is smaller than 30 Oe, it causes spike noise, and if it is larger than 300 Oe, recording on the underlayer becomes difficult (because the action of canceling the magnetic pole on the back surface is reduced). It is said that it is preferably in the range of to 300 Oe.

【0003】[0003]

【発明が解決しようとする課題】このような下地層は、
スパッタ、蒸着、イオンプレ―ティングなどの乾式成膜
法によって作製されており、この場合、真空系内で行う
ため量産性に問題がある。このため、製造上の問題点を
改善して量産性に優れた無電解めっき法により作製され
た下地層の適用が検討されている。これには、無電解N
iFePめっき膜、無電解NiPめっき膜、無電解Ni
WPめっき膜などが適用されているが、このうち飽和磁
化が400emu/ccと比較的大きいNiFeP膜を
使用した場合に最も大きな再生出力が得られる(アイ・
イ―・イ―・イ―・トランザクション・オン・マグネチ
ックス(IEEE Transaction on Magnetics)第Mag−
23巻,第2356〜2358頁,1987年)。ま
た、無電解めっき法では飽和磁化が1400emu/c
c程度(NiFeP膜の約3.5倍の値)と大きいCo
B膜が作製可能であり、より出力増大効果が期待され
る。無電解CoBめっき浴としては、酒石酸を錯化剤と
する苛性アルカリ性めっき浴がある(日本応用磁気学会
学術講演概要集、第483頁、1989年)。しかし、
Co合金の軟磁性膜またはセミハード磁性膜には、従来
一般に磁気特性に異法性を生じやすいという問題があっ
た。それは、膜面内のある方向に磁気測定したMHルー
プは矩形に近い形状をしている(磁化容易方向)が、膜
面内のその直交する方向に測定すると角形性は劣り、保
磁力が減少する(磁化困難方向)という現象である。ま
た、測定方向によっては、その中間状態の場合もある
が、いずれにしても磁気特性に異方性が生じていると、
どこかに磁化容易方向と磁化困難方向がある。磁化容易
方向が記録再生の方向と一致しない場合には、記録再生
特性を変動させる要因となる。めっき中に磁場をかけて
異方性を制御することが考えられるが、磁気ディスクの
ような形状において、円周方向に一定の磁場をかけるこ
とは困難である。また、無電解めっきで一括多量生産す
る場合、磁場を加えることは、より困難となる。本発明
の目的は、従来の問題を改善して、30〜300 Oe の
保磁力を有し、飽和磁化が大きいCo系合金からなり、
磁気特性に異方性が殆ど生じない等方的なセミハ―ド磁
性膜と、これを安定に作製するための無電解めっき法を
用いたセミハ―ド磁性膜の製造方法を提供することにあ
る。
Such a base layer is
It is produced by a dry film forming method such as sputtering, vapor deposition, and ion plating. In this case, there is a problem in mass productivity because it is performed in a vacuum system. Therefore, application of an underlayer formed by an electroless plating method that is excellent in mass productivity by improving manufacturing problems is being studied. This includes electroless N
iFeP plated film, electroless NiP plated film, electroless Ni
The WP plating film and the like are applied, but the largest reproduction output can be obtained when the NiFeP film having a relatively large saturation magnetization of 400 emu / cc is used.
IEEE Transaction on Magnetics No. Mag-
23, pp. 2356-2358, 1987). The saturation magnetization is 1400 emu / c in the electroless plating method.
Co of about c (value about 3.5 times that of NiFeP film) and large Co
The B film can be produced, and the effect of increasing the output is expected. As the electroless CoB plating bath, there is a caustic alkaline plating bath using tartaric acid as a complexing agent (Abstracts of Scientific Lectures of the Japan Society for Applied Magnetics, p. 483, 1989). But,
The soft magnetic film or the semi-hard magnetic film of a Co alloy has a problem that the magnetic properties are generally liable to be illegal. The MH loop magnetically measured in a certain direction in the film plane has a shape close to a rectangle (easy magnetization direction), but when measured in the direction orthogonal to the MH loop, the squareness is poor and the coercive force is reduced. This is the phenomenon of being magnetized (hard magnetization direction). In addition, depending on the measurement direction, there may be an intermediate state, but in any case, if the magnetic characteristics are anisotropic,
There is an easy magnetization direction and a difficult magnetization direction somewhere. If the easy magnetization direction does not match the recording / reproducing direction, it becomes a factor that changes the recording / reproducing characteristics. It is possible to apply a magnetic field during plating to control the anisotropy, but it is difficult to apply a constant magnetic field in the circumferential direction in a shape like a magnetic disk. Further, in the case of mass production by electroless plating, it becomes more difficult to apply a magnetic field. The object of the present invention is to improve the conventional problems and to form a Co-based alloy having a coercive force of 30 to 300 Oe and a large saturation magnetization,
An object of the present invention is to provide an isotropic semi-hard magnetic film having almost no anisotropy in magnetic properties, and a method for producing a semi-hard magnetic film using an electroless plating method for stably producing the same. ..

