JPH0545680A - Light wavelength filter element and light wavelength filter device - Google Patents
Light wavelength filter element and light wavelength filter deviceInfo
- Publication number
- JPH0545680A JPH0545680A JP28740491A JP28740491A JPH0545680A JP H0545680 A JPH0545680 A JP H0545680A JP 28740491 A JP28740491 A JP 28740491A JP 28740491 A JP28740491 A JP 28740491A JP H0545680 A JPH0545680 A JP H0545680A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- wavelength filter
- optical wavelength
- light
- phase difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【産業上の利用分野】この発明は、透過波長を可変制御
できる光波長フィルタ素子及び光波長フィルタ装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength filter element and an optical wavelength filter device capable of variably controlling a transmission wavelength.
【従来の技術】従来より、波長多重された光信号のなか
から特定波長λ0の光信号を分離するためのフィルタ素
子として、例えば文献I:IEEE Communic
a−tion Magazine(アイイーイーイー
コミュニケーション マガジン) 1989年10月
p53〜63に開示されているものがある。文献Iに開
示のフィルタ素子は、a:ファブリペロ型、b:マッハ
ツェンダ型、c:モード変換型及びd:ブラッグ反射型
の4種に分類される。フィルタの透過波長λ0を設計基
準波長λからλ+Δλまで変化させることを考えれば、
a、b及びdの型では波長変化量Δλに関し表1の
(1)式が成立し、またcの型では波長変化量Δλに関
し表1の(2)式が成立する。尚、λ0=λ+Δλと表
せる。式中のΔnはフィルタ素子が備える導波路に関し
電気的に変化させることのできる屈折率の量、nはフィ
ルタ素子が備える導波路の屈折率、δnはモード間屈折
率差例えばTM及びTEモード間の屈折率差を表す。一
般的には、設計基準波長λはフィルタ素子構成要素の形
状、寸法、形成材料等から一義的に決定され定数とな
る。しかしc型のなかでも音響光学効果(AO効果)を
利用したものは、光のモードを変換するためのグレーテ
ィングの周期を電気的に変化させることができるので、
設計基準波長λを可変制御することができる。従って、
電気的に可変制御される屈折率変化量Δnに上限はある
ものの、透過波長λ0の可変範囲(チューニング幅)は
cの型において最も広くなる。また、上記a、b、c及
びd型の各フィルタにおける光透過率ピークの半値幅Δ
λFWHMは、それぞれ表1の(3)式、(4)式、
(5)式及び(6)式で表せる。式中のLはフィルタ素
子の素子長(電極長)、Rはフィルタ素子の入出射端面
の反射率を表す。通常δn<<nであるので、(3)式
〜(6)式からも理解できるようにa、b及びdの型で
の半値幅ΔλFWHMは非常に狭くなるが、cの型での
半値幅ΔλFWHMは非常に広くなる。ここでフィルタ
素子の1チャネル当たりの透過帯域幅(半値幅)がΔλ
FWHMであるとすれば、チャネル数CHはaの型では
表1の(7)式、b及びcの型では表1の(8)式、ま
たdの型では表1の(9)式のように表せる。式中のΔ
nmaxは変化可能な範囲で最大のΔnを表す。ただし
aの型の場合FSR(Free Spectral R
ange)の制限を受けるので、素子単独では、CH=
π・R1/2/(1−R)となる。従ってΔnmax≒
0.01とすると、aの型ではR≒0.9としてFSR
の制限により数10チャネル(FSRを無視すれば潜在
的には80チャネル)となり、bの型ではL≒1cmと
して80チャネル、cの型ではL≒1mmとして8チャ
ネル及びdの型ではL=500μmとして8チャネルと
なる。2. Description of the Related Art Conventionally, as a filter element for separating an optical signal of a specific wavelength λ 0 from wavelength-multiplexed optical signals, for example, reference I: IEEE Communicative is used.
a-tion Magazine
Communication Magazine) October 1989
Some are disclosed in p53-63. The filter element disclosed in Document I is classified into four types: a: Fabry-Perot type, b: Mach-Zehnder type, c: mode conversion type, and d: Bragg reflection type. Considering changing the transmission wavelength λ 0 of the filter from the design reference wavelength λ to λ + Δλ,
For the types a, b and d, the formula (1) of Table 1 is established for the wavelength variation Δλ, and for the type c, the formula (2) of Table 1 is established for the wavelength variation Δλ. It can be expressed as λ 0 = λ + Δλ. In the formula, Δn is the amount of the refractive index that can be electrically changed with respect to the waveguide included in the filter element, n is the refractive index of the waveguide included in the filter element, and δn is the refractive index difference between modes, for example, between TM and TE modes. Represents the difference in refractive index. Generally, the design reference wavelength λ is a constant that is uniquely determined from the shape, size, forming material, etc. of the filter element constituent element. However, among the c-type, the one utilizing the acousto-optic effect (AO effect) can electrically change the period of the grating for converting the mode of light,
The design reference wavelength λ can be variably controlled. Therefore,
Although there is an upper limit to the refractive index change amount Δn that is electrically variably controlled, the variable range (tuning width) of the transmission wavelength λ 0 is the widest in the type c. Further, the full width at half maximum Δ of the light transmittance peak in each of the a, b, c and d type filters.
λ FWHM is expressed by equation (3), equation (4), and
It can be expressed by equations (5) and (6). In the equation, L represents the element length (electrode length) of the filter element, and R represents the reflectance of the input / output end face of the filter element. Since normally δn << n, the half-width Δλ FWHM in the types a, b, and d becomes very narrow as can be understood from the equations (3) to (6), but half in the type c. The value width Δλ FWHM becomes very wide. Here, the transmission bandwidth (half-value width) per channel of the filter element is Δλ
Assuming FWHM , the number of channels CH is expressed by the equation (7) in Table 1 for the type a, the equation (8) in Table 1 for the types b and c, and the expression (9) in Table 1 for the type d. Can be expressed as Δ in the formula
n max represents the maximum Δn in the changeable range. However, in case of type a, FSR (Free Spectral R
Therefore, when the device alone is used, CH =
It becomes pi * R1 / 2 / (1-R). Therefore Δn max ≈
If the value is 0.01, then in the type a, R ≈ 0.9 and the FSR
Due to the limitation of 10 channels (potentially 80 channels if FSR is neglected), 80 channels with L≈1 cm for type b, 8 channels with L≈1 mm for type c and L = 500 μm for type d. Will be 8 channels.
【発明が解決しようとする課題】上述した従来のa、
b、dの型のフィルタ素子では、1チャネル当たりの透
過帯域幅ΔλFWHMを狭くできてもチューニング幅
(透過波長λ0の可変範囲)を広くできないためチャネ
ル数(=チューニング幅/1チャネル当たりの透過帯域
幅)を大きくできない。またcの型のフィルタ素子で
は、チューニング幅を広くできるが透過帯域幅Δλ
FWHMを狭くできないためチャネル数を増やせない。
チャネル数を増やすことを考えた場合、a、b、dの型
では素子長Lを長くすれば透過帯域幅ΔλFWHMを狭
くでき従ってチャネル数を増やせるが、透過帯域幅Δλ
FWHMが狭くなりすぎるとフィルタ素子が扱いにくく
なり実用的でなくなる。またCの型では素子長Lを極端
に長くしないと(例えばL=1m)チャネル数を増やせ
ない。この発明の目的は、上述した従来の問題点を解決
するため、1チャネル当たりの透過帯域幅を実用的な範
囲で狭くできかつチューニング幅を広くできる光波長フ
ィルタ素子及び光波長フィルタ装置を提供することにあ
る。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
b, type of d in the filter element, 1 transmission bandwidth [Delta] [lambda] FWHM narrowly can be tuned width per channel number of channels can not be wide (variable range of transmission wavelength lambda 0) (= Tuning width / 1 per channel The transmission bandwidth) cannot be increased. Further, in the c-type filter element, the tuning width can be widened, but the transmission bandwidth Δλ
The number of channels cannot be increased because the FWHM cannot be narrowed.
In consideration of increasing the number of channels, in the types a, b, and d, if the element length L is increased, the transmission bandwidth Δλ FWHM can be narrowed, so that the number of channels can be increased, but the transmission bandwidth Δλ
If the FWHM becomes too narrow, the filter element becomes difficult to handle and becomes impractical. In the C type, the number of channels cannot be increased unless the element length L is extremely long (for example, L = 1 m). An object of the present invention is to provide an optical wavelength filter device and an optical wavelength filter device capable of narrowing the transmission bandwidth per channel within a practical range and widening the tuning width in order to solve the above-mentioned conventional problems. Especially.
