JPH0547245A - Manufacturing device for high-temperature superconductive wire rod - Google Patents

Manufacturing device for high-temperature superconductive wire rod

Info

Publication number
JPH0547245A
JPH0547245A JP3225122A JP22512291A JPH0547245A JP H0547245 A JPH0547245 A JP H0547245A JP 3225122 A JP3225122 A JP 3225122A JP 22512291 A JP22512291 A JP 22512291A JP H0547245 A JPH0547245 A JP H0547245A
Authority
JP
Japan
Prior art keywords
base material
film forming
forming chamber
winding
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3225122A
Other languages
Japanese (ja)
Other versions
JP3067857B2 (en
Inventor
Shinya Aoki
伸哉 青木
Taichi Yamaguchi
太一 山口
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斎藤
Tsukasa Kono
宰 河野
Akira Saji
明 佐治
Noboru Kuroda
昇 黒田
Hiroshi Yoshida
弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP3225122A priority Critical patent/JP3067857B2/en
Publication of JPH0547245A publication Critical patent/JPH0547245A/en
Application granted granted Critical
Publication of JP3067857B2 publication Critical patent/JP3067857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a superconductive layer in the state where a base material is curved, and work a compression stress onto the base material after passing it through a sup port device to make the superconductive layer fine by forming the contact surface of a base material support device making contact with the base material into a convex surface, and providing a feed-out part and winding part in such a manner as to be capable of vertically inclining. CONSTITUTION:The inner parts of a film forming chamber 1, a feed part 2, and a delivery part 3 are vacuumized, and a carrier gas such as Ar is sent to a feed source 4 to evaporate a material powder for an intermediate layer 23, which is then sent to the film forming chamber 1. A tape base material 22 is also sent to the film forming chamber 1, passed on a support device 7, heated by a heater, and wound on a winding device 20 at a fixed speed. At this time, a cylinder device 21 is operated to regulate the inclinations of a feed-out part 2 and a winding part 3, and the base material 22 is moved along a convex surface provided on the device 7 upper surface. After the intermediate layer 23 is thus formed, the base material 22 is again moved from the winding device 20 to a feed-out device 19 and returned to the linear form, and an oxide superconductive layer 24 is formed on the intermediate layer 23 by use of an oxygen gas feeding device 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は長尺の高温超電導線材
を製造する装置に関し、特に成膜した酸化物超電導層に
圧縮応力を付与することで緻密な酸化物超電導層を形成
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a long high-temperature superconducting wire, and more particularly to an apparatus for forming a dense oxide superconducting layer by applying compressive stress to the formed oxide superconducting layer.

【0002】[0002]

【従来の技術】従来、酸化物超電導線材を製造する方法
の一例として、酸化物超電導体の粉末を銀などの管状の
シース材に充填し、これにドローイング、スウエージン
グまたは圧延などの塑性加工を施して線材化し、内部の
粉末を圧密するとともに、この後に熱処理を施して圧密
粉末に含まれる元素を反応させ、酸化物超電導線材を製
造する方法が知られている。
2. Description of the Related Art Conventionally, as an example of a method for producing an oxide superconducting wire, a powder of an oxide superconductor is filled in a tubular sheath material such as silver, and plastic working such as drawing, swaging or rolling is performed on the tubular sheath material. There is known a method in which an oxide superconducting wire is manufactured by subjecting it to a wire rod to consolidate the powder, and subsequently subjecting the powder to heat treatment to react the elements contained in the compacted powder.

【0003】[0003]

【発明が解決しようとする課題】この製造方法で得られ
た酸化物超電導線材にあっては、生成された酸化物超電
導体の結晶の配向性が不均一なために、酸化物超電導体
自身の持つ結晶異方性(酸化物超電導体の結晶の方向に
よって電流を流し易い方向と流しにくい方向が存在する
性質。)が影響して高い臨界電流密度のものが得られな
い問題があった。そして、前記酸化物超電導線材にあっ
ては、高い臨界電流密度を得るために結晶配向性を揃え
る処理が困難であり、結晶配向できたとしても長時間の
熱処理が必要な問題があり、また、仮に結晶配向できた
としてもその配向性は完全ではなく、実用化できるよう
なレベル(例えば10000A)まで臨界電流密度を向
上させることは困難であった。そこで従来、前記の問題
を解決するために、長尺のテープ状の基材を送出装置か
ら成膜室に連続的に送り、成膜室に原料ガスを送って基
材上に化学反応により連続的に成膜した後に、巻取装置
で巻き取って長尺の酸化物超電導線材を得る装置が開発
されている。
In the oxide superconducting wire obtained by this manufacturing method, since the crystal orientation of the oxide superconductor produced is not uniform, the oxide superconductor itself has There was a problem that a high critical current density could not be obtained due to the crystal anisotropy (the property in which there is a direction in which current easily flows and a direction in which current does not easily flow depending on the crystal direction of the oxide superconductor). And, in the oxide superconducting wire, it is difficult to align the crystal orientation in order to obtain a high critical current density, and there is a problem that a long time heat treatment is required even if the crystal orientation can be achieved. Even if the crystal orientation can be achieved, the orientation is not perfect, and it has been difficult to improve the critical current density to a level where it can be put to practical use (for example, 10,000 A). Therefore, conventionally, in order to solve the above-mentioned problem, a long tape-shaped substrate is continuously sent from a delivery device to a film forming chamber, a raw material gas is sent to the film forming chamber, and the substrate is continuously reacted by a chemical reaction. An apparatus has been developed in which a long oxide superconducting wire is obtained by winding the film with a winding device after the film is formed.