【0004】[0004]

【課題を解決するための手段】本発明は、構成成分とし
て少なくともCo、MnおよびBを含む面内磁気異方性
薄膜であって、その面内方向の保磁力が30〜300 O
e であることを特徴とするセミハード磁性膜である。ま
た、本発明のセミハード磁性膜の製造方法は、金属イオ
ンとしてコバルトイオンおよびマンガンイオンを含み、
前記金属イオンの還元剤としてのジメチルアミンボラン
またはジエチルアミンボランを含み、添加剤として、少
なくとも前記金属イオンの錯化剤としてのクエン酸基お
よびリンゴ酸基を含む水溶液を用いて、無電解めっき法
によって形成することを特徴とする。本発明のセミハー
ド磁性膜のMn含有量は、0.02〜10重量%、好ま
しくは0.1〜10重量%の範囲である。Mn含有量
0.02重量%から効果が現れ始め、例えば磁気ディス
クの同一円周上の保磁力の変動を調べた場合、変動を±
20%に抑えられるが、0.1重量%以上になると保磁
力の変動は±7%内と著しい効果がある。無電解めっき
でMn含有量を10重量%以上にすることは難しく、ま
た飽和磁化も1000emu/cc以下に減少する。本
発明において用いられる無電解めっき浴の主要成分とし
ては、金属イオンとしてコバルトイオンおよびマンガン
イオン、前記金属イオンの還元剤としてのジメチルアミ
ンボランまたはジエチルアミンボラン、前記金属イオン
の錯化剤としてクエン酸基およびリンゴ酸基を含むが、
本発明の目的、効果を損なわない範囲において、pH緩
衝剤、光沢剤、平滑剤、励起剤、ピンホ―ル防止剤、界
面活性剤等の添加剤をさらに用いることができる。
The present invention is an in-plane magnetic anisotropy thin film containing at least Co, Mn and B as constituents and having a coercive force in the in-plane direction of 30 to 300 O.
It is a semi-hard magnetic film characterized by being e. Further, the method for producing a semi-hard magnetic film of the present invention contains cobalt ions and manganese ions as metal ions,
By using an aqueous solution containing dimethylamine borane or diethylamine borane as a reducing agent for the metal ions and containing at least a citric acid group and a malic acid group as a complexing agent for the metal ions as an additive, an electroless plating method is used. It is characterized by forming. The Mn content of the semi-hard magnetic film of the present invention is in the range of 0.02 to 10% by weight, preferably 0.1 to 10% by weight. The effect begins to appear when the Mn content is 0.02% by weight. For example, when the fluctuation of the coercive force on the same circumference of the magnetic disk is examined, the fluctuation is ±
It can be suppressed to 20%, but when it is 0.1% by weight or more, the fluctuation of the coercive force is significantly within ± 7%. It is difficult to set the Mn content to 10 wt% or more by electroless plating, and the saturation magnetization is also reduced to 1000 emu / cc or less. The main components of the electroless plating bath used in the present invention include cobalt ions and manganese ions as metal ions, dimethylamine borane or diethylamine borane as a reducing agent for the metal ions, and a citric acid group as a complexing agent for the metal ions. And contains a malic acid group,
Additives such as a pH buffering agent, a brightening agent, a smoothing agent, a stimulant, an anti-pinhole agent, and a surfactant can be further used as long as the objects and effects of the present invention are not impaired.

【0005】コバルトイオンは、コバルトの硫酸塩、塩
化塩、酢酸塩などの可溶性塩を無電解めっき浴中に溶解
することによって供給される。コバルトイオンの濃度
は、0.005〜0.5mol/lの範囲が用いられる
が、好ましくは0.01〜0.3mol/lの範囲であ
る。マンガンイオンは、マンガンの硫酸塩、塩化塩、酢
酸塩などの可溶性塩を無電解めっき浴中に溶解すること
によって供給される。マンガンイオンの濃度は、0.0
01〜0.4mol/lの範囲が用いられるが、好まし
くは、0.005〜0.2mol/lの範囲である。本
発明において用いられる金属イオンとしては、コバルト
およびマンガンを主成分とするが、少量のNi,Fe,
Be,Mg,Al,Ru,Si,Sr,Y,Zn,Z
r,Nb,Cd,In,Sb,Ta,Ir,Hg,T
l,Nb,Gd,Tb,Ti,V,Cr,Cu,Ga,
Ge,W,Mo,Rh,Pd,Ag,Au,Pt,S
n,Te,Ba,Ce,Sm,Os,Pb,Re,Bi
等のイオンを本発明の効果を損なわない範囲で含んでい
てもよい。還元剤としては、ジメチルアミンボランまた
はジエチルアミンボランないしはこれらの誘導体が、
0.0001〜0.3mol/l、好ましくは0.00
5〜0.1mol/lの範囲で用いられる。
Cobalt ions are supplied by dissolving a soluble salt of cobalt sulfate, chloride or acetate in an electroless plating bath. The cobalt ion concentration is in the range of 0.005 to 0.5 mol / l, preferably 0.01 to 0.3 mol / l. Manganese ions are supplied by dissolving soluble salts such as manganese sulfate, chloride, and acetate in an electroless plating bath. Manganese ion concentration is 0.0
A range of 01 to 0.4 mol / l is used, but a range of 0.005 to 0.2 mol / l is preferable. The metal ions used in the present invention are mainly composed of cobalt and manganese, but a small amount of Ni, Fe,
Be, Mg, Al, Ru, Si, Sr, Y, Zn, Z
r, Nb, Cd, In, Sb, Ta, Ir, Hg, T
l, Nb, Gd, Tb, Ti, V, Cr, Cu, Ga,
Ge, W, Mo, Rh, Pd, Ag, Au, Pt, S
n, Te, Ba, Ce, Sm, Os, Pb, Re, Bi
And other ions may be contained within a range that does not impair the effects of the present invention. As the reducing agent, dimethylamine borane or diethylamine borane or derivatives thereof,
0.0001 to 0.3 mol / l, preferably 0.00
It is used in the range of 5 to 0.1 mol / l.