【課題を解決するための手段】この目的の達成を図るた
め、この出願の第一発明の光波長フィルタ素子は、1×
N分岐部及びN×1干渉部と、相対応する分岐部の出力
ポート及び干渉部の入力ポートの間に設けたN個の接続
導波路と、接続導波路に設けた構造的位相差制御部及び
屈折率可変部とを備え、各構造的位相差制御部の長さを
第一の公差で等差数列を形成するように異ならせ、各屈
折率可変部の長さを第二の公差で等差数列を形成するよ
うに異ならせて成ることを特徴とする。また第二発明の
光波長フィルタ装置は、第一発明の光波長フィルタ素子
を多段に接続して成り、これら光波長フィルタ素子の第
一の公差をそれぞれ異ならせることを特徴とする。In order to achieve this object, the optical wavelength filter element of the first invention of this application is 1 ×
N branch section and N × 1 interference section, N connection waveguides provided between the output ports of the corresponding branch section and the input port of the interference section, and structural phase difference control section provided in the connection waveguide And a refractive index variable portion, and the length of each structural phase difference control portion is different so as to form an arithmetic progression with the first tolerance, and the length of each refractive index variable portion with the second tolerance. It is characterized in that they are different so as to form an arithmetic sequence. The optical wavelength filter device of the second invention is characterized in that the optical wavelength filter elements of the first invention are connected in multiple stages, and the first tolerances of these optical wavelength filter elements are made different from each other.
【作用】第一発明によれば、1×N分岐部は波長多重の
光を入力し分岐してN個の各出力ポートからそれぞれ波
長多重の光を出力する。N×1干渉部は接続導波路を介
してN個の入力ポートからそれぞれ波長多重の光を入力
し合波して、各入力ポートからの波長多重の光を干渉さ
せる。この干渉により特定波長の光を干渉部の出力ポー
トから出力させる。分岐部の各出力ポートから出力する
光のパワー及び位相は等しい。しかし接続導波路には構
造的位相差制御部及び屈折率可変部を設けているので、
分岐部からの光は構造的位相差制御部及び屈折率可変部
を経て干渉部に入力する。従って光が分岐部から干渉部
に入力するまでの間に構造的位相差制御部及び屈折率可
変部の作用により、光の位相に差を生じる。構造的位相
差制御部によって生じる光の位相差は可変制御されない
ほぼ一定の固定した値である。一方、屈折率可変部によ
って生じる光の位相差は、屈折率可変部の屈折率を電気
的に可変制御することによって変化させることができ、
屈折率可変部の屈折率変化量に応じた量だけ変化する。
従って干渉部に入力する光の位相差は構造的位相差制御
部によって生じた位相差と屈折率可変部によって生じた
位相の変化分とが重畳したものとなる。しかも各構造的
位相差制御部の長さを等差数列を形成するようにそれぞ
れ異ならせると共に各屈折率可変部の長さを等差数列を
形成するようにそれぞれ異ならせている。従ってこのよ
うな長さが等差数列を形成する構造的位相差制御部及び
屈折率可変部によって、干渉部に入力される光の位相差
を等差数列を形成するように異ならせることができる。
このような位相差を生じた波長多重の光を干渉部で干渉
させることによって、特定波長の光を干渉部から出力さ
せそれ以外の波長の光を干渉部から出力させないように
することができる。干渉部から出力する光は、波長が特
定の周期δλで離間する複数の光である。そして屈折率
可変部の屈折率を電気的に変化させると干渉部に入力す
る光の位相差の大きさが変化するので、屈折率可変部の
屈折率を可変制御することによって干渉部から出力する
光の波長を変化させることができる。この際干渉部から
出力する光の波長の周期δλはほぼ一定に保たれたま
ま、光の波長が変化する。また第二発明によれば、第一
発明の光波長フィルタ素子を多段に接続し、多段接続し
たこれら光波長フィルタ素子の第一の公差をそれぞれ異
ならせる。このように第一の公差はそれぞれ異なる。従
って、多段接続した光波長フィルタ素子の最終段の素子
から出力する光(第二発明の光波長フィルタ装置から出
力する光)は、多段接続した光波長フィルタ素子の全て
の素子を透過した光である。第二発明の光波長フィルタ
装置から出力する光の波長の周期は、多段接続した全て
の光波長フィルタ素子の周期δλに関する最小公倍数と
なる。According to the first aspect of the invention, the 1 × N branching unit inputs the wavelength-multiplexed light, branches it, and outputs the wavelength-multiplexed light from each of the N output ports. The N × 1 interference unit inputs the wavelength-multiplexed light from each of the N input ports via the connection waveguide and multiplexes them to interfere with the wavelength-multiplexed light from each input port. Due to this interference, light of a specific wavelength is output from the output port of the interference section. The power and phase of the light output from each output port of the branch unit are equal. However, since the connection waveguide is provided with a structural phase difference control unit and a refractive index variable unit,
The light from the branch portion is input to the interference portion through the structural phase difference control portion and the refractive index variable portion. Therefore, a phase difference of the light is generated by the action of the structural phase difference control unit and the refractive index variable unit before the light enters the interference unit from the branching unit. The phase difference of light generated by the structural phase difference controller is a substantially constant fixed value that is not variably controlled. On the other hand, the phase difference of light generated by the refractive index variable unit can be changed by electrically variably controlling the refractive index of the refractive index variable unit,
It changes by an amount corresponding to the amount of change in the refractive index of the variable refractive index portion.
Therefore, the phase difference of the light input to the interference section is a superposition of the phase difference produced by the structural phase difference control section and the phase variation produced by the refractive index variable section. Moreover, the lengths of the structural phase difference controllers are made different so as to form the arithmetic progression, and the lengths of the refractive index variable portions are made different so as to form the arithmetic progression. Therefore, the structural phase difference control unit and the refractive index variable unit whose lengths form the arithmetic progression can make the phase difference of the light input to the interference unit different so as to form the arithmetic progression. ..
By causing the interference section to interfere the wavelength-multiplexed light having such a phase difference, it is possible to prevent the interference section from outputting the light of the specific wavelength and the interference section from outputting the lights of the other wavelengths. The light output from the interference unit is a plurality of lights whose wavelengths are separated by a specific cycle Δλ. Then, when the refractive index of the refractive index variable portion is electrically changed, the magnitude of the phase difference of the light input to the interference portion changes. Therefore, the refractive index of the refractive index variable portion is variably controlled and output from the interference portion. The wavelength of light can be changed. At this time, the wavelength of the light output from the interference section changes while the period Δλ of the wavelength of the light is kept substantially constant. According to the second invention, the optical wavelength filter elements of the first invention are connected in multiple stages, and the first tolerances of these optical wavelength filter elements connected in multiple stages are made different. Thus, the first tolerances are different. Therefore, the light output from the final stage element of the optical wavelength filter elements connected in multiple stages (the light output from the optical wavelength filter device of the second invention) is the light transmitted through all the elements of the optical wavelength filter elements connected in multiple stages. is there. The cycle of the wavelength of the light output from the optical wavelength filter device of the second invention is the least common multiple of the cycles Δλ of all the optical wavelength filter elements connected in multiple stages.