【0004】この装置は、図5に示すように、真空排気
可能な成膜室30の中央部にテープ状の基材31の支持
装置32を設け、支持装置32の両側部に基材の送出装
置33と巻取装置34を設け、成膜室30の中央部に原
料ガスの導入管35を設けて構成されている。図5に示
す装置は、成膜室30を真空排気した後に送出装置33
から繰り出したテープ状の基材31を支持装置32に導
き、支持装置32に内蔵された加熱ヒータによって基材
31を加熱しつつ基材31上面に導入管35から原料ガ
スを導入して反応させ、基材上面に酸化物超電導層を形
成することで超電導線材を得る装置である。
In this apparatus, as shown in FIG. 5, a support device 32 for a tape-shaped substrate 31 is provided in the center of a film forming chamber 30 capable of being evacuated, and the substrate is delivered to both sides of the support device 32. A device 33 and a winding device 34 are provided, and a raw material gas introduction pipe 35 is provided at the center of the film forming chamber 30. In the apparatus shown in FIG. 5, the film formation chamber 30 is evacuated and then the delivery apparatus 33 is used.
The tape-shaped base material 31 fed out from the support device 32 is guided to the support device 32, and while the base material 31 is heated by the heater incorporated in the support device 32, the raw material gas is introduced from the introduction pipe 35 to the upper surface of the base material 31 and reacted. An apparatus for obtaining a superconducting wire by forming an oxide superconducting layer on the upper surface of a base material.

【0005】ところが、前記形式の製造装置にあって
は、長尺の基材31が送出装置33を出てから巻取装置
34に巻き取られるまで一直線状態にあり、巻取装置3
4で初めて湾曲されるために、巻取時において超電導層
に引張応力が作用し、超電導層にクラックが入り、臨界
電流密度の低下を引き起こす問題があった。
However, in the manufacturing apparatus of the above-described type, the long base material 31 is in a straight line state from the exit of the feeding device 33 to the winding of the winding device 34.
Since it was first bent in No. 4, tensile stress acted on the superconducting layer at the time of winding, cracking occurred in the superconducting layer, and there was a problem of lowering the critical current density.

【0006】本発明は前記事情に鑑みてなされたもの
で、成膜後の酸化物超電導層に圧縮応力を加えることが
できるようにすることによって、緻密な超電導層を形成
することができ、クラックのない酸化物超電導層を得る
ことができる酸化物超電導線材の製造装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and a compressive stress can be applied to an oxide superconducting layer after film formation, whereby a dense superconducting layer can be formed and cracks can be formed. An object of the present invention is to provide an apparatus for producing an oxide superconducting wire, which can obtain an oxide superconducting layer free from defects.

【0007】[0007]

【課題を解決するための手段】請求項1に記載した発明
は前記課題を解決するために、内部を真空排気可能な成
膜室と、この成膜室に酸化物超電導体の原料ガスを供給
する供給源と、前記成膜室の側部に接続された供給部お
よび導出部を具備してなり、前記成膜室に加熱ヒータを
備えた基材支持装置が設けられ、前記供給部にテープ状
の基材を成膜室の基材支持装置に送り出す送出装置が設
けられ、前記導出部に前記基材支持装置を通過した基材
を巻き取る巻取装置が収納されるとともに、前記供給と
導出部とが、成膜室に対する接続部において上下に傾斜
自在に接続され、前記基材支持装置の当接面が凸曲面に
形成されてなるものである。
In order to solve the above-mentioned problems, the invention described in claim 1 supplies a film-forming chamber in which the inside can be evacuated, and a source gas of an oxide superconductor is supplied to the film-forming chamber. And a supply unit connected to the side of the film forming chamber and a lead-out unit. The film forming chamber is provided with a substrate supporting device having a heater, and the supply unit has a tape. A delivery device for delivering the substrate in the shape of a film to a substrate supporting device in the film forming chamber, a winding device for winding the substrate having passed through the substrate supporting device is housed in the outlet part, and the feeding and The lead-out portion is vertically slidably connected at a connecting portion to the film forming chamber, and the contact surface of the substrate supporting device is formed into a convex curved surface.

