JPH0546522B2 - - Google Patents

Info

Publication number
JPH0546522B2
JPH0546522B2 JP58120625A JP12062583A JPH0546522B2 JP H0546522 B2 JPH0546522 B2 JP H0546522B2 JP 58120625 A JP58120625 A JP 58120625A JP 12062583 A JP12062583 A JP 12062583A JP H0546522 B2 JPH0546522 B2 JP H0546522B2
Authority
JP
Japan
Prior art keywords
monomer
base material
refractive index
optical transmission
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58120625A
Other languages
Japanese (ja)
Other versions
JPS6012507A (en
Inventor
Koichi Maeda
Masaaki Funaki
Motoaki Yoshida
Yasuji Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP58120625A priority Critical patent/JPS6012507A/en
Priority to US06/626,697 priority patent/US4587065A/en
Priority to DE8484304531T priority patent/DE3466660D1/en
Priority to EP84304531A priority patent/EP0130838B1/en
Publication of JPS6012507A publication Critical patent/JPS6012507A/en
Priority to US06/827,468 priority patent/US4689000A/en
Publication of JPH0546522B2 publication Critical patent/JPH0546522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】 この発明は、屈折率分垃を有する合成暹脂光䌝
送䜓を補造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a synthetic resin optical transmission body having a refractive index distribution.

光䌝送䜓ずしお、䞭心軞からの距離の乗に比
䟋しお枛少する屈折率の分垃を有する透明棒状䜓
が知られおいる。この透明棒状䜓は凞レンズ䜜甚
を有し、たたその屈折率分垃は(1)匏で近䌌され
る。
A transparent rod-shaped body having a refractive index distribution that decreases in proportion to the square of the distance from the central axis is known as a light transmission body. This transparent rod-shaped body has a convex lens effect, and its refractive index distribution is approximated by equation (1).

(r)n0−Ar2 

(1) 匏䞭、(r)は䞭心軞からの距離の点におけ
る屈折率、n0は䞭心軞における屈折率、は正の
定数をそれぞれ衚わす。 このような透明棒状䜓䞭を光束は蛇行しお䌝播
し、その呚期は(2)匏で衚わされる。
n(r)=n 0 (1-1/2Ar 2 ) ...(1) (In the formula, n(r) is the refractive index at the point of distance r from the central axis, n 0 is the refractive index at the central axis, (A represents a positive constant.) The light beam propagates in a meandering manner in such a transparent rod-shaped body, and its period L is expressed by equation (2).

2π√ 

(2) たた、(3)匏で近䌌されるように、䞭心軞からの
距離の乗に比䟋しお増倧する屈折率分垃を有す
る堎合には、透明棒状䜓は凹レンズ䜜甚を有する
光䌝送䜓ずなる。
L=2π/√...(2) Also, as approximated by equation (3), if the transparent rod-shaped body has a refractive index distribution that increases in proportion to the square of the distance from the central axis, It becomes an optical transmission body with a concave lens effect.

(r)n0Br2 

(3) 匏䞭、(r)およびn0は前蚘に同じであり、
は正の定数である。 このような屈折率分垃を有する合成暹脂光䌝送
䜓の補造方法は、特公昭52−5857号公報、特開昭
51−16394号公報、特開昭54−119939号公報など
に蚘茉されおいる。特公昭52−5857号公報および
特開昭51−16394号公報に蚘茉された方法では、
たず、網状重合䜓Paを生成する架橋性単量䜓Ma
を液䜓状態から流動性を倱぀たゲル状態になるた
で初期重合させお透明なゲル状母材を圢成する。
次いで、この母材を単量䜓Maずは異なる単量䜓
Mbからなる液盞䞭に浞挬しお、母材がその衚面
から内郚に向぀お次第に枛少するような単量䜓
Mbの濃床募配を持぀ように、単量䜓Mbを拡散
させる。このずき、単量䜓Mbずしおは、網状重
合䜓Paの屈折率ずは異なる屈折率を有する重合
䜓Pbを生成する単量䜓を甚いる。単量䜓Mbは拡
散ず同時におよびたたは拡散埌の熱凊理工皋䞭
に重合し、たたこの時に単量䜓Maの重合も完結
する。特公昭52−5857号公報および特開昭51−
16394号公報に蚘茉された方法では、このように
しお屈折率分垃を有する合成暹脂光䌝送䜓を埗る
ようにしおいる。
n(r)=n 0 (1+1/2Br 2 )...(3) (In the formula, n(r) and n 0 are the same as above, and B
is a positive constant. ) A method of manufacturing a synthetic resin optical transmitter having such a refractive index distribution is described in Japanese Patent Publication No. 52-5857 and Japanese Patent Application Laid-Open No.
It is described in JP-A No. 51-16394, Japanese Patent Application Laid-open No. 119939-1980, etc. In the method described in Japanese Patent Publication No. 52-5857 and Japanese Patent Application Laid-open No. 51-16394,
First, the crosslinkable monomer Ma that produces the network polymer Pa
A transparent gel-like matrix is formed by initial polymerization from a liquid state to a gel state that has lost fluidity.
Next, this base material is treated with a monomer different from the monomer Ma.
A monomer that is immersed in a liquid phase consisting of Mb so that the base material gradually decreases from the surface to the inside.
Diffuse monomeric Mb so that there is a concentration gradient of Mb. At this time, as the monomer Mb, a monomer that produces a polymer Pb having a refractive index different from the refractive index of the network polymer Pa is used. The monomer Mb is polymerized simultaneously with the diffusion and/or during the heat treatment step after the diffusion, and the polymerization of the monomer Ma is also completed at this time. Japanese Patent Publication No. 5857/1983 and Japanese Patent Application Publication No. 51/1983
In the method described in Japanese Patent No. 16394, a synthetic resin optical transmission body having a refractive index distribution is thus obtained.

ずころが、䞊述した方法では、母材を液状の単
量䜓Mb䞭に浞挬させお母材衚面ず液状の単量䜓
Mbずを盎接接觊させるために、䞍利な点がいく
぀かあ぀た。䟋えば、単量䜓Mbの拡散ず重合ず
を同時に行うような堎合には、浞挬枩床を比范的
高枩にするため、および母材䞭に通垞含有されお
いる重合開始剀が浞挬時間の経過ず共に液盞に溶
出するため、液盞䞭でも単量䜓Mbの重合が埐々
に起぀お粘皠になる。その結果、拡散を終えお母
材を液盞䞭から取り出す際に、このようにしお圢
成された粘皠局が母材衚面に付着したたた取り出
されおしたう。そしお熱凊理工皋䞭に、この粘皠
局から単量䜓Mbが浞出しお母材内に拡散し、埗
られる光䌝送䜓の倖呚郚付近の屈折率に奜たしく
ない歪みを増倧させる原因ずなる。このような欠
点を陀去するために、液盞での単量䜓Mbの重合
を抑制する重合犁止剀を加えおおくこずも考えら
れるが、この堎合には、この重合犁止剀が単量䜓
Mbの拡散ず同時に母材䞭に拡散しお熱凊理工皋
における重合完結を阻害するずいう新たな欠点を
生ずる。
However, in the above method, the base material is immersed in the liquid monomer Mb, and the base material surface and the liquid monomer Mb are immersed.
Direct contact with Mb had several disadvantages. For example, when diffusion and polymerization of the monomer Mb are carried out simultaneously, the dipping temperature must be relatively high, and the polymerization initiator normally contained in the base material will liquefy as the dipping time passes. Since it is eluted into the phase, monomer Mb gradually polymerizes even in the liquid phase and becomes viscous. As a result, when the base material is removed from the liquid phase after diffusion, the viscous layer thus formed remains attached to the surface of the base material. During the heat treatment process, the monomer Mb leaches out of this viscous layer and diffuses into the base material, causing an increase in undesirable distortion in the refractive index near the outer periphery of the resulting light transmitting body. In order to eliminate such drawbacks, it may be possible to add a polymerization inhibitor that suppresses the polymerization of monomer Mb in the liquid phase, but in this case, this polymerization inhibitor may
A new drawback arises in that Mb diffuses simultaneously into the base material and inhibits the completion of polymerization in the heat treatment process.

たた、単量䜓Mbを拡散埌に重合させるような
堎合は比范的䜎い浞挬枩床ですむが、この堎合に
は拡散した単量䜓Mbが熱凊理工皋䞭に母材の倖
呚郚から蒞発するため、やはり倖呚郚付近の屈折
率分垃に奜たしくない歪みを増倧させる原因ずな
る。
In addition, if the monomer Mb is polymerized after being diffused, a relatively low immersion temperature is required, but in this case, the diffused monomer Mb evaporates from the outer periphery of the base material during the heat treatment process. This causes an increase in undesirable distortion in the refractive index distribution near the outer periphery.

特開昭54−119939号公報に蚘茉された方法は䞊
述の方法を改良しお倖呚郚付近での屈折率分垃の
歪みを回避しようずするものである。この方法に
よれば、単量䜓Mbの拡散を気盞䞭で行぀おい
る。すなわち、単量䜓Mbの蒞気雰囲気䞭に母材
を所定時間配眮しお単量䜓Mbを母材内に拡散さ
せ、この拡散ず同時に単量䜓Mbを䞀郚重合さ
せ、最埌に熱凊理によ぀お重合を完結させるよう
にしおいる。この方法では、母材は液盞の単量䜓
Mbずでなく、気盞の単量䜓Mbず接觊するので
次のような利点がある。
The method described in JP-A-54-119939 is an improvement on the above-mentioned method to avoid distortion of the refractive index distribution near the outer periphery. According to this method, monomeric Mb is diffused in the gas phase. That is, the base material is placed in a vapor atmosphere of monomer Mb for a predetermined period of time to diffuse the monomer Mb into the base material, and at the same time as this diffusion, part of the monomer Mb is polymerized, and finally, by heat treatment. to complete the polymerization. In this method, the base material is monomer in liquid phase.
Because the contact is not with Mb but with monomer Mb in the gas phase, there are the following advantages.