【実施例】以下、図面を参照し、第一及び第二発明の実
施例につき説明する。尚、図面はこの発明が理解できる
程度に概略的に示してあるに過ぎず、従ってこの発明を
図示例に限定するものではない。図1は第一発明の光波
長フィルタ素子の第一実施例の構成を概略的に示す平面
図である。第一実施例の光波長フィルタ素子は、1×N
分岐部10及びN×1干渉部12と、相対応する分岐部
10の出力ポート及び干渉部12の入力ポートの間に設
けたN個の接続導波路14と、接続導波路14に設けた
構造的位相差制御部16、17及び屈折率可変部18と
を備える。そして各構造的位相差制御部16、17の長
さを、第一の公差で等差数列を形成するように異ならせ
ると共に、各屈折率可変部18の長さを、第二の公差で
等差数列を形成するように異ならせる。この実施例で
は、分岐部10、接続導波路14、構造的位相差制御部
16及び屈折率可変部18を同一の基板20に設ける。
基板20は強誘電体結晶基板或は化合物半導体基板であ
る。分岐部10は1×2対称Y分岐22を多段接続して
成り、例えばY分岐22を2段に接続して1×4分岐部
10を構成する。第i段目のY分岐22の各出力にそれ
ぞれ1個ずつ、第i+1段目のY分岐22を接続する。
第1段目のY分岐22の入力を分岐部10の入力ポート
とし、この入力ポートに入力用の光ファイバ23を結合
させる。最終段の各Y分岐22の出力をそれぞれ分岐部
10の出力ポートとする。分岐部10の入力ポートから
分岐部10の各出力ポートに至る光の伝搬経路の幾何学
的距離をそれぞれ等しくする。図中、分岐部10の出力
ポートを設けた出力面を符号Xを付して示す。また接続
導波路14を分岐部10の出力と同数例えば4つ設け
る。分岐部10の各出力ポートにそれぞれひとつずつ接
続導波路14を結合させる。各接続導波路14は構造的
位相差制御部16及び17を任意好適に組み合わせて構
成した導波路であり、接続導波路14を分岐部10の出
力面Xから基板20の端面Yまで延在させて設ける。構
造的位相制御部16及び17の屈折率を異ならせ及び又
は導波路幅を異ならせることによって、各接続導波路1
4の出力面における光の位相差を等差数列を形成するよ
うに異ならせる。この例では、構造的位相差制御部16
及び17は導波路幅が等しく屈折率が異なる直線導波路
であり、4つの接続導波路14のうちひとつは構造的位
相差制御部16単独で構成した直線導波路、及び残りの
3つは構造的位相差制御部16及び17を結合して構成
した直線導波路である。これら構造的位相差制御部16
及び17によって形成される光の位相差は可変制御され
ない一定の固定した値である。図において、接続導波路
14を構成する構造的位相差制御部16を点線で表し、
及び構造的位相差制御部17を実線で表した。接続導波
路14に沿う方向において、各接続導波路14の長さを
等しくしながら各構造的位相差制御領域16の長さを等
差数列を形成するように異ならせる。そしてこれら接続
導波路14を互いに平行に配列する。平行に配列するこ
とによって接続導波路14の出射面Y(この実施例では
基板20の端面)から出射された光を平行光とすること
ができる。また接続導波路14に沿う方向において、各
屈折率可変部18の長さを等差数列を形成するように異
ならせ、屈折率可変部18をひとつの接続導波路14の
一部分又は全体に設ける。例えば、構造的位相差制御部
16及び屈折率可変部18の形状、寸法及び配設位置を
同一とし、従って構造的位相差制御部16、17及び屈
折率可変部18の長さが形成する等差数列の公差を等し
い値Lとする。図において、屈折率可変部18を二点鎖
線の矩形枠で囲んで示した。屈折率可変部18の屈折率
を、図示しない電極を介して電気的に可変制御する。基
板20として強誘電体基板を用いた場合には屈折率可変
部18に電界を印加し電気光学効果により屈折率を可変
制御し、化合物半導体基板を用いた場合には電気光学効
果により屈折率を可変制御し或は屈折率可変部18にキ
ャリアを注入しプラズマ効果により屈折率を可変制御す
るようにすればよい。屈折率可変部18の屈折率の変化
量を零とした状態で、各構造的位相差制御部16の屈折
率は等しく、各構造的位相差制御部17の屈折率は等し
く、構造的位相差制御部16及び17の屈折率は異な
る。屈折率可変部18の屈折率を可変制御するときに
は、各屈折率可変部18の屈折率の変化量を等しくす
る。干渉部12は光を伝搬する媒質例えば大気とこの大
気中に配置した凸レンズ24より成る。凸レンズ24は
各接続導波路14からの平行光を入力し、その焦点位置
に光を収束させる。従って各接続導波路14からの光は
凸レンズ24の焦点位置で合波し干渉する。各接続導波
路14から出射された光は媒質26を伝搬して凸レンズ
24に入射する。そして凸レンズ24から出射した光は
媒質26を伝搬して焦点位置へ達する。この例では、出
射面Yの接続導波路14端面に接する媒質26の部分を
干渉部12の入力ポートとし及び凸レンズ24の焦点を
干渉部12の出力ポートとし、従って4入力及び1出力
の干渉部12を構成する。凸レンズ24の焦点に出力用
の光ファイバ23を結合させる。尚凸レンズ24及び媒
質26を基板20に設けた導波路及び導波型レンズとす
るようにしてもよい。図2(A)及び(B)は接続導波
路14を構成する構造的位相差制御部17及び16の具
体的な構成の一例を示す断面図である。図2(A)にも
示すように、この例では基板20をLiNbO3基板と
し、第一の拡散物質を基板20に拡散させて第一拡散導
波路を形成し、この拡散導波路を構造的位相差制御部1
7とする。また図2(B)にも示すように、第一拡散導
波路に第二の拡散物質を拡散させて第一拡散導波路より
も屈折率の高い第二拡散導波路を形成し、この拡散導波
路を構造的位相差制御部16とする。第一及び第二拡散
物質の種類や拡散濃度そのほかの拡散条件を任意好適に
設定することによって、屈折率の異なる構造的位相差制
御部16及び17を形成する。そして構造的位相差制御
部16及び17を形成した基板20上にバッファ層27
を設ける。さらに屈折率を電気的に可変制御するための
電極29、31を屈折率可変部18と成る構造的位相差
制御部16に対し設ける。図中、基板20の第一拡散物
質拡散領域を×印を付して示し及び第二拡散物質拡散領
域を○印を付して示した。尚、接続導波路14の導波路
構造や屈折率可変部18の電極構造は基板材料に応じて
任意好適に変更することができる。次にこの実施例の光
波長フィルタ素子の動作特性につき説明する。屈折率可
変部18の屈折率変化量を零とした場合に干渉部12の
出力ポートから出力用の光ファイバ23に入力する光の
波長λは、近似的に表2(10)式のように表せる。た
だし、mは正の整数、Lは構造的位相差制御部16、1
7及び屈折率可変部18の長さが形成するそれぞれの等
差数列に共通の公差、δnは屈折率可変部18の屈折率
変化量を零とした状態での構造的位相差制御部16及び
17の屈折率差、及びnPは干渉部12の媒質26の屈
折率を表す。波長λはm=1、2、3、……としたそれ
ぞれの場合に(10)式を満足する波長であり従って複
数個存在する。これら複数個の波長λは周期δλ(m=
j及びm=j+1としたときの波長λの差)で離間す
る。周期δλは表2(11)式のように表せる。尚、周
期δλをFSR(Free Spectral Ran
ge)とも表す。そして構造的位相差制御部16及び基
板20の屈折率差を電気的に変化させてδnからδn+
Δnに変化させたときに(Δnは屈折率可変部18の屈
折率変化量を表す)、干渉部12から出力用の光ファイ
バ23に入力する光の波長がλからλ+Δλtに変化す
るものとすれば、波長変化量Δλtは表2(12)式の
ように表せる。波長λと同様、波長λ+Δλtは複数個
存在しこれら複数個の波長λ+Δλtはそれぞれ周期δ
λで離間する。ひとつの波長λの光の透過率の半値幅
(透過帯域幅)及びひとつの波長λ+Δλtの光の透過
率の半値幅(透過帯域幅)は等しい値Δλwとなり、透
過帯域幅Δλwは表2(13)式のように表せる。ただ
し、Nは接続導波路14の総配設個数を表す。ここまで
の解析は回折格子に関する解析に基づいた類推から導か
れる(参考文献1:Wolf著「光学の原理」)。チャ
ネル数を最も効率良く増やすためには干渉部12から出
力用の光ファイバ23に入力する光の波長をλからλ+
δλまで変化させるのが好ましく、従って最大変化させ
たときの波長変化量ΔλtをΔλtmaxと表せばΔλ
tmax=δλとするのがよい。最大波長変化量Δλ
tmaxは表2(14)式のように表せ、(14)式よ
り(15)式が得られる。Δλtmax=δλのときの
最大チャネル数CHmaxは表2(16)式のように表
せる。(16)式からも明らかなように、最大チャネル
数CHmaxは接続導波路14の総配設個数Nと等し
く、従って接続導波路14の総配設個数Nを増加させる
ことによって最大チャネル数CHmaxを増加させるこ
とができる。また波長変化量Δλtは(12)式で与え
られ、この実施例の光波長フィルタ素子と類似の動作特