【0008】[0008]

【作用】基材に当接する基材支持装置の当接面を凸曲面
に形成し、送出部と巻取部を上下に傾斜自在に構成する
ことで、基材を湾曲させた状態でその上面に超電導層を
形成することができる。よって基材支持装置を通過した
後の基材は直線状になるので、基材支持装置の通過後は
超電導層に圧縮応力が作用する。このため酸化物超電導
層は緻密になり、クラックの生じにくいものが得られ
る。
The contact surface of the base material supporting device that contacts the base material is formed into a convex curved surface, and the sending portion and the winding portion are configured to be tiltable up and down, so that the upper surface of the base material is curved. A superconducting layer can be formed on. Therefore, since the base material after passing through the base material supporting device becomes linear, compressive stress acts on the superconducting layer after passing through the base material supporting device. For this reason, the oxide superconducting layer becomes dense and a layer in which cracks are hard to occur can be obtained.

【0009】[0009]

【実施例】図1は本発明の一実施例の製造装置を示すも
ので、図中符号1は成膜室を示し、2は成膜室1の左側
部側に接続された供給部、3は成膜室1の右側部側に接
続された導出部、4は原料ガスの供給源をそれぞれ示し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a manufacturing apparatus according to an embodiment of the present invention. In the drawing, reference numeral 1 denotes a film forming chamber, 2 denotes a supply unit connected to the left side of the film forming chamber 1, 3 Is a lead-out section connected to the right side of the film forming chamber 1, and 4 is a source of the source gas.

【0010】成膜室1は、排気部6を介して図示略の真
空ポンプなどの排気装置に接続されていて内部を真空排
気できるように気密構造にされている。成膜室1の内部
には支持台状の基材支持装置7が支持ロッド8に支持さ
れて設けられ、基材支持装置7の内部には加熱用のヒー
タが内蔵されている。また、支持ロッド8の基端部には
蛇腹などの伸縮部材9が設けられていて、支持装置7が
上下に若干移動自在かつ左右に若干揺動自在に支持され
ている。また、基材支持装置7の上面は断面円弧状の凸
曲面にされている。
The film forming chamber 1 is connected to an evacuation device such as a vacuum pump (not shown) through an evacuation unit 6, and has an airtight structure so that the inside can be evacuated. A base supporting device 7 in the form of a support is supported by a supporting rod 8 inside the film forming chamber 1, and a heater for heating is built in the base supporting device 7. An elastic member 9 such as a bellows is provided at the base end of the support rod 8, and the support device 7 is supported so as to be slightly movable vertically and slightly swingably to the left and right. Further, the upper surface of the base material supporting device 7 is formed into a convex curved surface having an arcuate cross section.

【0011】成膜室1の左側の供給部2と右側の導出部
3は以下に説明する構成となっている。まず、成膜室1
の左側壁には前記支持装置7の設置高さに合わせて供給
筒10が一体化され、右側壁には支持装置7の設置高さ
に合わせて導出筒11が一体化されている。供給筒10
の先端部には蛇腹筒10aを介して接続筒13と収納容
器14がそれぞれ気密にフランジ結合され、導出筒11
の先端部には蛇腹筒11aを介して接続筒15、16と
収納容器17がそれぞれ気密にフランジ結合されてい
て、各筒10、10a、11、11a、13、15、1
6と収納容器14、17の内部を成膜室1の内部と同一
雰囲気に保持できるようになっている。前記蛇腹筒10
a、11aは、ステンレス蛇腹などのように撓曲自在の
もので、供給部2と導出部3とが成膜室1に対して上下
に傾斜自在に接続されている。更に、接続筒13の低部
には支持ブラケット13aが、接続筒16の低部には支
持ブラケット16aがそれぞれ固定され、各支持ブラケ
ットの下方にはシリンダ装置21が設けられている。そ
して、各支持ブラケット13a、16aには長孔が形成
され、各シリンダ装置21の出力軸の先端は前記支持ブ
ラケット13aの長孔あるいは支持ブラケット16bの
長孔にピン結合されていて、シリンダ装置21の出力軸
を伸縮させることで供給部2あるいは導出部3を上下に
所用角度傾斜できるようになっている。
The supply unit 2 on the left side and the lead-out unit 3 on the right side of the film forming chamber 1 are configured as described below. First, the film forming chamber 1
A supply cylinder 10 is integrated with the left side wall of the support device 7 according to the installation height of the support device 7, and a discharge cylinder 11 is integrated with the right side wall of the support device 7 according to the installation height of the support device 7. Supply cylinder 10
The connecting tube 13 and the storage container 14 are airtightly flange-coupled to the tip of the connecting tube 13 via the bellows tube 10a.
The connecting cylinders 15 and 16 and the storage container 17 are airtightly flange-coupled to the tip end of each of the cylinders 10a, 11a, 11a, 13, 15 and 1 through a bellows cylinder 11a.
The interior of 6 and the storage containers 14 and 17 can be kept in the same atmosphere as the interior of the film forming chamber 1. The bellows tube 10
Reference characters a and 11a are flexible such as stainless bellows, and the supply unit 2 and the lead-out unit 3 are connected to the film forming chamber 1 so as to be vertically inclined. Further, a supporting bracket 13a is fixed to the lower portion of the connecting cylinder 13, a supporting bracket 16a is fixed to the lower portion of the connecting cylinder 16, and a cylinder device 21 is provided below each supporting bracket. An elongated hole is formed in each of the support brackets 13a and 16a, and the tip of the output shaft of each cylinder device 21 is pin-connected to the elongated hole of the support bracket 13a or the elongated hole of the support bracket 16b. By extending and contracting the output shaft of the above, the supply part 2 or the lead-out part 3 can be vertically tilted at a required angle.