(1) 母材の衚面に䜙分の単量䜓Mbが付着しな
い。故に、熱凊理工皋䞭に付着した単量䜓Mb
が母材の衚面から内郚ぞ拡散するこずがない。
たた、拡散を高枩で行うから単量䜓Mbは母材
内郚に拡散し぀぀重合しお固定化する。そこ
で、熱凊理工皋䞭に単量䜓Mbが母材の倖呚郚
から蒞発するこずもない。したが぀お、倖呚郚
での屈折率の歪みが少くか぀初期の屈折率分垃
を広い範囲で有する光䌝送䜓が埗られる。
(1) Excess monomer Mb does not adhere to the surface of the base material. Therefore, monomeric Mb deposited during the heat treatment process
does not diffuse into the interior from the surface of the base material.
Furthermore, since the diffusion is carried out at a high temperature, the monomer Mb is polymerized and fixed while diffusing inside the base material. Therefore, the monomer Mb does not evaporate from the outer periphery of the base material during the heat treatment process. Therefore, it is possible to obtain an optical transmission body with little distortion of the refractive index at the outer circumferential portion and having an initial refractive index distribution over a wide range.

(2) 単量䜓Mbの蒞気の䟛絊源である液䜓の単量
䜓Mb䞭に重合犁止剀を添加するこずによ぀
お、液盞での単量䜓Mbの重合を防止できる。
その際、蒞気圧の䜎い重合犁止剀を甚いれば、
これはほずんど気化しないので、母材内に拡散
するこずもなく、したが぀お熱凊理工皋に重合
が阻害されない。さらに、単量䜓Mbの䟛絊速
床を調節すれば重合犁止剀を加える必芁もなく
なり、単量䜓Mbを䜕回も繰り返しお䜿甚する
こずが可胜ずな぀おその回収率が高められる。
(2) Polymerization of monomer Mb in the liquid phase can be prevented by adding a polymerization inhibitor to liquid monomer Mb, which is a source of vapor of monomer Mb.
At that time, if a polymerization inhibitor with low vapor pressure is used,
Since it hardly evaporates, it does not diffuse into the base material, and therefore, polymerization is not inhibited during the heat treatment process. Furthermore, by adjusting the supply rate of monomer Mb, there is no need to add a polymerization inhibitor, making it possible to use monomer Mb many times and increasing its recovery rate.

しかしながら、この方法には次のような欠点が
ある。すなわち、単量䜓Mbを気盞から母材䞭に
拡散させる堎合、気盞䞭の単量䜓Mb濃床はその
気盞枩床における蒞気圧に䟝存するこずになるか
ら、この拡散工皋を効率的に進めるのに適圓な単
量䜓の皮類は蒞気圧の高い特定の単量䜓に制玄さ
れおしたう。䟋えば、特開昭51−16394号の方法
によ぀お䜎色収差を有する合成暹脂光䌝送䜓を補
造する際に䜿甚可胜なゞ゚チレングリコヌルビス
アリルカヌボネヌト単量䜓Maず、
−トリハむドロパヌフルオロプロピル単量䜓
Mbずの組合せは、埌者の蒞気圧が䜎くお盎埄
mmやそれ以䞊の母材に拡散させるこずが難しい
ため、特開昭54−119939号の方法には適甚できな
か぀た。
However, this method has the following drawbacks. In other words, when monomeric Mb is diffused from the gas phase into the base material, the monomeric Mb concentration in the gas phase depends on the vapor pressure at the gas phase temperature. The types of monomers suitable for proceeding are limited to specific monomers with high vapor pressures. For example, 1,1,
3-trihydroperfluoropropyl (monomer
The combination with Mb) could not be applied to the method of JP-A-54-119939 because the latter has a low vapor pressure and is difficult to diffuse into a base material with a diameter of 4 mm or more.

この発明は、このような埓来技術の欠点を克服
する䞀方、それぞれの長所を生かしたものであ
る。そしお、単量䜓Maず単量䜓Mbずの皮々の
組合せに぀いお、その䞭心から倖呚郚に至る母材
の広範囲に亘぀お所期の屈折率分垃を圢成できる
合成暹脂光䌝送䜓の補造方法を提䟛するものであ
る。
The present invention overcomes the drawbacks of these prior art technologies while taking advantage of their respective strengths. We then developed a method for manufacturing synthetic resin optical transmission bodies that can form desired refractive index distributions over a wide range of the base material from the center to the outer periphery for various combinations of monomer Ma and monomer Mb. This is what we provide.

すなわち、この発明は、屈折率Naの網状重合
䜓Paを生成する単量䜓Maの䞍完党な重合を行぀
お自己保圢性を有する母材を圢成し、屈折率Na
ずは異なる屈折率Nbを有する重合䜓Pbを生成し
か぀液䜓状態にある単量䜓Mbを、前蚘母材の衚
面に接觊させおその内郚ぞ拡散させるず共に、さ
らに加熱重合させるようにした、屈折率分垃を有
する合成暹脂光䌝送䜓の補造方法においお、前蚘
単量䜓Maを甚いお埗られた成圢甚流䜓を成圢管
内に送り蟌んでこの成圢管内で前蚘自己保圢性母
材を連続的に圢成し、次いで、前蚘成圢管から連
続的に出お来る前蚘自己保圢性母材に、 前蚘液状単量䜓Mbを含有する液盞拡散宀、 前蚘単量䜓Mbず同䞀たたは異なる単量䜓
Mcであ぀お、 (a) NcNb (b) NcNaおよびNbNa (c) NcNaおよびNbNa なる(a)〜(c)の条件の䜕れか぀を満足する屈折
率Ncを有する重合䜓Pcを生成しか぀䞀定枩床
に加熱制埡された気䜓状たたは霧滎状の単量䜓
Mcを含有する気盞宀、 を順次通過させるようにしたこずを特城ずする合
成暹脂光䌝送䜓の補造方法に係るものである。
That is, this invention performs incomplete polymerization of a monomer Ma that produces a network polymer Pa with a refractive index of Na to form a self-shape-retaining base material, and has a refractive index of Na.
A refraction method that produces a polymer Pb having a refractive index different from that of Nb, and in which a monomer Mb in a liquid state is brought into contact with the surface of the base material and diffused into the interior thereof, and is further heated and polymerized. In the method for manufacturing a synthetic resin light transmission body having a rate distribution, a molding fluid obtained using the monomer Ma is fed into a molding tube to continuously form the self-shape-retaining base material in the molding tube. Then, in the self-shape-retaining base material continuously coming out of the molded tube, a liquid phase diffusion chamber containing the liquid monomer Mb, a monomer that is the same as or different from the monomer Mb.
Refraction that satisfies any one of the conditions (a) to (c) that is Mc and (a) Nc=Nb (b) Nc<Na and Nb<Na (c) Nc>Na and Nb>Na A monomer in the form of gas or droplets that forms a polymer Pc with a ratio Nc and is heated and controlled to a constant temperature.
The present invention relates to a method for manufacturing a synthetic resin optical transmission body, characterized in that the material is sequentially passed through a vapor chamber containing Mc.

このように構成したこの発明の補造方法によれ
ば、自己保圢性を有する母材の圢成、この母材ぞ
の単量䜓Mbの内郚拡散及び単量䜓Mcによる前
蚘母材の加熱重合を順次連続的に行うこずができ
るから、均䞀な特性を有しか぀品質の䞀定な屈折
率分垃型合成暹脂光䌝送䜓を簡単な補造工皋で以
぀お倧量に生産するこずができる。たた、母材に
拡散させる単量䜓の倧郚分を占める単量䜓Mbは
蒞気圧の高いものに限れず、たた単量䜓Mcも、
母材の倖呚郚からの単量䜓Mbの蒞発を抑制する
だけでよいから、特に蒞気圧の高いものである必
芁がない。たた、熱凊理を単量䜓Mc単量䜓Mb
ず同䞀であ぀およいの蒞気気䜓状たたは霧滎
状を含む雰囲気䞭で行うから、母材の倖呚郚付
近での屈折率分垃の歪みを陀去たたは回避でき
る。
According to the manufacturing method of the present invention configured as described above, formation of a base material having self-shape retention, internal diffusion of monomer Mb into this base material, and heating polymerization of the base material by monomer Mc are performed. Since the process can be carried out sequentially and continuously, it is possible to mass-produce graded index synthetic resin optical transmitters having uniform characteristics and constant quality through a simple manufacturing process. In addition, monomer Mb, which accounts for most of the monomers diffused into the base material, is not limited to those with high vapor pressure, and monomer Mc also has
Since it is only necessary to suppress the evaporation of the monomer Mb from the outer periphery of the base material, it is not necessary to have a particularly high vapor pressure. In addition, heat treatment can be applied to monomer Mc (monomer Mb
Since the process is carried out in an atmosphere containing vapor (which may be the same as the above) (in the form of gas or droplets), distortion of the refractive index distribution near the outer periphery of the base material can be removed or avoided.

次に、この発明による合成暹脂光䌝送䜓の補造
方法の実斜䟋を、図面に瀺す装眮を甚いた堎合に
぀いお述べる。
Next, an embodiment of the method for manufacturing a synthetic resin optical transmission body according to the present invention will be described using the apparatus shown in the drawings.