性を有するファブリペロ型及びリング共振器型の光波長
フィルタと比較して波長変化量をn/δn倍(nは基板
の屈折率)だけ大きくすることができる。図3は第一発
明の第二実施例の構成を概略的に示す平面図である。
尚、第一発明の第一実施例の構成成分に対応する構成成
分については同一の符号を付して示す。以下の説明で
は、第一発明の第一実施例と相違する点につき説明し、
第一発明の第一実施例と同様の点についてはその詳細な
説明を省略する。第二実施例の光波長フィルタ素子は、
干渉部12の構成が異なるほかは第一発明の第一実施例
と同様の構成を有する。この実施例では、分岐部10及
び接続導波路14に加え、干渉部12を同一の基板20
に設ける。干渉部12は基板20に直線導波路28及び
平面導波路30を設けて成る。平面導波路30はその出
力面Pから入力面Qに向けて広がる扇状の形状を有し、
平面導波路30の入力面Qを円弧状にしている。各接続
導波路14の出力にそれぞれひとつずつ直線導波路28
の入力を接続し、直線導波路28の出力を平面導波路3
0の入力面Qにそれぞれ接続する。出力面Qに光の集束
点Oを設け、直線導波路28の軸の延長線がそれぞれ集
束点Oを通過するように、直線導波路28を放射状に配
置する。直線導波路28から平面導波路30に入射した
光により集束点Oを中心とする同心円波を発生させる。
この同心円波を集束点Oに収束させて合波し干渉させ
る。出力用の光ファイバ23を出力面Qの集束点O及び
その近傍部分に結合させる。この実施例の動作特性は、
原理的には、第一発明の第一実施例の場合と同様であ
る。図4は第一発明の第三実施例の構成を概略的に示す
平面図である。尚、第一発明の第一実施例の構成成分に
対応する構成成分については同一の符号を付して示す。
以下の説明では、第一発明の第一実施例と相違する点に
つき説明し、第一発明の第一実施例と同様の点について
はその詳細な説明を省略する。第三実施例の光波長フィ
ルタ素子は、干渉部12の構成が異なるほかは第一発明
の第一実施例と同様の構成を有する。この実施例では、
分岐部10及び接続導波路14に加え、干渉部12を同
一の基板20に設ける。干渉部12は2×1対称Y分岐
32を多段接続して成り、例えばY分岐32を2段に接
続して4×1干渉部12を構成する。第i+1段目のY
分岐32の各入力にそれぞれ1個ずつ、第i段目のY分
岐32を接続する。第1段のY分岐32の入力をそれぞ
れ干渉部12の入力ポートとし、これら入力ポートにそ
れぞれひとつずつ接続導波路14を結合させる。最終段
のY分岐32の出力を干渉部12の出力ポートとし、こ
の出力ポートに出力用の光ファイバ23を結合させる。
干渉部12の各入力ポートから干渉部12の出力ポート
に至る光の伝搬経路の幾何学的距離をそれぞれ等しくす
る。干渉部12の各入力ポートに入力した光は各段の分
岐32で順次に合波され、干渉部12の各入力ポートに
入力した光のすべてが最終段の分岐32で合波し干渉す
る。この実施例の動作特性は、原理的には、第一発明の
第一実施例の場合と同様であるが、干渉部12から出力
用の光ファイバ23に入射する波長λの光の出力強度K
は表2(17)式のように表せる。図5は第一発明の第
四実施例の構成を概略的に示す平面図である。尚、第一
発明の第三実施例の構成成分に対応する構成成分につい
ては同一の符号を付して示す。以下の説明では、第一発
明の第三実施例と相違する点につき説明し、第一発明の
第三実施例と同様の点についてはその詳細な説明を省略
する。第四実施例の光波長フィルタ素子は、接続導波路
14の構成が異なるほかは第一発明の第三実施例と同様
の構成を有する。この実施例では、4つの接続導波路1
4のすべてを構造的位相差制御部16及び17を結合し
て構成した直線導波路とする。そして構造的位相差制御
部17及び屈折率可変部18の形状、寸法及び配設位置
を同一とする。この実施例でも、構造的位相差制御部1
6、17及び屈折率可変部18の長さが形成する等差数
列の公差は等しい。この実施例の動作特性は、原理的に
は、第一発明の第三実施例の場合と同様である。図6は
第二発明の一実施例の構成を概略的に示す平面図であ
る。尚、第一発明の第三実施例の構成成分に対応する構
成成分については同一の符号を付して示す。以下の説明
では、第一発明の第三実施例と同様の点についてはその
詳細な説明を省略する。この実施例の光波長フィルタ装
置は、第一発明の光波長フィルタ素子を多段に接続して
成る。そしてこれら多段接続した光波長フィルタ素子の
第一の公差をそれぞれ異ならせる。この実施例では、例
えば第一発明の第三実施例の光波長フィルタ素子34及
び36を多段接続した例である。前段の光波長フィルタ
素子34の干渉部12の出力と後段の光波長フィルタ素
子36の分岐部10の入力を結合し、前段の光波長フィ
ルタ素子34の分岐部10の入力に入力用の光ファイバ
23を及び後段の光波長フィルタ素子36の干渉部12
の出力に出力用の光ファイバ23を結合する。前段の光
波長フィルタ素子34の構造的位相差制御部16、17
及び屈折率可変部18の長さが形成する等差数列の公差
は等しい値L1であり、後段の光波長フィルタ素子36
の構造的位相差制御部16、17及び屈折率可変部18
の長さが形成する等差数列の公差は等しい値L2であ
り、そしてこれら公差L1及びL2を異ならせる。例え
ば、これら公差L1及びL2を、表2(18)式を満足
するように定める。ただし、Δは接続導波路14の総配
設個数Nよりも小さな正の整数を表す。次にこの実施例
の動作特性につき説明する。まず透過波長の粗調整につ
き説明する。図7(A)〜(C)は図6の光波長フィル
タ装置(ただしN=4、L2=L1・N/(N−1)と
する)において透過波長の粗調整を行なう場合の説明図
であり、図7(A)は前段の光波長フィルタ素子34単
独の光透過特性、図7(B)は後段の光波長フィルタ素
子36単独の光透過特性及び図7(C)はこれら光波長
フィルタ素子34及び36を合わせてみた場合の合成光
透過特性(図6の光波長フィルタ装置の光透過特性)を
示す。図7(A)〜(C)の縦軸に光出力強度及び横軸
に波長を取って示した。図7(A)にも示すように、前
段の光波長フィルタ素子34単独でみた場合の光透過特
性においては、光出力強度のピークがこの素子34の透
過波長の周期δλ1毎に現れる。また図7(B)にも示
すように、後段の光波長フィルタ素子36単独でみた場
合の光透過特性においては、光出力強度のピークがこの
素子36の透過波長の周期δλ2(δλ2<δλ1)毎
に現れる。粗調整を行なう場合には、図7(A)及び
(B)にも示すように、前段の光波長フィルタ素子34
単独の透過波長と後段の光波長フィルタ素子36単独の
透過波長とをある波長で一致させた状態から、後段の光
波長フィルタ素子36の屈折率可変部18の屈折率を電
気的に変化させてこの素子36の透過波長をΔλt1=
δλ2・(1/N)だけ変化させる。すると、図7
(C)にも示すように、前段及び後段の光波長フィルタ
素子34及び36の双方を透過する光の波長はδΔλ1
だけ変化する。後段の光波長フィルタ素子36の透過波
長をJ・Δλt1(Jは自然数)だけ変化させると前段
及び後段の光波長フィルタ素子の双方を透過する光の波
長はJ・δΔλ1だけ変化する。次に透過波長の微調整
につき説明する。図8(A)〜(C)は図6の光波長フ
ィルタ装置(ただしN=4、L2=L1・N/(N−
1)とする)において透過波長の微調整を行なう場合の
説明図であり、図8(A)は前段の光波長フィルタ素子
34単独の光透過特性、図8(B)は後段の光波長フィ
ルタ素子36単独の光透過特性及び図7(C)はこれら
光波長フィルタ素子34及び36を合わせてみた場合の
合成光透過特性を示す。図8(A)〜(C)の縦軸に光
出力強度及び横軸に波長を取って示した。微調整を行な
う場合には、図8(A)及び(B)にも示すように、前
段の光波長フィルタ素子34単独の透過波長と後段の光
波長フィルタ素子36単独の透過波長とをある波長で一
致させた状態から、前段及び後段の光波長フィルタ素子
34及び36の屈折率可変部18の屈折率をそれぞれ電
気的に変化させてこれら素子34及び36の透過波長を
それぞれΔλt2(Δλt2<Δλt1)だけ変化させ
る。すると図8(C)にも示すように、前段及び後段の
光波長フィルタ素子34及び36の双方を透過する光の
波長は△λt2だけ変化する。この実施例では、透過波
長の可変範囲を第一発明の波長フィルタ素子単独の場合
の透過波長の可変範囲のN−1倍に増加させることがで
きる。この実施例の最大チャネル数CHmaxはCH
max=N(N−1)と表せ、従ってチャネル数を所望
の個数NTとするためには接続導波路14の総配設個数
NをN≒NT 1/2とすればよい。この実施例では、第
一発明の光波長フィルタ素子を2段接続した場合を考え
たが、第一発明の光波長フィルタ素子を3段以上に多段
接続してもよい。次に第一及び第二発明の実施例の大き
さ、チャネル数及び温度ゆらぎについて具体的数値例を
挙げて説明する。例えば、Δn=10−3、δn=10
−1、nP=1及びλ=1.3μmとすると、L=0.