【0006】錯化剤としてのクエン酸基は、クエン酸ま
たはクエン酸ナトリウム、クエン酸カリウムなどの可溶
性塩によって供給される。これらは、0.001〜0.
8mol/lの範囲で用いられるが、0.01〜0.2
5mol/lの範囲が好ましい。錯化剤としてのリンゴ
酸基は、リンゴ酸またはリンゴ酸ナトリウム、リンゴ酸
カリウムなどの可溶性塩によって供給される。これら
は、0.001〜2mol/lの範囲で用いられるが、
0.05〜1.1mol/lの範囲が好ましい。また錯
化剤としてはこのほかに、ギ酸,酢酸,プロピオン酸,
酪酸,イソ酪酸,吉草酸,イソ吉草酸,シュウ酸,グル
タル酸,マレイン酸,酒石酸,フマル酸,シトラコン
酸,イタコン酸,トリカルバリル酸,コハク酸,マロン
酸,グリコ―ル酸,チオグリコ―ル酸,乳酸,β−ヒド
ロキシプロピオン酸,ピルビン酸,オキサル酢酸,ジグ
リコ―ル酸,チオジグリコ―ル酸,メルカプトコハク
酸,ジメルカプトコハク酸,安息香酸,マンデル酸,フ
タル酸,サリチル酸,アスコルビン酸,スルホサリチル
酸,トロポロン,3−メチルトロポロン,タイロン等の
カルボン酸、エチレンジアミン,ジエチレントリアミ
ン,トリエチレンテトラアミン,ピリジン等のアミンお
よびその誘導体、イミノジ酢酸,イミノジプロピオン
酸,ニトリロトリ酢酸,ニトリロトリプロピオン酸,エ
チレンジアミンジ酢酸,エチレンジアミンテトラ酢酸,
エチレンジアミンテトラプロピオン酸,ジエチレントリ
アミンペンタ酢酸等のアミノポリカルボン酸、アラニ
ン,ザルコシン,バリン,ノルロイシン,チロシン,シ
ステイン,グルタミン酸,グリシン,アスパラギン酸,
アスパラギン,ヒスチジン等のアミノ酸、グルコン酸,
アロン酸,イドン酸,ガラクトン酸,グロン酸,タロン
酸,マンノン酸等のヘキソン酸、ピロリン酸などの弱酸
またはそれらの可溶性塩の1種または2種以上の組み合
わせを本発明の効果を損なわない範囲で用いてもよい。
The citric acid group as a complexing agent is supplied by citric acid or a soluble salt of sodium citrate, potassium citrate or the like. These are 0.001 to 0.
Used in the range of 8 mol / l, but 0.01 to 0.2
A range of 5 mol / l is preferred. The malic acid group as a complexing agent is supplied by malic acid or a soluble salt such as sodium malate, potassium malate and the like. These are used in the range of 0.001 to 2 mol / l,
The range of 0.05 to 1.1 mol / l is preferable. Other complexing agents include formic acid, acetic acid, propionic acid,
Butyric acid, isobutyric acid, valeric acid, isovaleric acid, oxalic acid, glutaric acid, maleic acid, tartaric acid, fumaric acid, citraconic acid, itaconic acid, tricarballylic acid, succinic acid, malonic acid, glycolic acid, thioglycol Acid, lactic acid, β-hydroxypropionic acid, pyruvic acid, oxalacetic acid, diglycolic acid, thiodiglycolic acid, mercaptosuccinic acid, dimercaptosuccinic acid, benzoic acid, mandelic acid, phthalic acid, salicylic acid, ascorbic acid, sulfo Carboxylic acids such as salicylic acid, tropolone, 3-methyltropolone and Tyrone, amines such as ethylenediamine, diethylenetriamine, triethylenetetraamine and pyridine and their derivatives, iminodiacetic acid, iminodipropionic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminediacetic acid , D Diamine tetraacetic acid,
Aminopolycarboxylic acids such as ethylenediaminetetrapropionic acid and diethylenetriaminepentaacetic acid, alanine, sarcosine, valine, norleucine, tyrosine, cysteine, glutamic acid, glycine, aspartic acid,
Amino acids such as asparagine and histidine, gluconic acid,
Hexonic acids such as allonic acid, idonic acid, galactonic acid, gulonic acid, taronic acid, and mannonic acid, weak acids such as pyrophosphoric acid, and one or more combinations of soluble salts thereof within the range that does not impair the effects of the present invention. May be used in.

【0007】pH緩衝剤としては、硫酸アンモニウム,
塩化アンモニウムなどのアンモニウム塩、ホウ酸などが
使用される。濃度範囲は0.001〜2mol/l、好
ましくは0.03〜0.7mol/lが用いられる。p
H調節剤としては、アンモニアまたは苛性アルカリとし
てNaOH,LiOH,KOH等の水酸化物が、1種ま
たは2種以上を組み合わせて用いられる。またアンモニ
アと苛性アルカリを併用することも行われる。通常、p
H調節剤を加えない建浴前のめっき液はほぼ中性ないし
酸性域にあり、前記水酸化物を加えてアルカリ性にpH
調節される。所要のpHを上回った場合、pH降下には
塩酸、硫酸、硝酸、酢酸等の酸が用いられる。pH範囲
は4〜13、好ましくは7〜11の間で用いられる。
As the pH buffer, ammonium sulfate,
Ammonium salts such as ammonium chloride and boric acid are used. The concentration range is 0.001 to 2 mol / l, preferably 0.03 to 0.7 mol / l. p
As the H-adjusting agent, ammonia or a hydroxide such as NaOH, LiOH, KOH as caustic is used alone or in combination of two or more. It is also possible to use ammonia and caustic together. Usually p
The plating solution without H-regulator before the bath is in the neutral or acidic range.
Adjusted. When the pH exceeds the required level, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid are used for pH reduction. The pH range used is between 4 and 13, preferably between 7 and 11.