【0012】また、収納容器14の内部には、正逆回転
自在な搬出ローラなどの送出装置19が設けられ、収納
容器17の内部には正逆回転自在な巻取ローラなどの巻
取装置20が設けられている。なお、前記各筒10、1
0a、11、11a、13、15、16と収納容器1
4、17の内部には搬送用のローラ18・・・が水平に
設けられている。以上の構成により、送出装置19に巻
き付けられた金属テープなどの基材22を供給部2のロ
ーラ18に沿って成膜室1の支持装置7に送り、更に導
出部3のローラ18・・・に沿って巻取装置20に巻き
取ることができるように、更にその逆方向に巻き取るこ
とができるようになっている。
A delivery device 19 such as a forward / reverse rotatable carry-out roller is provided inside the storage container 14, and a take-up device 20 such as a forward / reverse rotatable winding roller 20 is provided inside the storage container 17. Is provided. In addition, each of the cylinders 10 and 1
0a, 11, 11a, 13, 15, 16 and storage container 1
Inside the rollers 4 and 17, conveying rollers 18 are horizontally provided. With the above configuration, the base material 22 such as a metal tape wound around the delivery device 19 is sent to the support device 7 of the film forming chamber 1 along the roller 18 of the supply unit 2 and further the rollers 18 of the lead-out unit 3. The winding device 20 can be wound in the opposite direction, and can be wound in the opposite direction.

【0013】原料ガスの供給源4、4は、酸化物超電導
体を構成する元素のガスあるいは中間層の原料ガスを成
膜室1に供給するものである。この供給源4は原料粉末
を収納した原料フィーダと気化装置を備え、原料フィー
ダにアルゴンガスなどのキャリアガスを送りこれを気化
装置に送って気化させた後に成膜室1に送ることができ
るようになっている。
The source gases 4 and 4 for supplying the raw material gas supply the gas of the element forming the oxide superconductor or the raw material gas of the intermediate layer to the film forming chamber 1. This supply source 4 is provided with a raw material feeder containing a raw material powder and a vaporizer, and a carrier gas such as argon gas is sent to the raw material feeder so that it can be sent to the vaporizer and vaporized and then sent to the film forming chamber 1. It has become.

【0014】前記一方の供給源4の気化装置に供給され
る原料は、基材22上に形成する中間層の原料である。
この原料としては、基材22を構成する元素の熱膨張率
と酸化物超電導層を構成する元素の熱膨張率の中間のも
のを用いることが好ましい。具体的には中間層としてM
gO、SrTiO3などを用いるのでこれらの粉末を気
化装置の原料フィーダに収納する。
The raw material supplied to the vaporizer of the one supply source 4 is the raw material of the intermediate layer formed on the base material 22.
As the raw material, it is preferable to use a material having an intermediate coefficient of thermal expansion between the elements constituting the base material 22 and the oxide superconducting layer. Specifically, M as the intermediate layer
Since gO and SrTiO 3 are used, these powders are stored in the raw material feeder of the vaporizer.

【0015】前記他方の供給源4の気化装置に供給され
る原料は、Y系、La系、Bi系、Tl系などの酸化物
超電導体を形成するための原料である。本願発明で製造
する酸化物超電導体として、Y1Ba2Cu3Ox、Y2Ba
4Cu8Ox、Y3Ba3Cu6Oxなる組成、(Bi,P
b)2Ca2Sr2Cu3Ox、(Bi,Pb)2Ca2Sr3
Cu4Oxなる組成、Tl2Ba2Ca2Cu3Ox、Tl1
Ba2Ca2Cu3Ox、Tl1Ba2Ca3Cu4Oxなる
組成などに代表される臨界温度の高い酸化物超電導体を
例示することができる。よってこれらを製造する場合に
用いる原料としては、前記酸化物超電導体を構成する各
元素の酸化物、硫化物、炭酸塩などの粉末を用いる。
The raw material supplied to the vaporizer of the other supply source 4 is a raw material for forming a Y-based, La-based, Bi-based, Tl-based oxide superconductor or the like. As the oxide superconductor manufactured by the present invention, Y 1 Ba 2 Cu 3 Ox, Y 2 Ba
4 Cu 8 Ox, Y 3 Ba 3 Cu 6 Ox, (Bi, P
b) 2 Ca 2 Sr 2 Cu 3 Ox, (Bi, Pb) 2 Ca 2 Sr 3
Composition of Cu 4 Ox, Tl 2 Ba 2 Ca 2 Cu 3 Ox, Tl 1
Examples thereof include oxide superconductors having a high critical temperature represented by compositions such as Ba 2 Ca 2 Cu 3 Ox and Tl 1 Ba 2 Ca 3 Cu 4 Ox. Therefore, powders of oxides, sulfides, carbonates, etc. of the respective elements constituting the oxide superconductor are used as the raw material used in manufacturing these.