65mm及びm=1、2、3、…、100とすることが
できる。N=32とすれば、接続導波路14の全長を
2.1cmとすることができる。従って第一及び第二発
明の実施例の素子及び装置を充分に小型化することがで
き、第一発明では32チャネル及び第二発明では992
チャネルが実現できる。透過波長帯域の半値幅Δλwは
Δλw=0.4nmとなる。第一及び第二発明におい
て、温度ゆらぎに対する感度ΔλfはΔλf=λ・(δ
L/L)、及びΔλf/ΔλwはΔλf/Δλw=N・
m・(δL/L)と表せる。ここでδL/Lは接続導波
路14の熱膨張率を表す。第一発明及び第二発明におけ
る感度Δλfはファブリペロ型のフィルタと同じである
が、第一及び第二発明の半値幅Δλwがファブリペロ型
のものより大きいのでΔλf/Δλwを小さくできるこ
とが重要である。第一及び第二発明におけるΔλf/Δ
λwは、δL/L=10−5とすればΔλf/Δλw=
0.032/℃であり、実用上問題ない。第一及び第二
発明は上述した実施例にのみ限定されるものではなく、
従って各構成成分の構成、形状、配設位置、寸法及びそ
のほかの条件を任意好適に変更することができる。例え
ば各接続導波路の出力面における光の位相差が等差数列
を形成するのであれば、構造的位相差制御部の長さが形
成する等差数列の公差と屈折率可変部の長さが形成する
等差数列の公差とが等しくなくてもよいし、構造的位相
差制御部16又は17の形状、配設位置及び長さと屈折
率可変部18の形状、配設位置及び長さとを一致させな
くともよくこれら形状、配設位置及び長さを任意好適に
変更することができる。Embodiments of the first and second inventions will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the present invention can be understood, and therefore the present invention is not limited to the illustrated examples. FIG. 1 is a plan view schematically showing the configuration of the first embodiment of the optical wavelength filter element of the first invention. The optical wavelength filter element of the first embodiment is 1 × N
The branching section 10 and the N × 1 interference section 12, N connecting waveguides 14 provided between the output port of the branching section 10 and the input port of the interference section 12, which correspond to each other, and the structure provided in the connecting waveguide 14. The phase difference control units 16 and 17 and the refractive index varying unit 18 are provided. Then, the lengths of the structural phase difference control units 16 and 17 are made different so as to form an arithmetic progression with the first tolerance, and the lengths of the respective refractive index variable units 18 are made equal with the second tolerance. Different to form a difference sequence. In this embodiment, the branch section 10, the connection waveguide 14, the structural phase difference control section 16 and the refractive index variable section 18 are provided on the same substrate 20.
The substrate 20 is a ferroelectric crystal substrate or a compound semiconductor substrate. The branch unit 10 is formed by connecting 1 × 2 symmetrical Y branches 22 in multiple stages, and for example, the Y branches 22 are connected in two stages to form a 1 × 4 branch unit 10. The i-th Y-branch 22 is connected to the output of the i-th Y-branch 22 one by one.
The input of the Y-branch 22 of the first stage is used as the input port of the branching unit 10, and the input optical fiber 23 is coupled to this input port. The output of each Y branch 22 at the final stage is used as an output port of the branch unit 10. The geometrical distances of the light propagation paths from the input port of the branching unit 10 to each output port of the branching unit 10 are made equal. In the figure, the output surface provided with the output port of the branching unit 10 is indicated by the reference symbol X. Further, the same number of connection waveguides 14 as the output of the branching section 10, for example, four are provided. One connection waveguide 14 is coupled to each output port of the branch unit 10. Each connection waveguide 14 is a waveguide configured by arbitrarily and structurally combining the structural phase difference control units 16 and 17, and the connection waveguide 14 extends from the output face X of the branching unit 10 to the end face Y of the substrate 20. Set up. By making the refractive indexes of the structural phase control units 16 and 17 different and / or the waveguide widths different, each connection waveguide 1
The phase difference of light on the output surface of No. 4 is made different so as to form an arithmetic progression. In this example, the structural phase difference control unit 16
And 17 are linear waveguides having the same waveguide width and different refractive indexes, one of the four connecting waveguides 14 is a linear waveguide constituted by the structural phase difference control unit 16 alone, and the remaining three are structural waveguides. It is a linear waveguide configured by coupling the physical phase difference control units 16 and 17. These structural phase difference control units 16
The phase difference of the light formed by 17 and 17 is a fixed value which is not variably controlled. In the figure, the structural phase difference control unit 16 forming the connection waveguide 14 is represented by a dotted line,
Also, the structural phase difference control unit 17 is represented by a solid line. In the direction along the connecting waveguide 14, the length of each connecting waveguide 14 is made equal, and the length of each structural phase difference control region 16 is made different so as to form an arithmetic progression. Then, these connection waveguides 14 are arranged in parallel with each other. By arranging in parallel, the light emitted from the emission surface Y of the connection waveguide 14 (the end surface of the substrate 20 in this embodiment) can be made into parallel light. Further, in the direction along the connection waveguide 14, the length of each refractive index variable portion 18 is made different so as to form an arithmetic progression, and the refractive index variable portion 18 is provided in a part or the whole of one connection waveguide 14. For example, the structural phase difference control unit 16 and the refractive index variable unit 18 have the same shape, size, and arrangement position, so that the structural phase difference control units 16 and 17 and the refractive index variable unit 18 have different lengths. Let the tolerance of the difference sequence be the same value L. In the figure, the refractive index variable portion 18 is shown surrounded by a rectangular frame of two-dot chain line. The refractive index of the refractive index varying section 18 is electrically variably controlled via an electrode (not shown). When a ferroelectric substrate is used as the substrate 20, an electric field is applied to the refractive index variable section 18 to variably control the refractive index by the electro-optical effect, and when a compound semiconductor substrate is used, the refractive index is changed by the electro-optical effect. The refractive index may be variably controlled, or the refractive index may be variably controlled by injecting carriers into the refractive index variable portion 18 by the plasma effect. With the amount of change in the refractive index of the refractive index variable unit 18 set to zero, the structural phase difference control units 16 have the same refractive index, and the structural phase difference control units 17 have the same refractive index. The refractive indices of the control units 16 and 17 are different. When variably controlling the refractive index of the refractive index variable unit 18, the amount of change in the refractive index of each refractive index variable unit 18 is made equal. The interference section 12 is composed of a medium for propagating light, for example, the atmosphere and a convex lens 24 arranged in the atmosphere. The convex lens 24 inputs the parallel light from each connection waveguide 14 and converges the light at the focal position. Therefore, the lights from the respective connection waveguides 14 combine and interfere at the focal position of the convex lens 24. The light emitted from each connection waveguide 14 propagates through the medium 26 and enters the convex lens 24. The light emitted from the convex lens 24 propagates through the medium 26 and reaches the focal position. In this example, the portion of the medium 26 in contact with the end face of the connection waveguide 14 on the emission surface Y is used as the input port of the interference section 12 and the focal point of the convex lens 24 is used as the output port of the interference section 12, and therefore, the 4-input and 1-output interference section Make up twelve. The output optical fiber 23 is coupled to the focal point of the convex lens 24. The convex lens 24 and the medium 26 may be a waveguide and a waveguide lens provided on the substrate 20. 2A and 2B are cross-sectional views showing an example of a specific configuration of the structural phase difference control units 17 and 16 that form the connection waveguide 14. As shown in FIG. 2A, in this example, the substrate 20 is a LiNbO 3 substrate, the first diffusion material is diffused into the substrate 20 to form a first diffusion waveguide, and this diffusion waveguide is structurally formed. Phase difference control unit 1
7 Further, as shown in FIG. 2B, the second diffusion material is diffused into the first diffusion waveguide to form a second diffusion waveguide having a higher refractive index than the first diffusion waveguide. The waveguide is the structural phase difference control unit 16. The structural retardation control units 16 and 17 having different refractive indexes are formed by arbitrarily and appropriately setting the types and diffusion concentrations of the first and second diffusing substances and other diffusion conditions. Then, the buffer layer 27 is formed on the substrate 20 on which the structural retardation controllers 16 and 17 are formed.
To provide. Further, electrodes 29 and 31 for electrically variably controlling the refractive index are provided for the structural phase difference control unit 16 which is the refractive index variable unit 18. In the figure, the first diffused substance diffused region of the substrate 20 is indicated by a cross, and the second diffused substance diffused region is indicated by a circle. The waveguide structure of the connection waveguide 14 and the electrode structure of the refractive index variable portion 18 can be arbitrarily changed according to the substrate material. Next, the operating characteristics of the optical wavelength filter element of this embodiment will be described. When the amount of change in the refractive index of the refractive index varying unit 18 is set to zero, the wavelength λ of the light input from the output port of the interference unit 12 to the output optical fiber 23 is approximately as shown in Table 2 (10). Can be represented. However, m is a positive integer, L is the structural retardation control unit 16, 1
7 and the common tolerance of the respective arithmetic progressions formed by the lengths of the refractive index variable portion 18, δn is the structural phase difference control portion 16 in the state where the refractive index change amount of the refractive index variable portion 18 is zero, The refractive index difference of 17 and n P represent the refractive index of the medium 26 of the interference section 12. The wavelength λ is a wavelength that satisfies the expression (10) in each case where m = 1, 2, 3, ... These plural wavelengths λ have a cycle δλ (m =
They are separated by a difference in wavelength λ when j and m = j + 1. The period δλ can be expressed as shown in Table 2 (11). Incidentally, the period δλ FSR (F ree S pectral R an
ge). Then, the refractive index difference between the structural phase difference control unit 16 and the substrate 20 is electrically changed to change from δn to δn +.