【0008】[0008]

【作用】無電解めっき膜のめっき粒子は、中心部がCo
リッチとなり、BやPといった混入元素は外側に分布し
て非磁性に近い層をつくり、Coリッチな部分を包み込
む構造をとると考えられている。無電解めっきCoP合
金膜では2〜5%程度ものPを共析させることができる
ため、このような非磁性層が厚くなり、Co粒子の磁気
的な孤立化が進み、数百 Oe 以上の高保磁力の硬質磁性
膜が得られることになる。また、磁気異方性は、面内に
等方性となりやすい。一方、無電解めっきCoB合金膜
では、通常B共析量が1%以下と少なく純Coに近いC
oB合金膜となるため、数 Oe 程度ないしはそれ以下と
いった軟磁性膜が得られやすいとされる。純Coに近い
軟磁性膜の場合、成膜中に地磁気の影響を受けやすいほ
かに、局所的なわずかな組成の差異や応力などの要因
で、結晶磁気異方性や歪磁気異方性がある方向に生じや
すいと考えられる。このため発明者らは、わずかの要因
で異方性を生じないようCoB合金膜に第3の元素を加
えて等方的な膜構造を得ることを実験的に広範囲に検討
した結果、マンガンの添加が有効であることが明らかと
なった。また、無電解CoMnBめっき浴にクエン酸基
とリンゴ酸基を錯化剤として使用することにより、飽和
磁化の大きいセミハード磁性膜が安定に得られ、本発明
の目的に適用できることも見い出した。本発明は、この
ような知見を得たことによりもたらされたものである。
[Function] The center of the electroless plated film is Co particles.
It is considered that the element becomes rich, and the mixed elements such as B and P are distributed to the outside to form a layer close to non-magnetic and have a structure that encloses the Co-rich portion. In an electroless plated CoP alloy film, about 2 to 5% of P can be co-deposited, so such a non-magnetic layer becomes thicker, magnetic isolation of Co particles progresses, and high protection of several hundred Oe or more is achieved. A hard magnetic film having a magnetic force can be obtained. Further, the magnetic anisotropy tends to be isotropic in the plane. On the other hand, in the electroless plated CoB alloy film, the amount of eutectoid B is usually as small as 1% or less, which is close to pure Co
Since it becomes an oB alloy film, a soft magnetic film of about several Oe or less is likely to be obtained. In the case of a soft magnetic film close to pure Co, the crystal magnetic anisotropy and the strain magnetic anisotropy are easily influenced by the geomagnetism during the film formation, and also due to a local slight difference in composition and stress. It is thought that it tends to occur in a certain direction. For this reason, the inventors have extensively studied experimentally to obtain an isotropic film structure by adding a third element to the CoB alloy film so that anisotropy is not caused by a slight factor. It became clear that the addition was effective. It was also found that by using citric acid groups and malic acid groups as complexing agents in the electroless CoMnB plating bath, a semi-hard magnetic film having a large saturation magnetization can be stably obtained and can be applied to the object of the present invention. The present invention has been brought about by obtaining such knowledge.

【0009】[0009]

【実施例】次に、本発明の実施例について説明する。 実施例1 8.25インチ径のアルミ合金円板上に、非磁性NiP
層をめっきし、表面を鏡面研磨してディスク基板とし
た。この基板上に、下記の無電解めっき浴を用いて膜厚
0.05μmのCoMnB膜を形成した。 無電解めっき浴(1) 浴組成 硫酸コバルト 0.10 mol/l 硫酸マンガン 0〜0.11mol/l ジメチルアミンボラン 0.015 mol/l 硫酸アンモニウム 0.1 mol/l リンゴ酸ナトリウム 0.4 mol/l クエン酸ナトリウム 0.04 mol/lめっき条件 浴温 70℃ めっき浴のpH 8.0(室温にてアンモ
ニアでpH調節) ディスク基板の半径80〜90mmにおいて直径10m
mに切り出し、測定試料とした。硫酸マンガン濃度をか
えて得られたCoB膜またはCoMnB膜の磁気特性を
振動試料式磁力計を用いて測定した結果を図2に示す。
膜面内の方向を変えて測定し、保磁力が最大となる方向
が磁化容易方向であるが、その保磁力Hcは、硫酸マン
ガンを加えない場合、65 Oe であった。硫酸マンガン
濃度の添加によってHcを増加させることができ、0.
05mol/lで90 Oe となった。
EXAMPLES Next, examples of the present invention will be described. Example 1 A non-magnetic NiP was formed on an aluminum alloy disc having a diameter of 8.25 inches.
The layer was plated and the surface was mirror-polished to give a disk substrate. On this substrate, a CoMnB film having a film thickness of 0.05 μm was formed using the electroless plating bath described below. Electroless plating bath (1) Bath composition Cobalt sulfate 0.10 mol / l Manganese sulfate 0-0.11 mol / l Dimethylamine borane 0.015 mol / l Ammonium sulfate 0.1 mol / l Sodium malate 0.4 mol / l Sodium citrate 0.04 mol / l Plating conditions Bath temperature 70 ° C. pH of plating bath 8.0 (pH adjustment with ammonia at room temperature) Disk substrate radius 80-90 mm, diameter 10 m
It was cut into m and used as a measurement sample. The results of measuring the magnetic characteristics of the CoB film or the CoMnB film obtained by changing the manganese sulfate concentration using a vibrating sample magnetometer are shown in FIG.
The direction in which the coercive force was maximized was measured by changing the direction in the film plane, and the direction in which the coercive force was maximum was the easy magnetization direction. The coercive force Hc was 65 Oe when manganese sulfate was not added. Hc can be increased by the addition of manganese sulfate concentration,
It became 90 Oe at 05 mol / l.