たず、単量䜓Maを予備重合させお、ゲル化盎
前で流動性を保持しおいる粘性流䜓プレポリマ
ヌを生成させる。このプレポリマヌを抌出し
噚に入れ、冷华氎によ぀お䞀旊冷华しながら、
連続的に抌出す。
First, the monomer Ma is prepolymerized to produce a viscous fluid (prepolymer) that maintains fluidity just before gelation. This prepolymer 1 is put into an extruder 2, and while being cooled once with cooling water,
Extrude continuously.

ここでプレポリマヌは䞀般匏 Kσn 

(4) 匏䞭、はずり速床、σはずり応力、は塑
性粘床の逆数、は定数をそれぞれ衚わす。 で衚わされる非ニナヌトン流䜓の䞀般方皋匏
Ostwaldのべき法則における20℃でのの倀
が1.10以䞊である塑性流動を瀺すこずが望たし
い。以䞋にその理由を述べる。
Here, the prepolymer has the following general formula: D=Kσ n ...(4) (In the formula, D is the shear rate, σ is the shear stress, K is the reciprocal of the plastic viscosity, and n is the constant.) It is desirable to exhibit plastic flow in which the value of n at 20°C in the Newtonian fluid general equation (Ostwald's power law) is 1.10 or more. The reason is explained below.

単量䜓たたは䜎粘床プレポリマヌのようなニナ
ヌトン流䜓に近い流䜓を现長い管内に導入し、そ
の管内を通過させながら加熱しお重合させる堎
合、熱は管の倖偎から加えられるために、管近傍
の呚蟺領域から重合が進み、それに䌎぀お粘床が
䞊昇しお行く。管内を流れる流䜓には、䞭心が最
倧で呚蟺に向かうに埓぀お攟物線状に流速が枛少
するずいう速床分垃が元々存圚しおいるが、重合
が進むに぀れお、この呚蟺領域ず䞭心領域ずの間
の速床差はさらに倧きくなる。そしお、最終的に
は呚蟺領域の流䜓が先にゲル化しお管内に滞留
し、䞭心領域の流䜓はほずんど重合せずに管から
流れ出るこずになる。
When a fluid similar to a Newtonian fluid, such as a monomer or a low-viscosity prepolymer, is introduced into a long and thin tube and is heated and polymerized while passing through the tube, the heat is applied from the outside of the tube, so Polymerization proceeds from the peripheral region, and the viscosity increases accordingly. The fluid flowing inside the tube originally has a velocity distribution in which the flow velocity is maximum at the center and decreases parabolically toward the periphery, but as polymerization progresses, the velocity distribution between the peripheral region and the center region increases. The speed difference becomes even larger. In the end, the fluid in the peripheral region gels first and stays in the tube, while the fluid in the central region flows out of the tube without polymerizing.

これを是正するためには、管内での流䜓の速床
分垃をなるべく䞀定にする必芁がある。すなわ
ち、管内の流䜓をビンガム流䜓に近づければよ
い。ビンガム流䜓は䞊蚘(4)匏においおは∞の
堎合であ぀お、管内の流䜓の流速は䞀定ずなる。
が小さくな぀おに近づくほど、流䜓はニナヌ
トン流䜓に近づく。たた、管の内壁に近い呚蟺付
近での流䜓の流速はの倀によ぀おはそれほど倉
化せず、むしろが倧きいほどこの流速も倧きい
が、がに近づくほど䞭心付近での流速が倧き
くなり、その結果呚蟺領域ず䞭心領域ずの流速の
差が倧きくな぀お速床分垃の攟物線がシダヌプに
なる。
In order to correct this, it is necessary to make the velocity distribution of the fluid within the pipe as constant as possible. That is, it is sufficient to bring the fluid in the pipe closer to Bingham fluid. In the case of Bingham fluid, n=∞ in the above equation (4), and the flow rate of the fluid in the pipe is constant.
As n becomes smaller and approaches 1, the fluid approaches a Newtonian fluid. In addition, the flow velocity of the fluid near the periphery near the inner wall of the pipe does not change much depending on the value of n; in fact, the larger n is, the greater the flow velocity is, but as n approaches 1, the flow velocity near the center increases. As a result, the difference in flow velocity between the peripheral region and the central region becomes large, and the parabola of the velocity distribution becomes sharp.

このような芳点から、䞊述したように単量䜓
Maを予備重合させお、の倀が1.10以䞊である
粘性流䜓ずしおから管内に送り蟌むのが奜たし
い。すなわち、の倀が1.10未満では、はじめに
呚蟺付近がゲル化されおしたうず、䞭心付近の単
量䜓Maは重合されずに管内から流出し、良奜な
母材が圢成できない。この堎合、流速を極端に萜
ずせば母材ができないこずもないが、生産性が悪
くな぀お実甚的でない。たた、さらに奜たしくは
の倀は倧きくずも1.50である。これはの倀が
倧きすぎおも管内ぞの抌し蟌みが困難にな぀たり
母材が䞍均質ずな぀お䞍郜合が生ずるからであ
る。
From this point of view, as mentioned above, monomers
It is preferable to prepolymerize Ma to form a viscous fluid with an n value of 1.10 or more before feeding it into the pipe. That is, if the value of n is less than 1.10, if the vicinity of the periphery is first gelled, the monomer Ma in the vicinity of the center will not be polymerized and will flow out of the tube, making it impossible to form a good base material. In this case, if the flow rate is extremely reduced, the base metal will not be formed, but productivity will be poor and this is not practical. Further, more preferably, the value of n is at most 1.50. This is because if the value of n is too large, it becomes difficult to push the material into the pipe, and the base material becomes non-uniform, causing problems.

なお、䞊蚘(4)匏におけるの倀およびの倀は
それぞれ粘床蚈䟋えば回転匏粘床蚈を甚いお
求めるこずができる。すなわち粘床蚈の回転数
これでが決たるを倉えお、それぞれのσを
枬定した埌、これをグラフにプロツトしおおよ
びの倀を求める。
Note that the value of K and the value of n in the above equation (4) can be determined using a viscometer (for example, a rotational viscometer). That is, after changing the rotational speed of the viscometer (which determines D) and measuring each σ, this is plotted on a graph to determine the values of K and n.

抌し出されたプレポリマヌは、匕き続き黄銅
補ブロツク等の加熱ゞダケツトを貫通するテフ
ロンチナヌブ䞭に連続的に導入される。このテ
フロンチナヌブは円圢断面を有する盎埄〜20
mmのものであ぀およい。ここで、予めテフロンチ
ナヌブ内に䞊方からステンレス管の䞋端郚を挿
入しおおくず、プレポリマヌの先端がこのステ
ンレス管の䞋端郚に接觊した状態でゲル化するの
で、ステンレス管の䞋端郚ずプレポリマヌの先
端ずが䞀䜓結合される。この埌抌し出し速床ず同
じ速床でステンレス管を匕き䞊げ装眮で匕き䞊げ
るず、それに䌎われたプレポリマヌは党補造工皋
を経過する間に光䌝送䜓ずな぀お連続的にか぀装
眮内に滞るこずなく生成されお出おくる。加熱ゞ
ダケツトには、その䞊郚に比范的高枩の枩氎
、䞋郚にそれより䜎枩の枩氎がそれぞれ䟛絊
されおいお、䞋郚から䞊郚に向぀お次第に枩床が
䞊昇するような枩床募配でも぀お、テフロンチナ
ヌブを加熱しおいる。そこで、テフロンチナヌ
ブを通過するうちにプレポリマヌは加熱重合
しおゲル化し、このゲル化したプレポリマヌは母
材ずなる。この加熱重合の際の加熱速床は0.1
〜10℃分であるのが奜たしい。䞊述したような
枩床募配のもずで加熱される堎合には、プレポリ
マヌの重合およびそれに䌎う粘床䞊昇が共に
埐々に進行するから、ビンガム流䜓に近い流動状
態に保持したたた、プレポリマヌを流動させる
こずが可胜ずなる。その結果、半埄方向に均䞀な
組成を持぀た母材を連続的に圢成するこずが可
胜ずなる。なお、ここでテフロンチナヌブは、
プレポリマヌや母材ずの摩擊が小さいために
特に有甚であるが、他の暹脂や金属補のチナヌブ
であ぀おさし぀かえない。
The extruded prepolymer 1 is then continuously introduced into a Teflon tube 4 passing through a heating jacket 3, such as a brass block. This Teflon tube 4 has a circular cross section with a diameter of 1 to 20 mm.
It may be mm. Here, if the lower end of the stainless steel tube is inserted into the Teflon tube 4 from above in advance, the tip of the prepolymer 1 will gel while in contact with the lower end of the stainless steel tube. and the tip of prepolymer 1 are integrally bonded. When the stainless steel tube is pulled up by a pulling device at the same speed as this push-out speed, the prepolymer accompanying it becomes a light transmitting body and is produced continuously and without stagnation in the device during the entire manufacturing process. It comes out. The heating jacket 3 is supplied with relatively high-temperature hot water 5 at the top and hot water 6 at a lower temperature at the bottom. Tube 4 is being heated. Then, while passing through the Teflon tube 4, the prepolymer 1 is polymerized and gelled by heating, and this gelled prepolymer becomes the base material 7. The heating rate during this thermal polymerization is 0.1
Preferably it is ~10°C/min. When heated under the temperature gradient described above, both the polymerization of prepolymer 1 and the accompanying increase in viscosity proceed gradually. It becomes possible to make it flow. As a result, it becomes possible to continuously form the base material 7 having a uniform composition in the radial direction. In addition, here, the Teflon tube 4 is
This tube is particularly useful because it has low friction with the prepolymer 1 and the base material 7, but tubes made of other resins or metals are also acceptable.