When the wavelength is changed to Δn (Δn represents the amount of change in the refractive index of the refractive index changing unit 18), the wavelength of the light input from the interference unit 12 to the output optical fiber 23 changes from λ to λ + Δλ t. Then, the amount of wavelength change Δλ t can be expressed as shown in Table 2 (12). Similar to the wavelength lambda, the wavelength lambda + [Delta] [lambda] t is the period each plurality presence plurality of wavelength lambda + [Delta] [lambda] t These δ
Separate by λ. The half-value width (transmission bandwidth) of light of one wavelength λ and the half-value width (transmission bandwidth) of light of one wavelength λ + Δλ t are equal values Δλ w , and the transmission bandwidth Δλ w is It can be expressed as in equation (2). However, N represents the total number of connection waveguides 14 arranged. The analysis up to here is derived from an analogy based on the analysis regarding the diffraction grating (Reference 1: Wolf, "Principles of Optics"). In order to increase the number of channels most efficiently, the wavelength of the light input from the interference section 12 to the output optical fiber 23 is changed from λ to λ +
It is preferable to change it to δλ. Therefore, if the wavelength change amount Δλ t at the maximum change is expressed as Δλ tmax , Δλ t
It is preferable that tmax = δλ. Maximum wavelength change Δλ
tmax can be expressed as shown in Expression (14) in Table 2, and Expression (15) is obtained from Expression (14). The maximum number of channels CH max when Δλ tmax = δλ can be expressed as shown in Table 2 (16). As is clear from the equation (16), the maximum channel number CH max is equal to the total number N of the connection waveguides 14, and therefore the maximum channel number CH is increased by increasing the total number N of the connection waveguides 14. max can be increased. Further, the wavelength change amount Δλ t is given by the equation (12), and the wavelength change amount is n compared to the Fabry-Perot type optical wavelength filter and the ring resonator type optical wavelength filter having similar operation characteristics to the optical wavelength filter element of this embodiment. It can be increased by a factor of / δn (n is the refractive index of the substrate). FIG. 3 is a plan view schematically showing the configuration of the second embodiment of the first invention.
The constituents corresponding to those of the first embodiment of the first invention are designated by the same reference numerals. In the following description, the points different from the first embodiment of the first invention will be described,
Detailed description of the same points as those of the first embodiment of the first invention will be omitted. The optical wavelength filter element of the second embodiment,
It has the same configuration as the first embodiment of the first invention except that the configuration of the interference unit 12 is different. In this embodiment, in addition to the branch section 10 and the connection waveguide 14, the interference section 12 is provided on the same substrate 20.
Set up in. The interference section 12 is formed by providing a linear waveguide 28 and a planar waveguide 30 on the substrate 20. The planar waveguide 30 has a fan-like shape that spreads from the output surface P toward the input surface Q,
The input surface Q of the planar waveguide 30 has an arc shape. One linear waveguide 28 is provided for each output of each connection waveguide 14.
Of the planar waveguide 3 by connecting the input of
0 to the input surface Q, respectively. A light converging point O is provided on the output surface Q, and the linear waveguides 28 are radially arranged so that extension lines of the axes of the linear waveguide 28 pass through the converging points O, respectively. The light incident on the planar waveguide 30 from the linear waveguide 28 generates a concentric circular wave centered on the focusing point O.
The concentric circular waves are converged at the focal point O, combined, and interfered. The output optical fiber 23 is coupled to the focusing point O on the output surface Q and the vicinity thereof. The operating characteristics of this embodiment are
In principle, it is similar to the case of the first embodiment of the first invention. FIG. 4 is a plan view schematically showing the configuration of the third embodiment of the first invention. The constituents corresponding to those of the first embodiment of the first invention are designated by the same reference numerals.
In the following description, differences from the first embodiment of the first invention will be described, and detailed description of the same points as the first embodiment of the first invention will be omitted. The optical wavelength filter element of the third embodiment has the same configuration as that of the first embodiment of the first invention except that the configuration of the interference section 12 is different. In this example,
In addition to the branching section 10 and the connection waveguide 14, the interference section 12 is provided on the same substrate 20. The interference unit 12 is formed by connecting 2 × 1 symmetrical Y branches 32 in multiple stages, and for example, the Y branches 32 are connected in two stages to form a 4 × 1 interference unit 12. I + 1th stage Y
The i-th stage Y-branch 32 is connected to each of the inputs of the branch 32 one by one. The inputs of the Y-branches 32 of the first stage are used as the input ports of the interference section 12, and the connection waveguides 14 are coupled to the input ports, respectively. The output of the Y branch 32 at the final stage is used as the output port of the interference unit 12, and the output optical fiber 23 is coupled to this output port.
The geometrical distances of light propagation paths from the input ports of the interference unit 12 to the output ports of the interference unit 12 are made equal. The light input to each input port of the interference unit 12 is sequentially combined by the branch 32 of each stage, and all the lights input to each input port of the interference unit 12 are combined and interfered by the branch 32 of the final stage. The operating characteristics of this embodiment are the same as those of the first embodiment of the first invention in principle, but the output intensity K of the light of wavelength λ which is incident on the output optical fiber 23 from the interference section 12 is the same.
Can be expressed as shown in Table 2 (17). FIG. 5 is a plan view schematically showing the configuration of the fourth embodiment of the first invention. The constituents corresponding to those of the third embodiment of the first invention are designated by the same reference numerals. In the following description, points different from the third embodiment of the first invention will be described, and detailed description of the same points as the third embodiment of the first invention will be omitted. The optical wavelength filter element of the fourth embodiment has the same configuration as that of the third embodiment of the first invention except that the configuration of the connection waveguide 14 is different. In this embodiment, four connecting waveguides 1
All 4 are linear waveguides configured by coupling the structural phase difference controllers 16 and 17. The structural phase difference control unit 17 and the refractive index variable unit 18 have the same shape, size, and arrangement position. Also in this embodiment, the structural phase difference control unit 1
The tolerances of the arithmetic progressions formed by the lengths of 6 and 17 and the refractive index variable portion 18 are equal. In principle, the operating characteristics of this embodiment are similar to those of the third embodiment of the first invention. FIG. 6 is a plan view schematically showing the configuration of an embodiment of the second invention. The constituents corresponding to those of the third embodiment of the first invention are designated by the same reference numerals. In the following description, detailed description of the same points as in the third embodiment of the first invention will be omitted. The optical wavelength filter device of this embodiment is formed by connecting the optical wavelength filter elements of the first invention in multiple stages. Then, the first tolerances of the optical wavelength filter elements connected in multiple stages are made different. In this embodiment, for example, the optical wavelength filter elements 34 and 36 of the third embodiment of the first invention are connected in multiple stages. The output of the interference section 12 of the former optical wavelength filter element 34 and the input of the branch section 10 of the latter optical wavelength filter element 36 are coupled to each other, and the input of the input optical fiber to the input of the branch section 10 of the former optical wavelength filter element 34. 23 and the interference section 12 of the optical wavelength filter element 36 in the subsequent stage.
The optical fiber 23 for output is coupled to the output of. Structural phase difference control units 16 and 17 of the optical wavelength filter element 34 in the previous stage
And the tolerance of the arithmetic progression formed by the length of the refractive index variable portion 18 is the same value L1, and the optical wavelength filter element 36 in the subsequent stage is
Structural phase difference control units 16 and 17 and refractive index variable unit 18
The tolerances of the arithmetic progression formed by the lengths of are equal to the value L2 and make these tolerances L1 and L2 different. For example, these tolerances L1 and L2 are determined so as to satisfy the expression (18) in Table 2. However, Δ represents a positive integer smaller than the total number N of the connection waveguides 14. Next, the operating characteristics of this embodiment will be described. First, the rough adjustment of the transmission wavelength will be described. 7 (A) to 7 (C) are explanatory views in the case of roughly adjusting the transmission wavelength in the optical wavelength filter device of FIG. 6 (where N = 4, L2 = L1 · N / (N-1)). FIG. 7 (A) shows the light transmission characteristics of the preceding optical wavelength filter element 34 alone, FIG. 7 (B) shows the optical transmission characteristics of the latter optical wavelength filter element 36 alone, and FIG. 7 (C) shows these optical wavelength filters. 7 shows a combined light transmission characteristic (light transmission characteristic of the light wavelength filter device of FIG. 6) when the elements 34 and 36 are combined. In FIGS. 7A to 7C, the vertical axis represents the optical output intensity and the horizontal axis represents the wavelength. As shown in FIG. 7A, in the light transmission characteristics of the preceding optical wavelength filter element 34 alone, the peak of the optical output intensity appears in every cycle δλ1 of the transmission wavelength of this element 34. Further, as shown in FIG. 7B, in the light transmission characteristics of the latter-stage optical wavelength filter element 36 alone, the peak of the optical output intensity is the cycle δλ2 (δλ2 <δλ1) of the transmission wavelength of this element 36. Appears every time. When coarse adjustment is performed, as shown in FIGS. 7A and 7B, the optical wavelength filter element 34 in the preceding stage is used.