【0010】次にディスク基板の半径80〜90mmに
おいて、30度おきに直径10mmの測定試料を切り出
し、円周方向に保磁力を測定した。硫酸マンガン0mo
l/l、0.005mol/lおよび0.05mol/
lの場合の保磁力測定結果を図1に示す。硫酸マンガン
0mol/lの場合は角度0度においてほぼ磁化容易方
向であり、保磁力が65 Oe であったが、角度120度
ではほぼ磁化困難方向となり、保磁力は25 Oe であっ
た。磁気特性に異方性が生じており、同一円周上の保磁
力の変動は±45%にも達した。硫酸マンガン0.00
5mol/lの場合、保磁力は66〜73 Oe の範囲に
あり、同一円周上の保磁力の変動は±5%に減少した。
硫酸マンガン濃度の増加とともに保磁力の変動が減少
し、硫酸マンガン0.05mol/lの場合、同一円周
上の保磁力の変動は±2%に減少した。硫酸マンガン濃
度をさらに増加した場合も保磁力の変動は±2%に抑え
られたが、0.11mol/lを越えるとめっき析出が
次第に困難となった。硫酸マンガン0.005mol/
lの場合、膜中のMn含有量は0.1重量%であり、飽
和磁化は1370emu/ccと大きな値を示した。硫
酸マンガン濃度とともに膜中のMn含有量が増加し、飽
和磁化は減少するが、0.005〜0.11mol/l
の濃度範囲で得られるCoMnB膜の飽和磁化は100
0emu/cc以上の大きな値を示した。また、0.0
05〜0.11mol/lの濃度範囲ではめっき浴は安
定であった。
Next, at a radius of 80 to 90 mm of the disk substrate, a measurement sample having a diameter of 10 mm was cut out every 30 degrees, and the coercive force was measured in the circumferential direction. Manganese sulfate 0mo
1 / l, 0.005 mol / l and 0.05 mol /
The result of coercive force measurement in the case of 1 is shown in FIG. In the case of manganese sulfate of 0 mol / l, the magnetization was almost in the easy direction and the coercive force was 65 Oe at the angle of 0 degree, but the coercive force was 25 Oe in the difficult direction at the angle of 120 degree. Anisotropy is generated in the magnetic properties, and the fluctuation of the coercive force on the same circumference reaches ± 45%. Manganese sulfate 0.00
In the case of 5 mol / l, the coercive force was in the range of 66 to 73 Oe, and the fluctuation of the coercive force on the same circumference was reduced to ± 5%.
The fluctuation of the coercive force decreased with the increase of the manganese sulfate concentration, and when the manganese sulfate was 0.05 mol / l, the fluctuation of the coercive force on the same circumference decreased to ± 2%. Even when the manganese sulfate concentration was further increased, the fluctuation of the coercive force was suppressed to ± 2%, but when it exceeded 0.11 mol / l, plating deposition became gradually difficult. Manganese sulfate 0.005 mol /
In the case of 1, the Mn content in the film was 0.1% by weight, and the saturation magnetization showed a large value of 1370 emu / cc. The Mn content in the film increases with the manganese sulfate concentration, and the saturation magnetization decreases, but 0.005 to 0.11 mol / l
The saturation magnetization of the CoMnB film obtained in the concentration range of 100 is 100.
It showed a large value of 0 emu / cc or more. Also, 0.0
The plating bath was stable in the concentration range of 05 to 0.11 mol / l.

【0011】実施例2 実施例1と同様にして膜厚0.1μmのCoMnB膜を
形成したが、本実施例では下記の無電解めっき浴を用い
た。 無電解めっき浴(2)浴組成 硫酸コバルト 0.05 mol/l 硫酸マンガン 0〜0.1mol/l ジメチルアミンボラン 0.01 mol/l 硫酸アンモニウム 0.1 mol/l リンゴ酸ナトリウム 0.5 mol/l クエン酸ナトリウム 0.18 mol/lめっき条件 浴温 70℃ めっき浴のpH 9.0(室温にてアンモ
ニアでpH調節) 硫酸マンガン濃度をかえて得られたCoB膜またはCo
MnB膜の磁気特性を実施例1と同様にして測定した。
磁化容易方向の保磁力についてみると、硫酸マンガンを
加えない場合15 Oe であったが、硫酸マンガン濃度の
添加によってHcを増加させることができ、0.005
mol/lで30 Oe となった。さらに硫酸マンガン濃
度が増すとHcが増加し、0.04mol/lで最大値
65 Oeとなった後やや減少し、0.1mol/lで6
0 Oeとなる。同一円周上の保磁力の変動については、
硫酸マンガン0mol/lの場合±55%にも達した
が、硫酸マンガン0.005mol/lで±7%に減少
し、硫酸マンガン0.04mol/lで±3.5%に減
少した。硫酸マンガン濃度をさらに増加した場合も保磁
力の変動は±3.5%内に抑えられたが、0.1mol
/lを越えるとめっき析出が次第に困難となった。硫酸
マンガン0.005mol/lの場合の膜中のMn含有
量は0.1重量%であり、飽和磁化は1380emu/
ccと大きな値を示した。硫酸マンガン濃度とともに膜
中のMn含有量が増加し飽和磁化は減少するが、0.0
05〜0.1mol/lの濃度範囲で得られるCoMn
B膜の飽和磁化は1000emu/cc以上の大きな値
を示した。また、0.005〜0.1mol/lの濃度
範囲ではめっき浴は安定であった。
Example 2 A CoMnB film having a film thickness of 0.1 μm was formed in the same manner as in Example 1, but the following electroless plating bath was used in this example. Electroless plating bath (2) Bath composition Cobalt sulfate 0.05 mol / l Manganese sulfate 0-0.1 mol / l Dimethylamine borane 0.01 mol / l Ammonium sulfate 0.1 mol / l Sodium malate 0.5 mol / l Sodium citrate 0.18 mol / l Plating condition Bath temperature 70 ° C. pH of plating bath 9.0 (pH adjusted with ammonia at room temperature) CoB film or Co obtained by changing manganese sulfate concentration
The magnetic characteristics of the MnB film were measured in the same manner as in Example 1.
Regarding the coercive force in the easy magnetization direction, it was 15 Oe when manganese sulfate was not added, but Hc can be increased by adding manganese sulfate concentration.
It became 30 Oe at mol / l. When the manganese sulfate concentration further increased, Hc increased, reaching a maximum value of 65 Oe at 0.04 mol / l, then slightly decreasing, and 6 at 0.1 mol / l.
It becomes 0 Oe. Regarding the fluctuation of coercive force on the same circumference,
When the content of manganese sulfate was 0 mol / l, it reached ± 55%, but it decreased to ± 7% at 0.005 mol / l manganese sulfate, and to ± 3.5% at 0.04 mol / l manganese sulfate. When the manganese sulfate concentration was further increased, the fluctuation of the coercive force was suppressed to within ± 3.5%, but 0.1 mol
If it exceeds / l, plating deposition becomes gradually difficult. When manganese sulfate was 0.005 mol / l, the Mn content in the film was 0.1% by weight, and the saturation magnetization was 1380 emu / l.
It showed a large value of cc. Although the Mn content in the film increased with the manganese sulfate concentration and the saturation magnetization decreased,
CoMn obtained in the concentration range of 05 to 0.1 mol / l
The saturation magnetization of the B film showed a large value of 1000 emu / cc or more. The plating bath was stable in the concentration range of 0.005 to 0.1 mol / l.