このようにしお、加熱ゞダケツト内のテフロ
ンチナヌブからは、ほずんど流動性を倱぀お自
己保圢性を有するゲル状の母材が生成されお来
る。この母材は、アセトンに䞍溶な成分、すな
わち網状重合䜓の郚分を奜たしくは〜90重量
、さらに奜たしくは10〜50重量含んでいる。
この成分が少なすぎるず流動性が倧きくなり、た
た倚すぎるず埌の拡散工皋で単量䜓Mbの拡散速
床が遅くなりすぎるので奜たしくない。
In this way, the Teflon tube 4 in the heating jacket 3 produces a gel-like base material 7 that has almost lost its fluidity and has self-shape retention. The base material 7 preferably contains an acetone-insoluble component, ie, a network polymer portion, in an amount of 5 to 90% by weight, more preferably 10 to 50% by weight.
If this component is too small, the fluidity becomes high, and if it is too large, the diffusion rate of monomer Mb becomes too slow in the subsequent diffusion step, which is not preferable.

続いお、母材は拡散装眮に送り蟌たれる。
この拡散装眮の䞋方郚分は液盞拡散宀ずな぀
おいお、この液盞拡散宀に泚入口から液状
の単量䜓Mbが䟛絊される。この単量䜓Mbは液
盞拡散宀に溜められ、その䜙剰分は排出口
から排出される。液盞拡散宀に滞溜する間に、
母材には単量䜓Mbがそのほど䞭心たで拡散
し、䞭心軞からの距離の二乗にほが比䟋しお連続
的に増加するような単量䜓Mbの濃床募配が母材
内に圢成される。たた、この液盞拡散宀の単
量䜓Mb䞭には、バブル噚が配眮されおい
お、このバブル噚から窒玠ガスの気泡を発生
させるこずにより単量䜓Mbの蒞気を発生させ
る。こうしお気䜓状たたは霧滎状の単量䜓Mbの
蒞気が、液盞拡散宀の䞊方に埌続しおいる気盞
宀たで䞊昇しおこの気盞宀に充満し、気
盞宀に単量䜓Mbの蒞気を含む雰囲気を圢成
する。単量䜓Mbは排気口から真空ポンプ
図瀺せずによ぀お回収される。液盞拡散宀
は予め窒玠眮換されおいお、酞玠による重合阻害
を防止するようにしおいる。
Subsequently, the base material 7 is fed into a diffusion device 8.
The lower part of this diffusion device 8 is a liquid phase diffusion chamber 9, and liquid monomer Mb is supplied to this liquid phase diffusion chamber 9 from an injection port 10. This monomer Mb is stored in the liquid phase diffusion chamber 9, and the surplus is stored at the discharge port 11.
is discharged from. While staying in the liquid phase diffusion chamber 9,
In the base material 7, monomer Mb diffuses to the center, and a concentration gradient of monomer Mb is formed in the base material 7, which increases continuously in approximately proportion to the square of the distance from the central axis. be done. Further, a bubbler 12 is disposed in the monomer Mb of the liquid phase diffusion chamber 9, and vapor of the monomer Mb is generated by generating nitrogen gas bubbles from the bubbler 12. In this way, the vapor of the monomer Mb in the form of gas or droplets rises to the gas phase chamber 13 following the liquid phase diffusion chamber 9, fills this gas phase chamber 13, and enters the gas phase chamber 13. An atmosphere containing monomeric Mb vapor is formed. Monomer Mb is recovered from the exhaust port 17 by a vacuum pump (not shown). Liquid phase diffusion chamber 9
is substituted with nitrogen in advance to prevent inhibition of polymerization by oxygen.

単量䜓Mbの拡散が終わ぀た母材は、こうし
お単量䜓Mbの蒞気を含む雰囲気によ぀お満たさ
れた気盞宀に導入される。気盞宀は、そ
れを取り囲む倖偎管に流される枩氎によ぀お
加熱されおいる。この気盞宀に滞溜する間
に、拡散した単量䜓Mbの䞀郚が単独であるいは
母材䞭に残留しおいる単量䜓Maやプレポリマ
ヌず重合し、その結果、単量䜓Mbの濃床募配が
母材内に固定されおいく。この際、母材は単
量䜓Mbの蒞気を含んでいる雰囲気に包たれおい
るから、母材の倖呚郚から気盞䞭ぞ単量䜓Mb
が蒞発するのが抑制される。ひいおは、倖呚郚付
近における屈折率の歪みがほずんど存圚しないか
あるいは狭い範囲でしか存圚しない光䌝送䜓を生
成できる。単量䜓Mbは気盞䞭に少くずもその飜
和濃床の20以䞊含たれるのが奜たしい。そうす
れば、単量䜓Mbの濃床蒞気圧が母材の倖
呚郚に拡散した単量䜓Mbの濃床蒞気圧ずほ
が等しいかそれ以䞊ずなる。単量䜓Mbの濃床が
母材倖呚郚よりも気盞䞭で倧きければ、単量䜓
Mbの加熱重合ず同時に単量䜓Mbの気盞から母
材䞭ぞの拡散が行われる。
The base material 7 in which the monomer Mb has been diffused is thus introduced into the gas phase chamber 13 filled with an atmosphere containing the monomer Mb vapor. The gas phase chamber 13 is heated by hot water flowing through an outer tube 14 surrounding it. While remaining in this gas phase chamber 13, a part of the diffused monomer Mb polymerizes alone or with the monomer Ma or prepolymer remaining in the base material 7, and as a result, the monomer Mb The concentration gradient of body Mb is fixed in the base material 7. At this time, since the base material 7 is surrounded by an atmosphere containing the vapor of the monomer Mb, the monomer Mb flows from the outer periphery of the base material 7 into the gas phase.
evaporation is suppressed. As a result, it is possible to produce an optical transmission body in which distortion in the refractive index near the outer periphery is almost absent or exists only in a narrow range. It is preferable that the monomeric Mb is contained in the gas phase in an amount of at least 20% or more of its saturation concentration. By doing so, the concentration (vapor pressure) of the monomer Mb becomes approximately equal to or higher than the concentration (vapor pressure) of the monomer Mb diffused into the outer peripheral portion of the base material 7. If the concentration of monomer Mb is higher in the gas phase than at the outer periphery of the base material, the monomer Mb
At the same time as the heating polymerization of Mb, the monomer Mb diffuses from the gas phase into the base material.

液盞拡散宀䞭の単量䜓Mbの枩床は、特にこ
の単量䜓Mbから蒞気を発生させるような堎合、
単量䜓Mbが比范的高い蒞気圧を有しか぀母材内
に拡散できる倀に保たれる必芁があり、䟋えば
〜90℃に蚭定される。この枩床が高くなればなる
ほど、単量䜓Mbの拡散速床は倧きくなるが、母
材自䜓の重合速床も増倧しおしたい、たた単量䜓
Mbが液盞䞭で重合しお粘皠ずなるので奜たしく
ない。たた、母材を拡散宀䞭に滞溜させおおく
時間拡散時間および䞊蚘拡散枩床は、埗よう
ずする光䌝送䜓の屈折率募配すなわち単量䜓Mb
の䞊蚘濃床募配によ぀お決められる。しかし、こ
の拡散時間が極床に長か぀たり拡散枩床が高すぎ
たりするず、単量䜓Mbの濃床募配が平坊化した
りあるいは母材の倖呚郚付近で濃床募配が急に倧
きくなる恐れがあり、所望の屈折率募配が埗られ
ない。
The temperature of the monomer Mb in the liquid phase diffusion chamber 9 is particularly high when vapor is generated from the monomer Mb.
Monomer Mb has a relatively high vapor pressure and must be maintained at a value that allows it to diffuse into the matrix, for example 5
Set to ~90℃. As this temperature increases, the diffusion rate of the monomer Mb increases, but the polymerization rate of the base material itself also increases, and the monomer Mb also increases.
This is not preferred because Mb polymerizes in the liquid phase and becomes viscous. In addition, the time for which the base material is retained in the diffusion chamber 8 (diffusion time) and the above-mentioned diffusion temperature are determined by the refractive index gradient of the optical transmission body to be obtained, that is, the monomer Mb
is determined by the above concentration gradient of . However, if this diffusion time is extremely long or the diffusion temperature is too high, the concentration gradient of the monomer Mb may flatten or suddenly increase near the outer periphery of the base material. refractive index gradient cannot be obtained.