【0016】次に前記構成の装置を用いてテープ状の酸
化物超電導線材を製造する場合について説明する。
Next, a case where a tape-shaped oxide superconducting wire is manufactured using the apparatus having the above-mentioned structure will be described.

【0017】図1に示す装置を用いて酸化物超電導線材
を製造するには、真空ポンプなどの排気装置によって排
気部6から成膜室1の内部と供給部2の内部と導出部3
の内部を真空排気するとともに、供給源4にアルゴンガ
スなどのキャリアガスを送り、中間層の原料粉末を気化
させて中間層の原料ガスを成膜室1に送る。また、送出
装置19からテープ状の基材22を成膜室1に送り、成
膜室1の支持装置7上を通過させ、支持装置7の加熱ヒ
ータで基材22を加熱し、その後に巻取装置20側に一
定速度で巻き取る。また、シリンダ装置21、21を作
動させて送出部2と巻取部3の傾斜角度を調節し、基材
22が図2に示すように支持装置7の上面の凸曲面に沿
うようにする。以上の操作により基材支持装置7上で基
材22上に連続的に中間層23が形成される。
To manufacture an oxide superconducting wire using the apparatus shown in FIG. 1, the inside of the film forming chamber 1, the inside of the supply section 2 and the outlet section 3 are exhausted from the exhaust section 6 by an exhaust apparatus such as a vacuum pump.
While the inside of the chamber is evacuated, a carrier gas such as argon gas is sent to the supply source 4 to vaporize the raw material powder of the intermediate layer and send the raw material gas of the intermediate layer to the film forming chamber 1. Further, the tape-shaped base material 22 is sent from the delivery device 19 to the film forming chamber 1 and passed over the supporting device 7 of the film forming chamber 1, and the base material 22 is heated by the heater of the supporting device 7 and then wound. It is wound around the take-up device 20 side at a constant speed. Further, the cylinder devices 21 and 21 are operated to adjust the inclination angles of the feeding part 2 and the winding part 3 so that the base material 22 is along the convex curved surface of the upper surface of the supporting device 7 as shown in FIG. By the above operation, the intermediate layer 23 is continuously formed on the base material 22 on the base material support device 7.

【0018】基材22上に中間層23を形成したなら
ば、中間層を形成した基材を再度巻取装置20から送出
装置19側に移動させる。そして、中間層を備えた基材
22が基材支持装置7上を通過する際に、通過に先立っ
て一方の供給源4からの中間層の原料ガスの供給を停止
しておき、他方の気化装置4からの原料ガスの供給を開
始し、同時に酸素ガス供給装置27からの酸素ガスの供
給を開始して中間層上に酸化物超電導層を形成する。こ
こで基材支持装置7の加熱ヒータによる基材22の加熱
を行なうのは勿論である。また、酸化物超電導層を形成
する場合、送出装置19と巻取装置20の間で基材22
を必要回数往復させるなどして必要な厚さの酸化物超電
導層を積層する。
After the intermediate layer 23 is formed on the base material 22, the base material having the intermediate layer formed thereon is again moved from the winding device 20 to the delivery device 19 side. Then, when the base material 22 having the intermediate layer passes over the base material supporting device 7, the supply of the raw material gas for the intermediate layer from one supply source 4 is stopped prior to the passage, and the vaporization of the other is performed. The supply of the source gas from the device 4 is started, and at the same time, the supply of the oxygen gas from the oxygen gas supply device 27 is started to form the oxide superconducting layer on the intermediate layer. Of course, the base material 22 is heated by the heater of the base material support device 7. When forming the oxide superconducting layer, the base material 22 is provided between the delivery device 19 and the winding device 20.
And the like is repeated a required number of times to stack an oxide superconducting layer having a required thickness.

【0019】ところで、基材支持装置7の上面は図2に
示すように凸曲面になっているので、基材22は湾曲さ
れた状態で基材支持装置7上を通過し、中間層23の上
面に図3に示すように酸化物超電導層24が堆積する。
この後、基材22が基材支持装置7を通過すると基材2
2は直線状にされるので、この酸化物超電導層24には
図4に示すように圧縮応力が作用する。よって酸化物超
電導層24は緻密なものになり、欠陥のないものとな
る。
By the way, since the upper surface of the base material supporting device 7 has a convex curved surface as shown in FIG. 2, the base material 22 passes over the base material supporting device 7 in a curved state and the intermediate layer 23 An oxide superconducting layer 24 is deposited on the upper surface as shown in FIG.
After that, when the base material 22 passes through the base material supporting device 7, the base material 2
Since 2 is made linear, compressive stress acts on this oxide superconducting layer 24 as shown in FIG. Therefore, the oxide superconducting layer 24 becomes dense and has no defects.