【0012】実施例3 実施例1と同様にして膜厚0.1μmのCoMnB膜を
形成したが、本実施例では下記の無電解めっき浴を用い
た。 無電解めっき浴(3) 浴組成 塩化コバルト 0.15 mol/l 硫酸マンガン 0〜0.25mol/l ジメチルアミンボラン 0.02 mol/l 硫酸アンモニウム 0.25 mol/l リンゴ酸ナトリウム 0.4 mol/l クエン酸ナトリウム 0.35 mol/lめっき条件 浴温 70℃ めっき浴のpH 10.0(室温にてアンモ
ニアでpH調節) 硫酸マンガン濃度をかえて得られたCoB膜またはCo
MnB膜の磁気特性を実施例1と同様にして測定した。
磁化容易方向の保磁力についてみると、硫酸マンガンを
加えない場合195 Oe であったが、硫酸マンガン濃度
の添加によってHcを増加させることができ、0.01
mol/lで230 Oe となった。さらに硫酸マンガン
濃度が増すとHcが増加し、0.14mol/lで最大
値295Oe となった後減少し、0.25mol/lで
250 Oe となる。同一円周上の保磁力の変動について
は、硫酸マンガン0mol/lの場合±50%にも達し
たが、硫酸マンガン0.01mol/lで±6%に減少
し、硫酸マンガン0.14mol/lで±2.5%に減
少した。硫酸マンガン濃度をさらに増加した場合も保磁
力の変動は±2.5%内に抑えられたが、0.25mo
l/lを越えるとめっき析出が次第に困難となった。硫
酸マンガン0.01mol/lの場合の膜中のMn含有
量は0.12重量%であり、飽和磁化は1360emu
/ccと大きな値を示した。硫酸マンガン濃度とともに
膜中のMn含有量が増加し飽和磁化は減少するが、0.
01〜0.25mol/lの濃度範囲で得られるCoM
nB膜の飽和磁化は1000emu/cc以上の大きな
値を示した。また、0.01〜0.25mol/lの濃
度範囲ではめっき浴は安定であった。
Example 3 A CoMnB film having a film thickness of 0.1 μm was formed in the same manner as in Example 1, but the following electroless plating bath was used in this example. Electroless plating bath (3) Bath composition Cobalt chloride 0.15 mol / l Manganese sulfate 0-0.25 mol / l Dimethylamine borane 0.02 mol / l Ammonium sulfate 0.25 mol / l Sodium malate 0.4 mol / l Sodium citrate 0.35 mol / l Plating condition Bath temperature 70 ° C. pH of plating bath 10.0 (pH adjusted with ammonia at room temperature) CoB film or Co obtained by changing manganese sulfate concentration
The magnetic characteristics of the MnB film were measured in the same manner as in Example 1.
The coercive force in the easy magnetization direction was 195 Oe when manganese sulfate was not added, but Hc can be increased by adding manganese sulfate concentration.
It became 230 Oe at mol / l. When the manganese sulfate concentration further increases, Hc increases, reaches a maximum value of 295 Oe at 0.14 mol / l, and then decreases, and reaches 250 Oe at 0.25 mol / l. Regarding the fluctuation of the coercive force on the same circumference, it reached ± 50% when manganese sulfate was 0 mol / l, but decreased to ± 6% when manganese sulfate was 0.01 mol / l, and manganese sulfate was 0.14 mol / l. It decreased to ± 2.5%. Even when the manganese sulfate concentration was further increased, the fluctuation of the coercive force was suppressed to within ± 2.5%, but 0.25mo
When it exceeded 1 / l, plating precipitation became gradually difficult. When the manganese sulfate was 0.01 mol / l, the Mn content in the film was 0.12% by weight, and the saturation magnetization was 1360 emu.
It showed a large value of / cc. Although the Mn content in the film increased and the saturation magnetization decreased with the manganese sulfate concentration,
CoM obtained in the concentration range of 01 to 0.25 mol / l
The saturation magnetization of the nB film showed a large value of 1000 emu / cc or more. Further, the plating bath was stable in the concentration range of 0.01 to 0.25 mol / l.