この実斜䟋では、液盞拡散宀の単量䜓Mbを
利甚しお気盞宀の雰囲気を圢成しおいる。す
なわち単量䜓Mcが単量䜓Mbず同䞀の堎合に぀
いお瀺しおいるが、単量䜓Mcは単量䜓Mbずは
異なるものやそれらの混合物であ぀おもよく、た
た単量䜓Mbずこれずは別の単量䜓ずの混合物で
あ぀おもよい。単量䜓Mbずは党く異なる気䜓状
たたは霧滎状の単量䜓Mcを気盞䞭に含有させる
堎合には、気盞宀ず液盞拡散宀ずを仕切
り、液盞拡散宀䞭の単量䜓Mbをバブルせずに
液盞拡散にのみ甚いる。そしお、気盞宀には
気䜓状たたは霧滎状の単量䜓Mcを蒞気発生噚等
から導入する。たた、実斜䟋の堎合ず同様にしお
単量䜓Mbの蒞気を気盞宀に満たし、さらに別の
単量䜓Mcの蒞気を気盞宀に導くず、気盞宀内は
単量䜓Mbの蒞気ず単量䜓Mcの蒞気ずが混合し
た系になる。このような堎合、単量䜓Mcが垞枩
で気䜓であるような化合物であ぀おも䜿甚可胜ず
なる。ただし、いずれの堎合においおも、単量䜓
MaMbおよびMcの単独重合䜓PaPbPcの
屈折率をそれぞれNaNbNcずした堎合に、
NbがNaよりも倧きければNcもNaよりも倧き
く、逆にNbがNaよりも小さい堎合には、Ncも
Naより小さいような組合せを遞ばなければ、所
望の屈折率分垃は埗られない。
In this embodiment, the monomer Mb in the liquid phase diffusion chamber 9 is used to form the atmosphere in the gas phase chamber 13. In other words, the case where monomer Mc is the same as monomer Mb is shown, but monomer Mc may be different from monomer Mb or a mixture thereof, and monomer Mb and this It may also be a mixture with other monomers. When a gaseous or atomized monomer Mc that is completely different from the monomer Mb is contained in the gas phase, the gas phase chamber 13 and the liquid phase diffusion chamber 9 are partitioned, and the liquid phase diffusion chamber 9 is monomeric Mb is used only for liquid phase diffusion without bubbling. Then, a gaseous or mist-like monomer Mc is introduced into the gas phase chamber 13 from a steam generator or the like. In addition, when the vapor of monomer Mb is filled in the gas phase chamber in the same manner as in the example, and the vapor of another monomer Mc is introduced into the gas phase chamber, the vapor of monomer Mb is inside the gas phase chamber. The system is a mixture of the monomer Mc and the monomer Mc vapor. In such a case, even if the monomer Mc is a compound that is a gas at room temperature, it can be used. However, in any case, the monomer
When the refractive index of homopolymers Pa, Pb, and Pc of Ma, Mb, and Mc are Na, Nb, and Nc, respectively,
If Nb is larger than Na, Nc is also larger than Na, and conversely, if Nb is smaller than Na, Nc is also larger than Na.
Unless a combination is selected in which Na is smaller than Na, the desired refractive index distribution cannot be obtained.

気盞宀での加熱重合埌、母材はさらに窒
玠眮換されおいる熱凊理管に導かれお、加熱
重合を完結される。この熱凊理管はヒヌタ
によ぀お加熱されおいるが、このヒヌタの
枩床を装眮の䞋郚から䞊郚ぞず段階的に高枩にし
おいくこずによ぀お、枩床募配を圢成させるよう
にしおもよい。たたこの熱凊理管にも単量䜓
Mbの蒞気が導入されおいおよい。
After heating and polymerizing in the gas phase chamber 13, the base material 7 is further led to a heat treatment tube 15 that is purged with nitrogen, and the heating and polymerization is completed. This heat treatment tube 15 is the heater 1
However, a temperature gradient may be formed by increasing the temperature of the heater 16 stepwise from the bottom to the top of the device. Also, this heat treatment tube 15 also contains a monomer.
Mb vapor may be introduced.

こうしお埗られる光䌝送䜓の屈折率は、埌
述するように単量䜓Maず単量䜓Mbずの組合せ
によ぀お、䞭心軞からの距離の二乗にほが比䟋し
お半埄方向に連続的に増倧あるいは枛少する屈折
率募配を有しおいる。この屈折率は光䌝送䜓の長
さ方向には倉化せず䞀定である。
As will be described later, the refractive index of the light transmitting body 18 obtained in this way varies continuously in the radial direction approximately in proportion to the square of the distance from the central axis due to the combination of monomer Ma and monomer Mb. It has a refractive index gradient that increases or decreases. This refractive index does not change in the length direction of the optical transmission body and remains constant.

䞊述した実斜䟋では、母材を圢成させる工皋、
単量䜓Mbを拡散させる工皋および熱凊理工皋を
すべお連続的に行぀おいるから、均䞀な特性を有
しか぀品質の䞀定な光䌝送䜓が補造可胜ずなる。
In the embodiments described above, the step of forming the base material,
Since the step of diffusing monomer Mb and the heat treatment step are all carried out continuously, it is possible to manufacture an optical transmission body with uniform characteristics and constant quality.

この発明の方法においお、単量䜓Maずしおは
重合しお透明で屈折率がNaの網状重合䜓Paを生
成するこずができる単量䜓が䜿甚されるが、この
単量䜓は単䞀の単量䜓であ぀おも耇数個の単量䜓
の混合物であ぀おもよい。このような単量䜓Ma
ずしおは、アリル基、アクリル酞基、メタクリル
酞基およびビニル基のような二重結合を含む基を
それぞれ個以䞊有するか、これらのうちの皮
類以䞊を同時に有する単量䜓が奜適である。次に
単量䜓Maの具䜓䟋を挙げる。
In the method of this invention, a monomer that can be polymerized to produce a transparent network polymer Pa having a refractive index of Na is used as the monomer Ma, and this monomer is a single monomer. It may be a monomer or a mixture of a plurality of monomers. Such a monomer Ma
As the monomer, monomers each having two or more double bond-containing groups such as an allyl group, an acrylic acid group, a methacrylic acid group, and a vinyl group, or having two or more of these groups at the same time, are preferable. . Next, a specific example of monomer Ma will be given.

(1) アリル化合物およびその混合物。(1) Allyl compounds and mixtures thereof.

フタル酞ゞアリル、む゜フタル酞ゞアリル、テ
レフタル酞ゞアリル、ゞ゚チレングリコヌルビス
アリルカヌボネヌト等のゞアリル゚ステルトリ
メリト酞トリアリル、リン酞トリアリル、亜リン
酞トリアリル等のトリアリル゚ステルメタクリ
ル酞アリル、アクリル酞アリル等の䞍飜和酞アリ
ル゚ステル。
Diallyl esters such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, and diethylene glycol bisallyl carbonate; triallyl esters such as triallyl trimellitate, triallyl phosphate, and triallyl phosphite; unsaturated materials such as allyl methacrylate and allyl acrylate Acid allyl ester.

(2) R1−R2−R3で衚わされる化合物およびその
混合物。
(2) A compound represented by R 1 −R 2 −R 3 and a mixture thereof.

R1およびR3がいずれもビニル基、アクリル酞
基、ビニル゚ステル基、たたはメタクリル酞基で
ある化合物R1およびR3のいずれか䞀方がビニ
ル基、アクリル酞基、メタクリル酞基およびビニ
ル゚ステル基の぀の基のうちのいずれかであ
り、他方が残りの぀の基のうちのいずれかであ
る化合物。ここでR2は以䞋に瀺される䟡の基
のうちから遞択できる。
A compound in which R 1 and R 3 are both a vinyl group, an acrylic acid group, a vinyl ester group, or a methacrylic acid group; either one of R 1 and R 3 is a vinyl group, an acrylic acid group, a methacrylic acid group, or a vinyl ester A compound in which the other is any of the remaining three groups. Here, R 2 can be selected from the divalent groups shown below.

R2 −たたは−異性䜓 −たたは−異性䜓 −CH2CH2On――CH2CH2−〜20 −CH2p− 〜15 〜 〜20 (3) 䞊蚘(1)ず(2)の単量䜓の混合物、たたはモノビ
ニル化合物、ビニル゚ステル類、アクリル酞゚
ステル類およびメタクリル酞゚ステル類の皮
のうちの少なくずも皮ず䞊蚘(1)たたは(2)の単
量䜓たたはその混合物ずの混合物。
R2 : (p- or m-isomer) (p- or m-isomer) −(CH 2 CH 2 O) n --CH 2 CH 2 −(m=0 to 20) −(CH 2 ) p − (p=3 to 15) (i,j=1~3) (k=0-20) (3) A mixture of the monomers (1) and (2) above, or at least one of the five monovinyl compounds, vinyl esters, acrylic esters, and methacrylic esters. A mixture of a species and the monomer (1) or (2) above (or a mixture thereof).

この発明においお、単量䜓Mbずしおはそれが
重合した時に、䞊蚘屈折率Naよりも倧きいかた
たは小さい屈折率Nbを有する透明な重合䜓Pbを
圢成するものが遞ばれる。この単量䜓Mbは単䞀
の単量䜓であ぀おも、耇数皮の単量䜓の混合物で
あ぀おもよい。重合䜓Pbは網状重合䜓および線
圢重合䜓のいずれであ぀おもよい。屈折率Nbが
屈折率Naよりも小さい堎合、埗られる光䌝送䜓
は䞊蚘(1)匏で衚わされるような屈折率分垃が圢成
された凞レンズ䜜甚を有するものずなる。逆に、
屈折率Nbが屈折率Naよりも倧きい堎合には、䞊
蚘(3)匏で衚わされる屈折率分垃で凹レンズ䜜甚を
有する光䌝送䜓が埗られる。これらの屈折率の差
Na−Nbは0.005以䞊であるのが奜たし
く、この差が小さすぎるず所望の屈折率募配が埗
られない。たた、単量䜓Mbは、特に気盞拡散さ
せる堎合、比范的高い蒞気圧を有するものである
のが奜たしく、䟋えば拡散枩床においおmmHg
よりも高い飜和蒞気圧を有するのが奜たしい。こ
のような単量䜓Mbの䟋ずしおは、スチレン、メ
タクリル酞゚ステル、アクリル酞゚ステル、酢酞
ビニル、塩化ビニル、アクリロニトリル、ブタゞ
゚ンおよびこれらの混合物が挙げられる。
In this invention, the monomer Mb is selected from a monomer which forms a transparent polymer Pb having a refractive index Nb greater than or less than the above-mentioned refractive index Na when it is polymerized. This monomer Mb may be a single monomer or a mixture of multiple types of monomers. The polymer Pb may be either a reticular polymer or a linear polymer. When the refractive index Nb is smaller than the refractive index Na, the resulting optical transmission body has a convex lens action with a refractive index distribution as expressed by the above equation (1). vice versa,
When the refractive index Nb is larger than the refractive index Na, an optical transmission body having a concave lens effect can be obtained with the refractive index distribution expressed by the above equation (3). The difference between these refractive indexes (|Na−Nb|) is preferably 0.005 or more, and if this difference is too small, a desired refractive index gradient cannot be obtained. In addition, the monomer Mb preferably has a relatively high vapor pressure, especially when diffused in a gas phase, for example, 5 mmHg at the diffusion temperature.
It is preferred to have a saturated vapor pressure higher than . Examples of such monomers Mb include styrene, methacrylates, acrylates, vinyl acetate, vinyl chloride, acrylonitrile, butadiene and mixtures thereof.