【0020】なお、中間層23を形成する場合にも基材
支持装置7を通過した後に基材22が直線状に変形され
て中間層23に圧縮応力が作用するので、中間層23も
緻密なものとなる。
Even when forming the intermediate layer 23, since the substrate 22 is linearly deformed after passing through the substrate supporting device 7 and a compressive stress acts on the intermediate layer 23, the intermediate layer 23 is also dense. Will be things.

【0021】以上説明したように製造された酸化物超電
導線材は、中間層23が介在されているので、曲げに強
く、熱サイクルを受けても中間層23と酸化物超電導層
24が剥離しずらい利点を有している。また、前記の製
造方法によれば、成膜室1を基材22が繰り返し通過し
て酸化物超電導層を形成するので、成膜室1を常に同一
真空状態に保持したままで真空条件を変えることなく
(即ち段取り替えを行なう必要無く)酸化物超電導層を
積層することができ、積層する酸化物超電導層24に膜
厚ムラがなくなる上に、積層ごとの段取り替えなども不
要で連続成膜できる効果がある。。更に、酸化物超電導
層24を積層する場合、層ごとに磁気特性向上のための
不純物導入やピンイングサイトの導入を行なうことがで
き、臨界電流密度の向上処理ができる効果がある。
Since the oxide superconducting wire manufactured as described above has the intermediate layer 23 interposed, it is resistant to bending, and the intermediate layer 23 and the oxide superconducting layer 24 do not separate even when subjected to a heat cycle. It has advantages. Further, according to the above-mentioned manufacturing method, since the base material 22 repeatedly passes through the film forming chamber 1 to form the oxide superconducting layer, the vacuum condition is changed while the film forming chamber 1 is always kept in the same vacuum state. The oxide superconducting layer can be stacked without any change (that is, without needing to perform the setup change), the oxide superconducting layer 24 to be laminated has no film thickness unevenness, and the setup change for each stack is not necessary and continuous film formation is possible. There is an effect that can be done. .. Further, when the oxide superconducting layer 24 is laminated, it is possible to introduce impurities or pining sites for improving the magnetic characteristics for each layer, and it is possible to improve the critical current density.

【0022】[0022]

【製造例】ハステロイC276からなる幅5mm、厚さ
0.1mmのテープ状の基材を図1に示す送出装置から
速度1mm/分で成膜室に送り、成膜室で基材を700
℃に加熱して成膜し、次いで巻取装置に巻き取り、成膜
室において基材上にYSZからなる中間層を形成すると
ともにその上にY1Ba2Cu3yなる組成の酸化物超電
導層を形成した。
[Production Example] A tape-shaped substrate made of Hastelloy C276 having a width of 5 mm and a thickness of 0.1 mm is sent from the delivery device shown in FIG. 1 to the film forming chamber at a speed of 1 mm / min, and the substrate is 700 in the film forming chamber.
An oxide having a composition of Y 1 Ba 2 Cu 3 O y is formed on the substrate by forming an intermediate layer of YSZ on the substrate in a film forming chamber by heating to ℃ to form a film and then winding the film into a winding device. A superconducting layer was formed.

【0023】この際、成膜室を1×10-4Torrに減
圧し、一方の供給源の原料フィーダに中間層形成のため
にY(thd)3とZr(thd)4の混合粉末を充填
し、他方の原料フィーダに酸化物超電導層形成のため
に、Y(thd)3とBa(thd)2とCu(thd)
2の混合粉末を充填し、Arガスによって気化器に圧送
した。気化器では250℃に加熱することで粉末をガス
化した。
At this time, the film forming chamber was decompressed to 1 × 10 -4 Torr, and the raw material feeder of one supply source was filled with a mixed powder of Y (thd) 3 and Zr (thd) 4 for forming an intermediate layer. Then, in order to form the oxide superconducting layer on the other material feeder, Y (thd) 3, Ba (thd) 2, Cu (thd)
The mixed powder of No. 2 was filled and pressure-fed to the vaporizer by Ar gas. In the vaporizer, the powder was gasified by heating to 250 ° C.