【0013】実施例4 実施例1と同様にして膜厚0.1μmのCoMnB膜を
形成したが、本実施例では下記の無電解めっき浴を用い
た。 無電解めっき浴(4) 浴組成 硫酸コバルト 0.09 mol/l 硫酸マンガン 0〜0.15mol/l ジエチルアミンボラン 0.016 mol/l 硫酸アンモニウム 0.3 mol/l リンゴ酸ナトリウム 0.35 mol/l クエン酸ナトリウム 0.05 mol/lめっき条件 浴温 75℃ めっき浴のpH 8.5(室温にてアンモニ
アでpH調節) 硫酸マンガン濃度をかえて得られたCoB膜またはCo
MnB膜の磁気特性を実施例1と同様にして測定した。
磁化容易方向の保磁力についてみると、硫酸マンガンを
加えない場合55 Oe であったが、硫酸マンガン濃度の
添加によってHcを増加させることができ、0.01m
ol/lで85 Oe となった。さらに硫酸マンガン濃度
が増すとHcが増加し、0.06mol/lで最大値1
05 Oeとなった後減少し、0.15mol/lで95
Oe となる。同一円周上の保磁力の変動については、硫
酸マンガン0mol/lの場合±40%にも達したが、
硫酸マンガン0.01mol/lで±5.5%に減少
し、硫酸マンガン0.06mol/lで±2.5%に減
少した。硫酸マンガン濃度をさらに増加した場合も保磁
力の変動は±2.5%内に抑えられたが、0.15mo
l/lを越えるとめっき析出が次第に困難となった。硫
酸マンガン0.01mol/lの場合の膜中のMn含有
量は0.1重量%であり、飽和磁化は1365emu/
ccと大きな値を示した。硫酸マンガン濃度とともに膜
中のMn含有量が増加し飽和磁化は減少するが、0.0
1〜0.15mol/lの濃度範囲で得られるCoMn
B膜の飽和磁化は1000emu/cc以上の大きな値
を示した。また、0.01〜0.15mol/lの濃度
範囲ではめっき浴は安定であった。
Example 4 A CoMnB film having a film thickness of 0.1 μm was formed in the same manner as in Example 1, but the following electroless plating bath was used in this example. Electroless plating bath (4) Bath composition Cobalt sulfate 0.09 mol / l Manganese sulfate 0-0.15 mol / l Diethylamine borane 0.016 mol / l Ammonium sulfate 0.3 mol / l Sodium malate 0.35 mol / l Sodium citrate 0.05 mol / l Plating conditions Bath temperature 75 ° C. pH of plating bath 8.5 (pH adjusted with ammonia at room temperature) CoB film or Co obtained by changing manganese sulfate concentration
The magnetic characteristics of the MnB film were measured in the same manner as in Example 1.
Regarding the coercive force in the easy magnetization direction, it was 55 Oe when manganese sulfate was not added, but Hc can be increased by adding manganese sulfate concentration.
It became 85 Oe at ol / l. When the manganese sulfate concentration further increases, Hc increases, and the maximum value is 1 at 0.06 mol / l.
Decrease after reaching 05 Oe, 95 at 0.15 mol / l
Oe. The variation of coercive force on the same circumference reached ± 40% when manganese sulfate was 0 mol / l,
It decreased to ± 5.5% at 0.01 mol / l of manganese sulfate, and decreased to ± 2.5% at 0.06 mol / l of manganese sulfate. When the manganese sulfate concentration was further increased, the fluctuation of the coercive force was suppressed to within ± 2.5%, but 0.15mo
When it exceeded 1 / l, plating precipitation became gradually difficult. When manganese sulfate was 0.01 mol / l, the Mn content in the film was 0.1% by weight, and the saturation magnetization was 1365 emu / l.
It showed a large value of cc. Although the Mn content in the film increased with the manganese sulfate concentration and the saturation magnetization decreased,
CoMn obtained in the concentration range of 1 to 0.15 mol / l
The saturation magnetization of the B film showed a large value of 1000 emu / cc or more. The plating bath was stable in the concentration range of 0.01 to 0.15 mol / l.

【0014】なお、実施例1〜4ではアルミ合金板上
に、非磁性NiP層をめっきした基板を使用したが、無
電解Cuめっき層、電解Cuめっき層、無電解NiCu
Pめっき層、無電解NiSnPめっき層 、無電解Ni
WPめっき層、無電解NiWPめっき層などのNiP以
外のめっき層を形成した基板や、銅基板、黄銅基板、適
当な触媒処理をしたプラスチック、ガラスなどの非金属
基板等の基板を用いた場合も同様に磁気特性の異方性が
抑制された等方的なセミハード磁性膜の特性が得られ
た。また、CoMnBめっき膜の膜厚も実施例の0.0
5および0.1μmに限定されることはなく、0.00
5〜10μmの範囲において磁気特性の異方性が抑制さ
れた等方的なセミハード磁性膜の特性を得ることが可能
であった。
In each of Examples 1 to 4, a substrate obtained by plating a non-magnetic NiP layer on an aluminum alloy plate was used. However, an electroless Cu plating layer, an electrolytic Cu plating layer, an electroless NiCu layer is used.
P plating layer, electroless NiSnP plating layer, electroless Ni
Also when using a substrate on which a plating layer other than NiP such as a WP plating layer or an electroless NiWP plating layer is formed, or a substrate such as a copper substrate, a brass substrate, a plastic subjected to an appropriate catalyst treatment, or a non-metal substrate such as glass. Similarly, the characteristics of an isotropic semi-hard magnetic film in which the anisotropy of magnetic characteristics was suppressed were obtained. Further, the film thickness of the CoMnB plating film is 0.0 in the embodiment.
Not limited to 5 and 0.1 μm, 0.00
It was possible to obtain the characteristics of an isotropic semi-hard magnetic film in which the anisotropy of magnetic characteristics was suppressed in the range of 5 to 10 μm.