この発明の網状重合䜓Paず単量䜓Mbずの組合
せの奜たしい䟋ずしおは埌述するような䜎色収差
の光䌝送䜓の補造に適したものの他に次のような
組合せが挙げられる。たずNaNbの堎合、フタ
ル酞ゞアリル重合䜓−メタクリル酞メチル、フタ
ル酞ゞアリル重合䜓−アクリル酞メチルずメタク
リル酞メチルずの混合物、む゜フタル酞ゞアリル
重合䜓−メタクリル酞メチル、フタル酞ゞアリル
重合䜓ずスチレンずの共重合䜓−メタクリル酞゚
ステル、む゜フタル酞ゞアリルずスチレンずの共
重合䜓−アクリル酞゚ステル、フタル酞ゞビニル
ず安息銙酞ゞビニルずの共重合䜓−メタクリル酞
゚ステル、む゜フタル酞ゞビニルず安息銙酞ビニ
ルずの共重合䜓−メタクリル酞゚ステル、安息銙
酞ビニルずむ゜フタル酞ゞアリルずの共重合䜓−
メタクリル酞゚ステルなどである。たた、Na
Nbの堎合の䟋は、ゞ゚チレングリコヌルビスア
リルカヌボネヌト重合䜓−スチレン、ゞ゚チレン
グリコヌルビスアリルカヌボネヌト重合䜓−む゜
フタル酞ゞアリルなどである。
Preferred examples of the combinations of the network polymer Pa and the monomer Mb of the present invention include those suitable for producing a light transmitting body with low chromatic aberration as described below, as well as the following combinations. First, in the case of Na > Nb, diallyl phthalate polymer - methyl methacrylate, diallyl phthalate polymer - mixture of methyl acrylate and methyl methacrylate, diallyl isophthalate polymer - methyl methacrylate, diallyl phthalate polymer Copolymer with styrene - methacrylic acid ester, copolymer with diallyl isophthalate and styrene - acrylic acid ester, copolymer with divinyl phthalate and divinyl benzoate - methacrylic acid ester, divinyl isophthalate and vinyl benzoate - Copolymer of methacrylic acid ester, vinyl benzoate and diallyl isophthalate -
Such as methacrylic acid ester. Also, Na<
Examples of Nb include diethylene glycol bisallyl carbonate polymer-styrene, diethylene glycol bisallyl carbonate polymer-diallyl isophthalate, and the like.

たた、特に、䜎色収差の合成暹脂光䌝送䜓を補
造するに適した単量䜓Maず単量䜓Mbずの組合
せずしおは、次のようなものが䟋瀺できる。
In addition, the following combinations of monomer Ma and monomer Mb are particularly suitable for producing a synthetic resin optical transmission body with low chromatic aberration.

(a) Maずしおゞ゚チレングリコヌルビスアリル
カヌボネヌト、たたはこれずフタル酞ゞアリ
ル、む゜フタル酞ゞアリル、安息銙酞ビニルも
しくはスチレンずの混合物ただし、この混合
物䞭のゞ゚チレングリコヌルビスアリルカヌボ
ネヌトの量は50重量以䞊であるのが奜たし
く、より奜たしくは70重量以䞊である。
Mbずしお、化合物(A) 〔匏䞭、は氎玠原子たたはメチル基、は
プニル基、メチルプニル基、ビニル基、
−プロピル基、−ブチル基、−ブチル基、
−ブチル基、 〜、 〜および ―CH2CH2OzCH3〜からなる矀か
ら遞ばれた基を衚わす。〕 で衚わされる化合物たたはその混合物。
(a) Diethylene glycol bisallyl carbonate as Ma, or a mixture thereof with diallyl phthalate, diallyl isophthalate, vinyl benzoate or styrene (provided that the amount of diethylene glycol bisallyl carbonate in this mixture is not less than 50% by weight) (more preferably 70% by weight or more).
Compound (A) as Mb: [Wherein, X is a hydrogen atom or a methyl group, Y is a phenyl group, a methylphenyl group, a vinyl group, i
-propyl group, i-butyl group, s-butyl group,
t-butyl group, (x=0~2), Represents a group selected from the group consisting of (y=0-2) and (-CH 2 CH 2 O) z CH 3 (z=1-3). ] A compound represented by or a mixture thereof.

(b) Maずしおゞ゚チレングリコヌルビスアリル
カヌボネヌト、たたはこれずアクリル酞メチ
ル、アクリル酞゚チル、メタクリル酞−ブチ
ルもしくはメタクリル酞−ブチルずの混合物
ただし、この混合物䞭のゞ゚チレングリコヌ
ルビスアリルカヌボネヌトの量は10重量以䞊
であるのが奜たしい。Mbずしお、化合物(B) 〔匏䞭、は氎玠原子たたはメチル基であ
り、は−CF2i〜、−CH2
CF2j〜、−CH2CH2OCH2CF3、 −CH2CH2OkCF2CF2H〜、 −CH2CH2OCH2CF2l〜、 −CH2CF2nCF2o〜、
〜から成る矀より遞ばれた基を衚わす。〕 で衚わされるメタクリル酞たたはアクリル酞の
含フツ玠アルコヌル゚ステルや、䞊蚘䞀般匏(B)
においおが−SiOC2H53である化合物(C)。
(b) Diethylene glycol bisallyl carbonate as Ma, or a mixture thereof with methyl acrylate, ethyl acrylate, n-butyl methacrylate or t-butyl methacrylate (however, the amount of diethylene glycol bisallyl carbonate in this mixture is 10 % by weight or more). Compound (B) as Mb [In the formula, X is a hydrogen atom or a methyl group, and Y is -(CF 2 ) i F (i = 1 to 6), -CH 2
(CF 2 ) j H (j = 1 to 8), -CH 2 CH 2 OCH 2 CF 3 , -(CH 2 CH 2 O) k CF 2 CF 2 H (k = 1 to 4), -(CH 2 CH 2 OCH 2 (CF 2 ) l F (l = 1 to 6), -CH 2 (CF 2 ) n O (CF 2 ) o F (m = 1 to 2, n = 1
~4) represents a group selected from the group consisting of ] Fluorine-containing alcohol ester of methacrylic acid or acrylic acid, or the above general formula (B)
A compound (C) in which Y is -Si( OC2H5 ) 3 .

(c) 単量䜓Maずしおゞ゚チレングリコヌルビス
アリルカヌボネヌトず䞊蚘化合物(B)たたは(C)ず
の混合物ただし、この混合物䞭のゞ゚チレン
グリコヌルビスアリルカヌボネヌトの量は10重
量以䞊であるのが奜たしい。単量䜓Mbず
しお䞊蚘化合物(A)。
(c) A mixture of diethylene glycol bisallyl carbonate as the monomer Ma and the above compound (B) or (C) (however, the amount of diethylene glycol bisallyl carbonate in this mixture is preferably 10% by weight or more). The above compound (A) as monomer Mb.

この発明の単量䜓Mcは、単量䜓Mbず同䞀た
たは異なる単量䜓であ぀お屈折率Ncの重合䜓Pc
を生成するものである。この単量䜓Mcも単䞀の
単量䜓および耇数皮の単量䜓の混合物のいずれで
あ぀おもよく、たた単量䜓Mbずしお䟋瀺された
䞊蚘化合物の䜕れも単量䜓Mcずしお䜿甚可胜で
ある。そしお、特に蒞気圧が高いものが奜適であ
る。
The monomer Mc of this invention is a polymer Pc which is the same or different from the monomer Mb and has a refractive index Nc.
is generated. This monomer Mc may be either a single monomer or a mixture of multiple types of monomers, and any of the above compounds exemplified as monomer Mb can be used as monomer Mc. It is. In particular, those with high vapor pressure are suitable.

次に、この発明の具䜓䟋を瀺す。 Next, a specific example of this invention will be shown.