【0024】酸化物超電導を形成する場合は3回繰り返
して成膜し、厚さ6μmの酸化物超電導層を形成した。
更に、供給部と導出部の角度を調節して基材支持装置の
上面から基材が離間する際の水平面に対する角度θを1
度に設定して成膜した。以上の処理によって得られた酸
化物超電導線材は臨界温度90Kを示し、臨界電流密度
は1000A/mm2を示した。
When forming an oxide superconducting film, the film formation was repeated three times to form an oxide superconducting layer having a thickness of 6 μm.
Further, the angle θ with respect to the horizontal plane when the base material is separated from the upper surface of the base material support device is adjusted to 1 by adjusting the angle between the supply portion and the outlet portion.
Deposition was performed at various times. The oxide superconducting wire obtained by the above treatment had a critical temperature of 90K and a critical current density of 1000A / mm 2 .

【0025】[0025]

【比較例】図1に示す装置を用い、酸化物超電導層を形
成する際の基材と支持装置上面とのなす角度θを0度に
設定して酸化物超電導層を成膜する操作を繰り返し行な
って前記酸化物超電導線材と同等の積層数のものを得
た。基材の移動速度と成膜条件は先の例と同等にした。
得られた酸化物超電導線材は、臨界温度89K、臨界電
流密度100A/mm2を示した。以上の比較から明ら
かなように、本発明方法で得られた酸化物超電導線材は
比較例で得られた超電導線材よりも優れた超電導特性を
発揮することが明らかになった。
Comparative Example Using the apparatus shown in FIG. 1, the operation of forming the oxide superconducting layer is repeated by setting the angle θ between the base material and the upper surface of the supporting device when forming the oxide superconducting layer to 0 degree. Then, the same number of laminated layers as the oxide superconducting wire was obtained. The moving speed of the substrate and the film forming conditions were the same as in the previous example.
The obtained oxide superconducting wire had a critical temperature of 89K and a critical current density of 100A / mm 2 . As is clear from the above comparison, it has been revealed that the oxide superconducting wire obtained by the method of the present invention exhibits superconducting characteristics superior to those of the superconducting wire obtained in the comparative example.

【発明の効果】以上説明したように本発明によれば、基
材上に成膜後に圧縮応力を付加することができるので、
緻密な臨界電流密度の高い酸化物超電導層を有する超電
導線材を得ることができる。また、クラックの生じてい
ない状態の緻密な厚い積層状態の酸化物超電導層を有す
る酸化物超電導線材を得ることができる。更に、同一の
成膜室で同一条件で酸化物超電導層を複数積層できるの
で膜厚ムラの無い積層膜が得られる。なおまた、同一成
膜室で形成する積層膜とするならば、先に形成した酸化
物超電導層に欠陥部分が生じていてもその上に積層する
ことで製造途中で欠陥部分に再成膜することができる。
As described above, according to the present invention, a compressive stress can be applied after forming a film on a substrate,
A superconducting wire having a dense oxide superconducting layer having a high critical current density can be obtained. Further, it is possible to obtain an oxide superconducting wire having a dense and thick laminated oxide superconducting layer in which cracks are not generated. Furthermore, since a plurality of oxide superconducting layers can be laminated in the same film forming chamber under the same conditions, a laminated film having no unevenness in film thickness can be obtained. Further, if a laminated film is formed in the same film forming chamber, even if a defective portion is formed in the oxide superconducting layer formed previously, the oxide superconducting layer is laminated on the defective portion to re-form a film in the defective portion during manufacturing. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の装置を示す構成図で
ある。
FIG. 1 is a block diagram showing an apparatus according to an embodiment of the present invention.

【図2】図2は図1に示す装置の基材支持装置の拡大側
面図である。
FIG. 2 is an enlarged side view of a base material supporting device of the device shown in FIG.

【図3】図3は基材の湾曲状態を示す断面図である。FIG. 3 is a cross-sectional view showing a curved state of a base material.

【図4】図4は直線状態とした基材の断面図である。FIG. 4 is a cross-sectional view of a base material in a linear state.

【図5】図5は従来の成膜装置の一例を示す断面図であ
る。
FIG. 5 is a sectional view showing an example of a conventional film forming apparatus.

【符号の説明】[Explanation of symbols]

1 成膜室 2 供給部 3 導出部 4 供給源 7 基材支持装置 10 供給筒 10a 蛇腹筒 11 導出筒 11a 蛇腹筒 13 接続筒 13a 支持ブラケット 15 接続筒 16 接続筒 16a 支持ブラケット 19 導出装置 20 巻取装置 21 シリンダ装置 22 基材 23 中間層 24 酸化物超電導層 DESCRIPTION OF SYMBOLS 1 film-forming chamber 2 supply part 3 derivation part 4 supply source 7 base material support device 10 supply cylinder 10a bellows cylinder 11 derivation cylinder 11a bellows cylinder 13 connection cylinder 13a support bracket 15 connection cylinder 16 connection cylinder 16a support bracket 19 derivation device 20 rolls Taking device 21 Cylinder device 22 Base material 23 Intermediate layer 24 Oxide superconducting layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定方 伸行 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 斎藤 隆 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 佐治 明 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 黒田 昇 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 吉田 弘 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Tadakata 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Wire Co., Ltd. (72) Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (72) Inventor Satoshi Kono 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (72) Inventor Saji Akira 20 Kitakanzan, Otakamachi, Midori-ku, Nagoya-shi, Aichi No. 1 Chubu Electric Power Co., Inc. Electric Power Technology Research Institute (72) Inventor Noboru Kuroda No. 20 Kitakanyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi No. 1 Chubu Electric Power Co. Electric Power Technology Research Lab (72) Inventor Hiroshi Yoshida Aichi Chubu Electric Power Co., Inc. Electric Power Technology Research Institute, 1-20, Kitakanyama, Otaka-cho, Midori-ku, Nagoya, Japan