From the state in which the single transmission wavelength and the single transmission wavelength of the subsequent optical wavelength filter element 36 are matched at a certain wavelength, the refractive index of the refractive index variable unit 18 of the subsequent optical wavelength filter element 36 is electrically changed. The transmission wavelength of this element 36 is Δλ t1 =
Change by δλ2 · (1 / N). Then, as shown in FIG.
As shown in (C), the wavelength of the light transmitted through both the optical wavelength filter elements 34 and 36 in the front and rear stages is δΔλ1.
Only changes. Wavelength of the light transmission wavelength (the J natural number) J · [Delta] [lambda] t1 which transmits both is varied by upstream and downstream of the optical wavelength filter element of the post-stage optical wavelength filter element 36 changes by J · δΔλ1. Next, the fine adjustment of the transmission wavelength will be described. 8A to 8C show the optical wavelength filter device of FIG. 6 (where N = 4, L2 = L1.N / (N-
FIG. 8A is an explanatory diagram in the case where the transmission wavelength is finely adjusted in FIG. 8A, and FIG. 8A is a light transmission characteristic of the optical wavelength filter element 34 alone in the front stage, and FIG. The light transmission characteristics of the element 36 alone and FIG. 7C show the combined light transmission characteristics when these optical wavelength filter elements 34 and 36 are combined. 8A to 8C, the light output intensity is plotted on the vertical axis and the wavelength is plotted on the horizontal axis. When fine adjustment is performed, as shown in FIGS. 8A and 8B, the transmission wavelength of the optical wavelength filter element 34 in the front stage and the transmission wavelength of the optical wavelength filter element 36 in the rear stage are set to a certain wavelength. From the state where they are matched with each other, the refractive indexes of the refractive index variable portions 18 of the optical wavelength filter elements 34 and 36 at the front stage and the rear stage are electrically changed to change the transmission wavelengths of these elements 34 and 36 by Δλ t2 (Δλ t2 <Δλ t1 ) is changed. Then, as shown in FIG. 8C, the wavelength of the light transmitted through both the optical wavelength filter elements 34 and 36 at the front stage and the rear stage changes by Δλ t2 . In this embodiment, the variable range of the transmission wavelength can be increased to N-1 times the variable range of the transmission wavelength in the case of the wavelength filter element of the first invention alone. The maximum number of channels CH max in this embodiment is CH
It can be expressed as max = N (N-1). Therefore, in order to set the desired number N T of channels, the total number N of connection waveguides 14 to be provided may be set to N≈N T 1/2 . In this embodiment, the case where the optical wavelength filter elements of the first invention are connected in two stages is considered, but the optical wavelength filter elements of the first invention may be connected in three or more stages. Next, the size, the number of channels, and the temperature fluctuation of the first and second embodiments will be described with reference to specific numerical examples. For example, Δn = 10 −3 , δn = 10
−1 , n P = 1 and λ = 1.3 μm, L = 0.
65 mm and m = 1, 2, 3, ..., 100. If N = 32, the total length of the connection waveguide 14 can be 2.1 cm. Therefore, the elements and devices of the embodiments of the first and second inventions can be sufficiently miniaturized, 32 channels in the first invention and 992 in the second invention.
Channel can be realized. The half-width Δλ w of the transmission wavelength band is Δλ w = 0.4 nm. In the first and second inventions, the sensitivity to temperature fluctuations Δλ f is Δλ f = λ · (δ
L / L) and Δλ f / Δλ w are Δλ f / Δλ w = N ·
It can be expressed as m · (δL / L). Here, δL / L represents the coefficient of thermal expansion of the connection waveguide 14. The sensitivity Δλ f in the first invention and the second invention is the same as that of the Fabry-Perot type filter, but since the half width Δλ w of the first and second inventions is larger than that of the Fabry-Perot type, Δλ f / Δλ w can be made smaller. is important. Δλ f / Δ in the first and second inventions
If λ w is δL / L = 10 −5 , then Δλ f / Δλ w =
It is 0.032 / ° C, which is practically no problem. The first and second inventions are not limited to the above-mentioned embodiments,
Therefore, the configuration, shape, arrangement position, size, and other conditions of each component can be changed arbitrarily. For example, if the phase difference of light on the output surface of each connection waveguide forms an arithmetic progression, the tolerance of the arithmetic progression formed by the length of the structural phase difference control unit and the length of the refractive index variable portion are The tolerances of the arithmetic progressions to be formed need not be equal, and the shape, the arrangement position and the length of the structural phase difference control unit 16 or 17 and the shape, the arrangement position and the length of the refractive index variable unit 18 match. It is not necessary to do so, and these shapes, arrangement positions and lengths can be arbitrarily changed.
【表1】 [Table 1]
【表2】 [Table 2]
【発明の効果】上述した説明からも明らかなように、第
一発明の光波長フィルタ素子によれば、1×N分岐部は
波長多重の光を入力し分岐してN個の各出力ポートから
それぞれ波長多重の光を出力する。N×1干渉部は接続
導波路を介してN個の入力ポートからそれぞれ波長多重
の光を入力し合波して、各入力ポートからの波長多重の
光を干渉させる。接続導波路には構造的位相差制御部及
び屈折率可変部を設けており、これら構造的位相差制御
部及び屈折率可変部の作用により各接続導波路から出射
される光に位相差を生じさせる。構造的位相差制御部の
長さを等差数列を形成するようにそれぞれ異ならせると
共に屈折率可変部の長さを等差数列を形成するようにそ
れぞれ異ならせているので、各接続導波路から出射され
る光の位相差は等差数列を形成する。このように等差数
列を形成する位相差を有する光を干渉させると、干渉部
からは特定の波長の光が出射されそれ以外の波長の光は
出射されないので、波長多重の光のなかから特定波長の
光を分離することができる。屈折率可変部の屈折率を電
気的に可変制御することにより干渉部から出射する光の
波長を変化させることができる。干渉部から出射される
光の波長はある一定の周期δλで離間する。しかも分岐
部により光を分岐し構造的位相差制御部及び屈折率可変
部により分岐した光に位相差を生じさせるようにしてい
るので、光波長フィルタ素子を小型化することができ
る。また等差数列を形成する位相差を有する光を干渉さ
せることによって特定波長の光を選択的に分離するの
で、分離する光の波長の可変範囲を広くしかつ特定波長
の光の透過帯域幅を狭くすることができる。従ってチャ
ネル数を増やせる。さらに第二発明の光波長フィルタ装
置によれば、第一発明の光波長フィルタ素子を多段に接
続し、多段接続したこれら光波長フィルタ素子の第一の
公差をそれぞれ異ならせる。多段接続した光波長フィル
タ素子の第一の公差はそれぞれ異なるので、各光波長フ
ィルタ素子の干渉部から出力する光の波長の周期δλが
それぞれ異なる。従って多段接続した光波長フィルタ素
子の最終段の素子から出力する光(第二発明の光波長フ
ィルタ装置から出力する光)は、多段接続した光波長フ
ィルタ素子の全ての素子を透過した光である。第二発明
の光波長フィルタ装置から出力する光の波長の周期は、
多段接続した全ての光波長フィルタ素子の周期δλに関
する最小公倍数となり、その結果、第二発明の光波長フ
ィルタ装置から出力する光の波長の可変範囲をより広げ
ることができる。As is apparent from the above description, according to the optical wavelength filter element of the first invention, the 1 × N branch section inputs the wavelength-multiplexed light and branches it to output from N output ports. Each outputs wavelength-multiplexed light. The N × 1 interference unit inputs the wavelength-multiplexed light from each of the N input ports via the connection waveguide and multiplexes them to interfere with the wavelength-multiplexed light from each input port. The connection waveguide is provided with a structural phase difference control unit and a refractive index variable unit, and the action of the structural phase difference control unit and the refractive index variable unit causes a phase difference in the light emitted from each connection waveguide. Let Since the lengths of the structural phase difference control units are made different so as to form the arithmetic progression and the lengths of the refractive index variable portion are made different so as to form the arithmetic progression, from each connection waveguide The phase difference of the emitted light forms an arithmetic progression. When light having a phase difference forming an arithmetic progression is interfered in this way, light of a specific wavelength is emitted from the interference part and light of other wavelengths is not emitted. The wavelengths of light can be separated. By electrically variably controlling the refractive index of the refractive index variable unit, the wavelength of light emitted from the interference unit can be changed. The wavelengths of the light emitted from the interference section are separated by a certain period δλ. Moreover, since the light is branched by the branching part and the phase difference is generated in the light branched by the structural phase difference control part and the refractive index changing part, the optical wavelength filter element can be downsized. Further, since light having a specific wavelength is selectively separated by interfering light having a phase difference forming an arithmetic progression, the variable range of the wavelength of the separated light is widened and the transmission bandwidth of the light having the specific wavelength is increased. Can be narrowed. Therefore, the number of channels can be increased. Further, according to the optical wavelength filter device of the second invention, the optical wavelength filter elements of the first invention are connected in multiple stages, and the first tolerances of these optical wavelength filter elements connected in multiple stages are made different. Since the first tolerances of the optical wavelength filter elements connected in multiple stages are different from each other, the wavelength cycle Δλ of the light output from the interference section of each optical wavelength filter element is different. Therefore, the light output from the final stage element of the optical wavelength filter elements connected in multiple stages (the light output from the optical wavelength filter device of the second invention) is the light transmitted through all the elements of the optical wavelength filter elements connected in multiple stages. .. The period of the wavelength of the light output from the optical wavelength filter device of the second invention,
This is the least common multiple with respect to the period Δλ of all the optical wavelength filter elements connected in multiple stages, and as a result, the variable range of the wavelength of the light output from the optical wavelength filter device of the second invention can be further widened.