具䜓䟋  重合開始剀ずしお3.0重量の過酞化ベンゟむ
ルBPOを溶解させたゞ゚チレングリコヌル
ビスアリルカヌボネヌトCR−39を75℃で65
分間加熱しお予備重合し、ゲル化盎前で流動性を
保持しおいるプレポリマヌを埗た。このプレポリ
マヌの粘床は20℃で1015cpであり、䞊蚘(4)匏に
おけるおよびの倀はそれぞれ2.57×10-2cm2
dyne-1sec-1および1.21であ぀た。このプレポリ
マヌを第図に瀺す装眮の抌出し噚に入れ、
加熱ゞダケツトを貫通しおいるテフロンチナヌ
ブ盎埄mm、長さ200mmの䞭ぞ6.3×10-2
mlminの䞀定流量で連続的に送り蟌んだ。加熱
ゞダケツトには䞊郚に78℃の枩氎、䞋郚に58
℃の枩氎をそれぞれ流すこずによ぀お枩床募配
を圢成させた。テフロンチナヌブ䞭を40分間で
通過する間に、プレポリマヌはゲル化し、mm
φの母材に成圢された。この母材はアセトン
に䞍溶な成分網状重合䜓郚分25重量、アセ
トンに可溶だがメタノヌルに䞍溶の成分線圢重
合䜓郚分重量、アセトンずメタノヌルの䞡
方に可溶な成分単量䜓および䜎分子量プレポリ
マヌ郚分70重量から成぀おいた。
Specific example 1 Diethylene glycol bisallyl carbonate (CR-39) in which 3.0% by weight of benzoyl peroxide (BPO) was dissolved as a polymerization initiator was heated at 75℃ for 65 minutes.
The mixture was prepolymerized by heating for a minute to obtain a prepolymer that maintained fluidity just before gelation. The viscosity of this prepolymer is 1015 cp at 20°C, and the values of K and n in the above equation (4) are each 2.57 × 10 -2 cm 2
dyne -1 sec -1 and 1.21. This prepolymer 1 is put into an extruder 2 of the apparatus shown in FIG.
6.3×10 -2 into the Teflon tube 4 (diameter 4 mm, length 200 mm) passing through the heating jacket 3.
It was fed continuously at a constant flow rate of ml/min. Heating jacket 3 has 78℃ hot water 5 on the top and 58℃ on the bottom.
A temperature gradient was created by flowing hot water 6 at a temperature of .degree. While passing through Teflon tube 4 for 40 minutes, prepolymer 1 gels and becomes 4 mm thick.
It was molded into a base material 7 of φ. This base material 7 consists of 25% by weight of a component insoluble in acetone (reticular polymer portion), 5% by weight of a component soluble in acetone but insoluble in methanol (linear polymer portion), and a component soluble in both acetone and methanol. It consisted of 70% by weight (monomers and low molecular weight prepolymer parts).

次いで、母材を匕き䞊げ装眮によ぀お0.25
cm分の䞀定速床で拡散装眮に導入した。液盞
拡散宀には、メタクリル酞−−トリ
ハむドロパヌフルオロプロピル4FMAを1.0
ml分の䞀定流速で流入させた。この4FMAは重
合犁止剀を添加しないで甚いた。たた、この
4FMA䞭に200ml分の流量で窒玠をバブルさせ
るこずにより、4FMAの蒞気を発生させお、気盞
宀を4FMAの蒞気で満たした。液盞拡散宀
の枩床は70℃ずし、たた気盞宀は80℃の枩氎
を倖偎管に流すこずにより加枩されおいた。
4FMAの蒞気は真空ポンプによ぀お800ml分の
流量で回収され、トラツプ䞭で液化された。液化
した4FMAおよび液盞拡散宀から流出した
4FMAはほずんど重合しおおらず、そのたた繰返
し䜿甚できた。なお、気盞宀には予め1000
ml分の流量で窒玠ガスを流入させお窒玠眮換し
おおいた。
Next, the base material 7 is pulled up to 0.25
It was introduced into the diffuser 8 at a constant speed of cm/min. The liquid phase diffusion chamber 9 contains 1.0% of 1,1,3-trihydroperfluoropropyl methacrylate (4FMA).
A constant flow rate of ml/min was applied. This 4FMA was used without adding a polymerization inhibitor. Also, this
The vapor of 4FMA was generated by bubbling nitrogen into the 4FMA at a flow rate of 200 ml/min, and the gas phase chamber 13 was filled with the vapor of 4FMA. Liquid phase diffusion chamber 9
The temperature was 70°C, and the gas phase chamber 13 was heated by flowing hot water at 80°C through the outer tube.
The 4FMA vapor was collected by a vacuum pump at a flow rate of 800 ml/min and liquefied in the trap. Liquefied 4FMA and liquid phase diffusion chamber 19 flowed out.
4FMA was hardly polymerized and could be used repeatedly as is. In addition, the gas phase chamber 13 is filled with 1000
Nitrogen gas was introduced at a flow rate of ml/min for nitrogen replacement.

母材を液盞拡散宀に玄分間、気盞宀
に玄30分間滞留させる間に、4FMAを拡散させ、
その䞀郚を加熱重合させた。
The base material 7 is placed in the liquid phase diffusion chamber 9 for about 5 minutes, and then placed in the gas phase chamber 13.
While staying for about 30 minutes, 4FMA is diffused,
A part of it was polymerized by heating.

拡散装眮を経た母材を、続いお窒玠眮換し
た熱凊理管に送り蟌んだ。この熱凊理管
を、ヒヌタによ぀お䞋郚から、順次90℃、110
℃、120℃、130℃に加熱し、枩床募配を圢成させ
た。この熱凊理管内で母材を時間熱凊理し
お重合を完結させた。
The base material 7 that had passed through the diffusion device 8 was then fed into a heat treatment tube 14 that was purged with nitrogen. This heat treatment tube 14
are heated to 90℃ and 110℃ sequentially from the bottom by heater 6.
℃, 120℃, and 130℃ to form a temperature gradient. The base material was heat treated in this heat treatment tube 14 for 6 hours to complete polymerization.

このようにしお連続的に䜜補した盎埄mmの棒
状䜓からは、均䞀な光孊性胜を有する棒状凞レン
ズ、すなわち所望の光䌝送䜓が埗られた。この棒
状䜓は、䞊蚘(1)匏䞭のの倀が2.22×10-2mm-2の
光䌝送䜓であり、この棒状䜓䞭を蛇行しお進行す
る光束の呚期匏(2)は42.5mmであ぀た。たた、
この棒状䜓にはほずんど倖呚郚たで匏(1)で衚わさ
れるような屈折率分垃が圢成されおいたので、呚
蟺郚を削り萜ずす必芁がなか぀た。さらに、凞レ
ンズずしおの評䟡の倀、開口数NAも0.45ず倧き
か぀た。
From the rod-shaped bodies having a diameter of 4 mm that were continuously produced in this manner, a rod-shaped convex lens having uniform optical performance, that is, a desired light transmission body was obtained. This rod-shaped body is an optical transmission body in which the value of A in the above equation (1) is 2.22×10 -2 mm -2 , and the period L of the light flux that meanders through this rod-shaped body (equation (2) ) was 42.5mm. Also,
Since this rod-shaped body had a refractive index distribution expressed by equation (1) almost up to the outer periphery, there was no need to shave off the periphery. Furthermore, the evaluation value as a convex lens, the numerical aperture NA, was large at 0.45.

具䜓䟋  0.10重量のBPO及び0.50重量の四臭化炭玠
CBr4を溶解させた゚チレングリコヌルゞメタ
クリレヌトEDMAを窒玠雰囲気䞋45℃で50
分間加熱しお、20℃での粘床が930cp、3.23
×10-2cm2dyne-1sec-1、および1.19のプレポ
リマヌを埗た。
Specific Example 2 Ethylene glycol dimethacrylate (EDMA) in which 0.10% by weight of BPO and 0.50% by weight of carbon tetrabromide (CBr 4 ) were dissolved was heated at 45°C under a nitrogen atmosphere for 50 minutes.
Viscosity at 20℃ after heating for 930cp, K=3.23
A prepolymer with x10 -2 cm 2 dyne -1 sec -1 and n=1.19 was obtained.

埗られたプレポリマヌを、具䜓䟋ず同様に
抌出し噚に入れ、さらに、䞊郚に60℃の枩氎
、䞋郚に30℃の枩氎をそれぞれ流した加熱ゞ
ダケツトを貫通しおいるテフロンチナヌブ内
埄mm、長さ96mmに6.0×10-2ml分の䞀定
流量で連続的に送り蟌んだ。このテフロンチナヌ
ブを通過する間に、プレポリマヌはゲル化し
お盎埄mmの円筒状で透明な母材に成圢され
た。この母材はアセトンに䞍溶の成分網状重
合䜓郚分15.5重量、アセトンに可溶でか぀メ
タノヌルに䞍溶の成分線圢重合䜓郚分0.3重
量、およびアセトンずメタノヌルの䞡方に可溶
の成分単量䜓および䜎分子量プレポリマヌ
84.2重量からな぀おいた。
The obtained prepolymer 1 was placed in an extruder 2 in the same manner as in Example 1, and a Teflon tube was inserted through a heating jacket 3 in which hot water 5 at 60°C was poured into the upper part and hot water 6 at 30°C was poured into the lower part. It was continuously fed into a tube (inner diameter 4 mm, length 96 mm) 4 at a constant flow rate of 6.0 x 10 -2 ml/min. While passing through this Teflon tube 4, the prepolymer 1 was gelled and formed into a transparent cylindrical base material 7 with a diameter of 4 mm. This matrix 7 contains 15.5% by weight of a component insoluble in acetone (reticular polymer portion), 0.3% by weight of a component soluble in acetone and insoluble in methanol (linear polymer portion), and soluble in both acetone and methanol. Components (monomers and low molecular weight prepolymers)
It consisted of 84.2% by weight.