【0015】[0015]

【発明の効果】以上、説明したように、本発明によるC
oMnBセミハード磁性膜は、保磁力が30〜300 O
e で飽和磁化も1000emu/cc以上と大きく、か
つ磁気特性の異方性が抑制された等方的な膜であるた
め、垂直磁気記録層の下地膜として最適であり、工業的
に有用である。また、このセミハード磁性膜は、無電解
めっき法によって安定に製造することができ量産性にも
優れている。
As described above, the C according to the present invention is as described above.
The coercive force of the oMnB semi-hard magnetic film is 30 to 300 O.
Since it is an isotropic film having a large saturation magnetization of 1000 emu / cc or more at e and suppressing anisotropy of magnetic characteristics, it is optimal as an underlayer film for a perpendicular magnetic recording layer and industrially useful. .. Further, this semi-hard magnetic film can be stably manufactured by the electroless plating method and is excellent in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において硫酸マンガン濃度
0、0.005および0.05mol/lのめっき浴か
ら得られるCoMnBセミハード磁性膜の保磁力の同一
円周上の変動を示す図である。
FIG. 1 is a diagram showing variations in coercive force of CoMnB semi-hard magnetic films obtained from plating baths having manganese sulfate concentrations of 0, 0.005 and 0.05 mol / l on the same circumference in one example of the present invention. ..

【図2】本発明の一実施例で得られるCoMnBセミハ
ード磁性膜の保磁力とめっき浴の硫酸マンガン濃度との
関係を示す図である。
FIG. 2 is a diagram showing the relationship between the coercive force of the CoMnB semi-hard magnetic film obtained in one example of the present invention and the manganese sulfate concentration in the plating bath.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 構成成分として少なくともCo、Mnお
よびBを含む面内磁気異方性薄膜であって、その面内方
向の保磁力が30〜300 Oe であることを特徴とする
セミハード磁性膜。
1. A semi-hard magnetic film, which is an in-plane magnetic anisotropic thin film containing at least Co, Mn and B as constituent components and has a coercive force in the in-plane direction of 30 to 300 Oe.
【請求項2】 金属イオンとしてコバルトイオンおよび
マンガンイオンを含み、前記金属イオンの還元剤として
のジメチルアミンボランまたはジエチルアミンボランを
含み、添加剤として、少なくとも前記金属イオンの錯化
剤としてのクエン酸基およびリンゴ酸基を含む水溶液を
用いて、無電解めっき法によって形成することを特徴と
するセミハード磁性膜の製造方法。
2. A cobalt ion and a manganese ion as metal ions, dimethylamine borane or diethylamine borane as a reducing agent for the metal ions, and a citric acid group as a complexing agent for at least the metal ions as an additive. And a method for producing a semi-hard magnetic film, which is formed by an electroless plating method using an aqueous solution containing a malic acid group.
JP22368291A 1991-08-09 1991-08-09 Semi-hard magnetic film and manufacturing method thereof Expired - Lifetime JP2669212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22368291A JP2669212B2 (en) 1991-08-09 1991-08-09 Semi-hard magnetic film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22368291A JP2669212B2 (en) 1991-08-09 1991-08-09 Semi-hard magnetic film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0547556A true JPH0547556A (en) 1993-02-26
JP2669212B2 JP2669212B2 (en) 1997-10-27

Family

ID=16801997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22368291A Expired - Lifetime JP2669212B2 (en) 1991-08-09 1991-08-09 Semi-hard magnetic film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2669212B2 (en)

Also Published As

Publication number Publication date
JP2669212B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US20050249984A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
US20050221129A1 (en) Monocrystalline silicon substrate coated with metal-plated layer and perpendicular magnetic recording medium
JP2669212B2 (en) Semi-hard magnetic film and manufacturing method thereof
JP4408210B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH051384A (en) Electroless plating bath
JP3211815B2 (en) Soft magnetic thin film and method for manufacturing the same
JPH0666086B2 (en) Magnetic recording medium and manufacturing method thereof
JPH04116175A (en) Electroless plating bath
JPH0570967A (en) Electroless plating bath
JP2504839B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0589447A (en) Magnetic recording medium and its manufacture
JPH02228479A (en) Electroless plating bath
JPH04177614A (en) Semihard magnetic film and production thereof
JPH0429132B2 (en)
JPH04187780A (en) Electroless plating bath
JPH0594614A (en) Magnetic recording medium and production thereof
JPH0450645B2 (en)
JPS61231176A (en) Electroless plating method
JPH03287777A (en) Electroless plating bath
JPH0626010B2 (en) Magnetic recording body and manufacturing method thereof
JPS6379977A (en) Electroless plating bath
JPS60149785A (en) Electroless plating bath
JPH0317278A (en) Electroless plating bath
JPH08981B2 (en) Electroless plating bath
JPH0624056B2 (en) Magnetic recording body and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080704

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090704

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090704

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110704

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110704

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120704

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 15