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部を真空排気可能な成膜室と、この成
膜室に酸化物超電導体の原料ガスを供給する供給源と、
前記成膜室の側部に接続された供給部および導出部を具
備してなり、前記成膜室内に加熱ヒータを備えた基材支
持装置が設けられ、前記供給部にテープ状の基材を成膜
室の基材支持装置に送り出す送出装置が設けられ、前記
導出部に前記基材支持装置を通過した基材を巻き取る巻
取装置が収納されるとともに、前記供給部と導出部と
が、成膜室に対する接続部において上下に傾斜自在に接
続され、基材支持装置の基材当接面が凸曲面にされてな
ることを特徴とする高温超電導線材の製造装置。
1. A film forming chamber capable of evacuating the interior, and a supply source for supplying a raw material gas of an oxide superconductor to the film forming chamber,
A base material supporting device having a heater and a heater is provided, which is connected to a side portion of the film forming chamber, and is provided with a heater in the film forming chamber. A delivery device for delivering to the base material support device in the film forming chamber is provided, and a winding device for winding the base material that has passed through the base material support device is housed in the delivery portion, and the supply portion and the delivery portion are provided. An apparatus for manufacturing a high-temperature superconducting wire, which is vertically slantably connected at a connection portion with respect to a film forming chamber, and a base material contact surface of a base material support device is a convex curved surface.
JP3225122A 1991-08-09 1991-08-09 High-temperature superconducting wire production equipment Expired - Lifetime JP3067857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225122A JP3067857B2 (en) 1991-08-09 1991-08-09 High-temperature superconducting wire production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225122A JP3067857B2 (en) 1991-08-09 1991-08-09 High-temperature superconducting wire production equipment

Publications (2)

Publication Number Publication Date
JPH0547245A true JPH0547245A (en) 1993-02-26
JP3067857B2 JP3067857B2 (en) 2000-07-24

Family

ID=16824312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225122A Expired - Lifetime JP3067857B2 (en) 1991-08-09 1991-08-09 High-temperature superconducting wire production equipment

Country Status (1)

Country Link
JP (1) JP3067857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513553A (en) * 2002-07-26 2006-04-20 メトル、アクサイド、テクナラジズ、インク Superconducting material on tape substrate
JP2020524214A (en) * 2017-06-08 2020-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Roll-to-roll equipment for processing metal tape with ceramic coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513553A (en) * 2002-07-26 2006-04-20 メトル、アクサイド、テクナラジズ、インク Superconducting material on tape substrate
JP2020524214A (en) * 2017-06-08 2020-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Roll-to-roll equipment for processing metal tape with ceramic coating

Also Published As

Publication number Publication date
JP3067857B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JP3717683B2 (en) Connection structure and connection method of oxide superconducting conductor
US5034374A (en) Method of producing high temperature superconductor Josephson element
US6743531B2 (en) Oxide superconducting conductor and its production method
EP0462906B1 (en) Process and apparatus for preparing superconducting thin films
JPH0547245A (en) Manufacturing device for high-temperature superconductive wire rod
EP0342039B1 (en) Josephson device and method of making same
JP3771143B2 (en) Manufacturing method of oxide superconductor
JP3330964B2 (en) Method and apparatus for manufacturing high-temperature superconducting wire
JP3822077B2 (en) Manufacturing method of oxide superconductor tape wire and oxide superconductor tape wire
JP3127011B2 (en) CVD reactor
JP2649674B2 (en) Composite ceramic superconductor
JP3771142B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP4034052B2 (en) Manufacturing method of oxide superconductor
JP2632409B2 (en) Method and apparatus for forming high temperature superconductor thick film
JPH0442853A (en) Formation of high-temperature superconductive thick film by gas-deposition method and forming device therefore
JP2643972B2 (en) Oxide superconducting material
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JP2783845B2 (en) Method for producing oxide superconducting thin film
JP2575442B2 (en) Method for producing oxide-based superconducting wire
KR100485886B1 (en) Method and apparatus for manufacturing both sides coated superconductors and product thereof
JP4490049B2 (en) Superconducting conductor and manufacturing method thereof
JP2527790B2 (en) Equipment for manufacturing long oxide superconducting materials
JP2527789B2 (en) Method for manufacturing oxide-based superconducting wire
US5322818A (en) Method for forming an oxide superconducting material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12