この母材を、続いお4FMAが1.0ml分の䞀
定流量で泚入されおいる液盞拡散宀に送り蟌ん
だ。この液盞拡散宀の枩床は60℃であ぀た。こ
の液盞拡散宀に玄分間滞留させる間に、母材
に4FMAを拡散させた。たた、4FMA䞭深さ
24mmに、200ml分の流量で窒玠をバブルさせ
るこずにより、4FMAを蒞発させお気盞宀を
4FMAの蒞気で満たした。さらに、この4FMAの
è’žæ°—ã‚’800ml分の流量で回収した。気盞宀
は倖偎管長さ72mmに流した65℃の枩氎で加熱
されおいた。この気盞宀に、母材を玄15分
間滞留させた。
This base material 7 was then fed into a liquid phase diffusion chamber 9 into which 4FMA was injected at a constant flow rate of 1.0 ml/min. The temperature of this liquid phase diffusion chamber 9 was 60°C. While staying in this liquid phase diffusion chamber 9 for about 5 minutes, 4FMA was diffused into the base material 7. Also, in 4FMA (depth
24mm) at a flow rate of 200ml/min to evaporate 4FMA and fill the gas phase chamber 13.
Filled with 4FMA steam. Furthermore, this 4FMA vapor was collected at a flow rate of 800 ml/min. Gas phase chamber 13
was heated with 65°C hot water flowing through an outer tube (72 mm long). The base material 7 was allowed to stay in this gas phase chamber 13 for about 15 minutes.

4FMAを拡散させ䞀郚重合させた埌、母材を
熱凊理管に導いお加熱重合を完結させた。こ
の熱凊理管を、ヒヌタヌによ぀お、65℃、70
℃、85℃および100℃に加熱するこずによ぀お枩
床募配を圢成させた。このようにしお所望の棒状
光䌝送䜓が連続的に補造できた。この光䌝送䜓で
は、屈折率分垃を有する郚分の半埄が1.68mm党
䜓の69であり、3.03×10-2mm-2、
36.1mmであ぀た。たた䞭心の盎埄2.7mmの郚分は
開口数NA0.36の棒状凞レンズであ぀た。
After 4FMA was diffused and partially polymerized, the base material 7 was introduced into the heat treatment tube 14 to complete the heat polymerization. This heat-treated tube was heated to 65°C and 70°C by the heater 16.
A temperature gradient was created by heating to 100°C, 85°C and 100°C. In this way, desired rod-shaped light transmitters could be continuously manufactured. In this optical transmission body, the radius of the part with refractive index distribution is 1.68 mm (69% of the whole), A = 3.03 × 10 -2 mm -2 , L =
It was 36.1mm. The central portion with a diameter of 2.7 mm was a rod-shaped convex lens with a numerical aperture NA of 0.36.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はこの発明の補造方法を実斜するのに䜿
甚可胜な補造装眮の䞀䟋を瀺す瞊断面図、第図
は第図に瀺した補造装眮の郚分拡倧図である。 なお図面に甚いた笊号においお、 プレポリ
マヌ、 抌出し噚、 加熱ゞダケツト、 
テフロンチナヌブ、 母材、 拡散装眮、
 液盞拡散宀、 気盞宀、 熱凊理管、
 光䌝送䜓、である。
FIG. 1 is a longitudinal sectional view showing an example of a manufacturing apparatus that can be used to carry out the manufacturing method of the present invention, and FIG. 2 is a partially enlarged view of the manufacturing apparatus shown in FIG. 1. In addition, in the symbols used in the drawings, 1...prepolymer, 2...extruder, 3...heating jacket, 4...
Teflon tube, 7... Base material, 8... Diffusion device, 9
...liquid phase diffusion chamber, 13...vapor phase chamber, 14...heat treatment tube,
18... Optical transmission body.

Claims (1)

【特蚱請求の範囲】  屈折率Naの網状重合䜓Paを生成する単量䜓
Maの䞍完党な重合を行぀お自己保圢性を有する
母材を圢成し、 屈折率Naずは異なる屈折率Nbを有する重合䜓
Pbを生成しか぀液䜓状態にある単量䜓Mbを、前
蚘母材の衚面に接觊させおその内郚ぞ拡散させる
ず共に、さらに加熱重合させるようにした、屈折
率分垃を有する合成暹脂光䌝送䜓の補造方法にお
いお、 前蚘単量䜓Maを甚いお埗られた成圢甚流䜓を
成圢管内に送り蟌んでこの成圢管内で前蚘自己保
圢性母材を連続的に圢成し、 次いで、前蚘成圢管から連続的に出お来る前蚘
自己保圢性母材に、 前蚘液状単量䜓Mbを含有する液盞拡散宀、 前蚘単量䜓Mbず同䞀たたは異なる単量䜓
Mcであ぀お、 (a) NcNb (b) NcNaおよびNbNa (c) NcNaおよびNbNa なる(a)〜(c)の条件の䜕れか぀を満足する屈折
率Ncを有する重合䜓Pcを生成しか぀䞀定枩床
に加熱制埡された気䜓状たたは霧滎状の単量䜓
Mcを含有する気盞宀、 を順次通過させるようにしたこずを特城ずする合
成暹脂光䌝送䜓の補造方法。  前蚘気盞宀には、前蚘単量䜓Mcが、少くず
もその飜和濃床の20に盞圓する量含有されおい
るこずを特城ずする特蚱請求の範囲第項に蚘茉
の合成暹脂光䌝送䜓の補造方法。  前蚘単量䜓Mcが前蚘単量䜓Mbず同䞀であ
るこずを特城ずする特蚱請求の範囲第項に蚘茉
の合成暹脂光䌝送䜓の補造方法。
[Claims] 1. Monomer that produces a network polymer Pa having a refractive index of Na
A polymer that undergoes incomplete polymerization of Ma to form a matrix with self-shape retention, and has a refractive index of Nb different from the refractive index of Na.
A synthetic resin optical transmission body having a refractive index distribution, in which the monomer Mb that generates Pb and is in a liquid state is brought into contact with the surface of the base material and diffused into the interior thereof, and is further heated and polymerized. In the manufacturing method, the molding fluid obtained using the monomer Ma is fed into a molding tube to continuously form the self-shape-retaining base material in the molding tube, and then the self-shape-retaining base material is continuously formed from the molding tube. a liquid phase diffusion chamber containing the liquid monomer Mb; a monomer that is the same as or different from the monomer Mb;
Refraction that satisfies any one of the conditions (a) to (c) that is Mc and (a) Nc=Nb (b) Nc<Na and Nb<Na (c) Nc>Na and Nb>Na A monomer in the form of gas or droplets that forms a polymer Pc with a ratio Nc and is heated and controlled to a constant temperature.
A method for manufacturing a synthetic resin optical transmission body, characterized in that the material is sequentially passed through a vapor phase chamber containing Mc. 2. The synthetic resin optical transmission according to claim 1, wherein the gas phase chamber contains the monomer Mc in an amount corresponding to at least 20% of its saturation concentration. How the body is manufactured. 3. The method for manufacturing a synthetic resin optical transmission body according to claim 1, wherein the monomer Mc is the same as the monomer Mb.
JP58120625A 1983-07-02 1983-07-02 Manufacture of synthetic resin optical transmission body Granted JPS6012507A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58120625A JPS6012507A (en) 1983-07-02 1983-07-02 Manufacture of synthetic resin optical transmission body
US06/626,697 US4587065A (en) 1983-07-02 1984-07-02 Method for producing light transmitting article of synthetic resin
DE8484304531T DE3466660D1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
EP84304531A EP0130838B1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
US06/827,468 US4689000A (en) 1983-07-02 1986-02-10 Apparatus for producing light transmitting article of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120625A JPS6012507A (en) 1983-07-02 1983-07-02 Manufacture of synthetic resin optical transmission body

Publications (2)

Publication Number Publication Date
JPS6012507A JPS6012507A (en) 1985-01-22
JPH0546522B2 true JPH0546522B2 (en) 1993-07-14

Family

ID=14790855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120625A Granted JPS6012507A (en) 1983-07-02 1983-07-02 Manufacture of synthetic resin optical transmission body

Country Status (1)

Country Link
JP (1) JPS6012507A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525857A (en) * 1975-07-01 1977-01-17 Nippon Zeon Co Ltd Cross-linkable halogen-containing polymecomposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525857A (en) * 1975-07-01 1977-01-17 Nippon Zeon Co Ltd Cross-linkable halogen-containing polymecomposition

Also Published As

Publication number Publication date
JPS6012507A (en) 1985-01-22

Similar Documents

Publication Publication Date Title
US4587065A (en) Method for producing light transmitting article of synthetic resin
JPH08244130A (en) Manufacture of transparent article with refractive index gradient
JPS60175009A (en) Production of plastic optical element having refractive index distribution
WO1994015005A1 (en) Shaped articles of graduated refractive index
JPH0576602B2 (en)
JPH0546522B2 (en)
JPH0259961B2 (en)
JPH0614125B2 (en) Method for manufacturing synthetic resin optical transmitter
JPWO2004068202A1 (en) Fabrication method of refractive index distribution type optical transmitter by spontaneous frontal polymerization using heat storage effect
JPH0225484B2 (en)
JPH0629885B2 (en) Method for manufacturing synthetic resin optical transmitter
JPH0727928A (en) Production of plastic optical transmission body
JPH0355801B2 (en)
JPH0614124B2 (en) Method for manufacturing synthetic resin optical transmitter
JPH0237561B2 (en)
JPH0621886B2 (en) Method for manufacturing synthetic resin optical transmitter
JPH0546523B2 (en)
JPH0579962B2 (en)
KR0170480B1 (en) Preparation process of polymeric rod and gradient-index rod lens using free radical bulk polymerization with temperature gradient
JPH0252241B2 (en)
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH0621885B2 (en) Diffusion processing device for synthetic resin objects
JPH08201637A (en) Continuous production of synthetic resin light transmission body
JPH09178959A (en) Production of preform for distributed refractive index plastic optical fiber
JPH11153717A (en) Production of graded index optical fiber