【図1】第一発明の第一実施例の構成を概略的に示す平
面図である。FIG. 1 is a plan view schematically showing the configuration of a first embodiment of the first invention.
【図2】(A)〜(B)は接続導波路の具体的構成の一
例を示す図である。FIG. 2A is a diagram showing an example of a specific configuration of a connection waveguide.
【図3】第一発明の第二実施例の構成を概略的に示す平
面図である。FIG. 3 is a plan view schematically showing a configuration of a second embodiment of the first invention.
【図4】第一発明の第三実施例の構成を概略的に示す平
面図である。FIG. 4 is a plan view schematically showing a configuration of a third embodiment of the first invention.
【図5】第一発明の第四実施例の構成を概略的に示す平
面図である。FIG. 5 is a plan view schematically showing a configuration of a fourth embodiment of the first invention.
【図6】第二発明の一実施例の構成を概略的に示す平面
図である。FIG. 6 is a plan view schematically showing the configuration of an embodiment of the second invention.
【図7】(A)〜(C)は第二発明の実施例において透
過波長の粗調整を行なう場合の説明図である。7 (A) to 7 (C) are explanatory views in the case of roughly adjusting the transmission wavelength in the embodiment of the second invention.
【図8】(A)〜(C)は第二発明の実施例において透
過波長の微調整を行なう場合の説明図である。FIG. 8A to FIG. 8C are explanatory views when fine adjustment of the transmission wavelength is performed in the embodiment of the second invention.
10:分岐部 12:干渉部 14:接続導波路 16、17:構造的位相差制御部 18:屈折率可変部 34、36:光波長フィルタ素子 10: Branching part 12: Interference part 14: Connection waveguide 16, 17: Structural phase difference control part 18: Refractive index variable part 34, 36: Optical wavelength filter element
Claims (4)
応する分岐部の出力ポート及び干渉部の入力ポートの間
に設けたN個の接続導波路と、該接続導波路に設けた構
造的位相差制御部及び屈折率可変部とを備え、 各構造的位相差制御部の長さを、第一の公差で等差数列
を形成するように異ならせ、 各屈折率可変部の長さを、第二の公差で等差数列を形成
するように異ならせて成ることを特徴とする光波長フィ
ルタ素子。1. A 1 × N branch section and an N × 1 interference section, and N connection waveguides provided between output ports of corresponding branch sections and input ports of the interference section, and the connection waveguides. The structural phase difference control unit and the refractive index variable unit are provided, and the length of each structural phase difference control unit is changed so as to form an arithmetic progression with the first tolerance, and each refractive index variable unit. The optical wavelength filter element is characterized in that the lengths of the two are different so as to form an arithmetic progression with a second tolerance.
れ等しくすることを特徴とする請求項1に記載の光波長
フィルタ素子。2. The optical wavelength filter element according to claim 1, wherein the refractive index change amounts of the respective refractive index variable portions are made equal to each other.
多段に接続して成り、これら光波長フィルタ素子の第一
の公差をそれぞれ異ならせることを特徴とする光波長フ
ィルタ装置。3. An optical wavelength filter device, comprising the optical wavelength filter elements according to claim 1 connected in multiple stages, wherein the optical wavelength filter elements have different first tolerances.
公差をそれぞれ異ならせることを特徴とする請求項3に
記載の光波長フィルタ装置。4. The optical wavelength filter device according to claim 3, wherein the optical wavelength filter elements connected in multiple stages have different second tolerances.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28740491A JPH0545680A (en) | 1991-08-09 | 1991-08-09 | Light wavelength filter element and light wavelength filter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28740491A JPH0545680A (en) | 1991-08-09 | 1991-08-09 | Light wavelength filter element and light wavelength filter device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0545680A true JPH0545680A (en) | 1993-02-26 |
Family
ID=17716902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28740491A Withdrawn JPH0545680A (en) | 1991-08-09 | 1991-08-09 | Light wavelength filter element and light wavelength filter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0545680A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2694817A1 (en) * | 1992-08-14 | 1994-02-18 | Ericsson Telefon Ab L M | Tunable interferometric optical filter. |
EP1176439A1 (en) * | 2000-07-11 | 2002-01-30 | Corning Incorporated | Tapped delay line based gain flattening filter |
KR100393610B1 (en) * | 2000-12-14 | 2003-08-02 | 삼성전자주식회사 | Apparatus of reducing loss variation in a multi-channel optical module by means of perturbation element |
US7236660B2 (en) | 2002-05-20 | 2007-06-26 | Jds Uniphase Corporation | Reconfigurable optical add-drop module, system and method |
-
1991
- 1991-08-09 JP JP28740491A patent/JPH0545680A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2694817A1 (en) * | 1992-08-14 | 1994-02-18 | Ericsson Telefon Ab L M | Tunable interferometric optical filter. |
EP1176439A1 (en) * | 2000-07-11 | 2002-01-30 | Corning Incorporated | Tapped delay line based gain flattening filter |
KR100393610B1 (en) * | 2000-12-14 | 2003-08-02 | 삼성전자주식회사 | Apparatus of reducing loss variation in a multi-channel optical module by means of perturbation element |
US7236660B2 (en) | 2002-05-20 | 2007-06-26 | Jds Uniphase Corporation | Reconfigurable optical add-drop module, system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arianfard et al. | Three waveguide coupled sagnac loop reflectors for advanced spectral engineering | |
JP3098235B2 (en) | Wavelength demultiplexer, optical spectrum analyzer and optical bandpass filter | |
US7085438B2 (en) | Optical multi/demultiplexing circuit equipped with phase generating device | |
JPH0219805A (en) | Light wavelength split multiplexing apparatus | |
Tian et al. | Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO/sub 3 | |
AU709321B2 (en) | An acousto-optical waveguide device, tunable, with a polarisation independent response, and a method for the acousto-optical processing of optical signals | |
PL180680B1 (en) | Optoacoustic waveguide device for wavelength selection and method of making same | |
JPH08234244A (en) | Tunable silicon-based optical router | |
US20020126291A1 (en) | Spectrum division multiplexing for high channel count optical networks | |
US6999639B2 (en) | Tunable optical filters | |
JPH09166795A (en) | Wavelength selecting type acoustoptic waveguide device | |
CN102636888A (en) | Electro-optic tuning multi-wavelength FIR (Finite Impulse Response) filter and all-level voltage determining method | |
JPH0545680A (en) | Light wavelength filter element and light wavelength filter device | |
US5526439A (en) | Optical filter using electro-optic material | |
KR100264469B1 (en) | Multi-wavelength channel transmission type optic filter | |
JP4197126B2 (en) | Optical switch and optical wavelength router | |
JP2002082241A (en) | Optical multiplexer/demultiplexer | |
JP2731307B2 (en) | Wavelength selection element | |
JPH0635007A (en) | Variable wavelength optical filter | |
JP2014228640A (en) | Optical filter | |
WO2007107186A1 (en) | Integrated laser optical source | |
JPH07174928A (en) | Optical wavelength filter | |
US12062886B2 (en) | Optical functional device and laser device | |
JP2690637B2 (en) | Tunable optical filter | |
JP3623750B2 (en) | Multi-wavelength light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |