JPH0635007A - Variable wavelength optical filter - Google Patents

Variable wavelength optical filter

Info

Publication number
JPH0635007A
JPH0635007A JP18713892A JP18713892A JPH0635007A JP H0635007 A JPH0635007 A JP H0635007A JP 18713892 A JP18713892 A JP 18713892A JP 18713892 A JP18713892 A JP 18713892A JP H0635007 A JPH0635007 A JP H0635007A
Authority
JP
Japan
Prior art keywords
filter
interferometer
arm
optical path
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18713892A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Chiyousei Jiyo
長青 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP18713892A priority Critical patent/JPH0635007A/en
Publication of JPH0635007A publication Critical patent/JPH0635007A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To narrow down the transmission band width of each channel of the variable wavelength optical filter and also widen the tuning width. CONSTITUTION:A filter part 10 is constituted by connecting Mach-Zehnder type interferometers 14 in stages, the electrode length Le of each of the interferometers 14 is made so different as to generate a geometric sequence whose common ratio is 2, and the structural optical length Lo between arms 24 and 26 of each of the interferometers 14 is made so different as to generate a geometric sequence whose common ratio is 2 in the increasing order of the electrode length Le. Then the Le/Lo of the interferometer 14 belonging to the filter part 10 is made constant. A filter part 12 is constituted similarly to the filter part 10 and the Le/Lo=alpha of the interferometers 34 of the filter part 12 is made different from the Le/Lo=beta of the filter part 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光透過波長を可変制御
できる光フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical filter capable of variably controlling a light transmission wavelength.

【0002】[0002]

【従来の技術】従来より、波長多重された光信号のなか
から特定波長λ0 の光信号を分離するための光フィルタ
として、例えば文献1:IEEE Communication Magazine
(アイイーイーイー コミュニケーション マガジン)
1989年10月 p53〜63に開示されているもの
がある。文献1に開示の光フィルタは、a:ファブリペ
ロー型、b:マッハツェンダー型、c:モード変換型及
びd:ブラッグ反射型の4種に分類される。光フィルタ
の透過波長λ0 を設計基準波長λからλ+Δλまで変化
させることを考えれば、a、b及びdの型では波長変化
量Δλに関し次式(1)が成立し、またcの型では波長
変化量Δλに関し次式(2)が成立する。尚、λ0 =λ
+Δλと表せる。 Δλ/λ=Δn/n …(1) Δλ/λ=Δn/δn …(2) 式中のΔnは光フィルタが備える導波路の屈折率を電気
的に変化させて得られる屈折率変化量、nは光フィルタ
が備える導波路の屈折率、δnはモード間屈折率差例え
ばTM及びTEモード間の屈折率差を表す。
2. Description of the Related Art Conventionally, as an optical filter for separating an optical signal of a specific wavelength λ 0 from wavelength multiplexed optical signals, for example, Reference 1: IEEE Communication Magazine.
(IEE Communication Magazine)
October 1989, p53-63. The optical filter disclosed in Document 1 is classified into four types: a: Fabry-Perot type, b: Mach-Zehnder type, c: mode conversion type, and d: Bragg reflection type. Considering that the transmission wavelength λ 0 of the optical filter is changed from the design reference wavelength λ to λ + Δλ, the following equation (1) is established for the wavelength variation Δλ in the types a, b, and d, and the wavelength is changed in the type c. The following expression (2) is established for the change amount Δλ. Where λ 0 = λ
It can be expressed as + Δλ. Δλ / λ = Δn / n (1) Δλ / λ = Δn / δn (2) In the formula, Δn is the refractive index change amount obtained by electrically changing the refractive index of the waveguide included in the optical filter, n is the refractive index of the waveguide provided in the optical filter, and δn is the refractive index difference between modes, for example, the refractive index difference between the TM and TE modes.

【0003】一般的には、設計基準波長λは光フィルタ
構成要素の形状、寸法、形成材料等から一義的に決定さ
れ定数となる。しかしc型のなかでも音響光学効果(A
O効果)を利用したものは、光のモードを変換するため
のグレーティングの周期を電気的に変化させることがで
きるので、設計基準波長λを可変制御することができ
る。従って、電気的に可変制御される屈折率変化量Δn
に上限はあるものの、透過波長λ0 の可変範囲(チュー
ニング幅)はcの型において最も広くなる。
Generally, the design reference wavelength λ is a constant which is uniquely determined by the shape, size, forming material, etc. of the optical filter constituent element. However, among the c-type, the acousto-optic effect (A
In the case of utilizing the O effect), the period of the grating for converting the light mode can be electrically changed, so that the design reference wavelength λ can be variably controlled. Therefore, the refractive index change amount Δn that is electrically variably controlled
Although there is an upper limit in the range, the variable range (tuning width) of the transmission wavelength λ 0 is the widest in the type c.

【0004】また、上記a、b、c及びd型の各フィル
タにおける光透過率ピークの半値幅ΔλFWHMは、それぞ
れ次式(3)、(4)、(5)及び(6)で表せる。式
中のLは光フィルタの電極長、Rは光フィルタの入出射
端面の反射率を表す。 ΔλFWHM/λ={λ/(2・L・n)}・{λ/(π・R1/2 )} …(3) ΔλFWHM/λ=λ/(L・n) …(4) ΔλFWHM/λ=λ/(L・δn) …(5) ΔλFWHM/λ=λ/(2・L・n) …(6) 通常δn<<nであるので、(3)〜(6)式からも理解
できるようにa、b及びdの型での半値幅ΔλFWHMは非
常に狭くなるが、cの型での半値幅ΔλFWHMは非常に広
くなる。
The full width at half maximum Δλ FWHM of the light transmittance peak in each of the a, b, c and d filters can be expressed by the following equations (3), (4), (5) and (6), respectively. In the equation, L represents the electrode length of the optical filter, and R represents the reflectance of the input / output end face of the optical filter. Δλ FWHM / λ = {λ / (2 · L · n)} · {λ / (π · R 1/2 )} (3) Δλ FWHM / λ = λ / (L · n) (4) Δλ FWHM / λ = λ / (L · δn) (5) Δλ FWHM / λ = λ / (2 · L · n) (6) Since normally δn << n, the formulas (3) to (6) are given. As can be understood from the above, the full width at half maximum Δλ FWHM in the types a, b and d is very narrow, but the full width at half maximum Δλ FWHM in the type c is very wide.

【0005】ここで光フィルタの1チャネル当たりの透
過帯域幅を半値幅ΔλFWHMで表せば、チャネル数CHは
aの型では次式(7)、b及びcの型では次式(8)、
またdの型では次式(9)のように表せる。式中のΔn
max は変化可能な範囲で最大のΔnを表す。 CH={(2・L・Δnmax )/λ}・{(π・R1/2 )/(1−R)} …(7) CH=(L・Δnmax )/λ …(8) CH=(2・L・Δnmax )/λ …(9) 但し、aの型の場合FSR(Free Spectral Range )の
制限を受けるので、素子単独では、CH=π・R1/2
(1−R)となる。
Here, if the transmission bandwidth per channel of the optical filter is expressed by the half width Δλ FWHM , the number of channels CH is expressed by the following equation (7) for the type a, and the following equation (8) for the types b and c:
Further, in the type of d, it can be expressed as the following equation (9). Δn in the formula
max represents the maximum Δn in the changeable range. CH = {(2 · L · Δn max ) / λ} · {(π · R 1/2 ) / (1-R)} (7) CH = (L · Δn max ) / λ (8) CH = (2 · L · Δn max ) / λ (9) However, since the type a is subject to the limitation of FSR (Free Spectral Range), CH = π · R 1/2 /
(1-R).

【0006】従ってΔnmax ≒0.01とすると、aの
型ではR≒0.9としてFSRの制限により数10チャ
ネル(FSRを無視すれば潜在的には80チャネル)と
なり、bの型ではL≒1cmとして80チャネル、cの
型ではL≒1mmとして8チャネル及びdの型ではL=
500μmとして8チャネルとなる。
Therefore, if Δn max ≈0.01, then R ≈0.9 for the type a and several tens of channels (potentially 80 channels if the FSR is ignored) due to the limitation of the FSR, and L for the type b. Approx. 1 cm for 80 channels, c type for L = 1 mm for 8 channels and d type for L =
There are 8 channels for 500 μm.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のa、
b、dの型の光フィルタでは、1チャネル当たりの透過
帯域幅ΔλFWHMを狭くできてもチューニング幅(透過波
長λ0 の可変範囲)を広くできないためチャネル数(=
チューニング幅/1チャネル当たりの透過帯域幅)を大
きくできない。またcの型の光フィルタでは、チューニ
ング幅を広くできるが透過帯域幅ΔλFWHMを狭くできな
いためチャネル数を増やせない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the b and d type optical filters, although the transmission bandwidth Δλ FWHM per channel can be narrowed, the tuning width (variable range of the transmission wavelength λ 0 ) cannot be widened, so the number of channels (=
(Tuning width / transmission bandwidth per channel) cannot be increased. Further, in the c type optical filter, the tuning width can be widened, but the number of channels cannot be increased because the transmission bandwidth Δλ FWHM cannot be narrowed.

【0008】チャネル数を増やすことを考えた場合、
a、b、dの型では素子長Lを長くすれば透過帯域幅Δ
λFWHMを狭くでき従ってチャネル数を増やせるが、透過
帯域幅ΔλFWHMが狭くなりすぎると光フィルタが扱いに
くくなり実用的でなくなる。またcの型では素子長Lを
極端に長くしないと(例えばL=1m)チャネル数を増
やせない。
Considering increasing the number of channels,
In the a, b, and d types, if the element length L is increased, the transmission bandwidth Δ
Although λ FWHM can be narrowed and therefore the number of channels can be increased, if the transmission bandwidth Δλ FWHM is too narrow, the optical filter becomes unwieldy and impractical. In the type c, the number of channels cannot be increased unless the element length L is extremely long (for example, L = 1 m).

【0009】この発明の目的は、上述した従来の問題点
を解決するため、1チャネル当たりの透過帯域幅を実用
的な範囲で狭くできかつチューニング幅を広くできる光
波長光フィルタ及び光波長フィルタ装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and an optical wavelength optical filter and an optical wavelength filter device capable of narrowing the transmission bandwidth per channel within a practical range and widening the tuning width. To provide.

【0010】[0010]

【課題を解決するための手段】この目的の達成を図るた
め、この発明の可変波長光フィルタは、多段接続した複
数のフィルタ部を備えて成る。各フィルタ部は複数のマ
ッハツェンダー型の干渉器を多段接続して成り、各干渉
器は1×2Y分岐の出力及び2×1Y分岐の入力を接続
導波路を介し結合して構成した2本のアームと、2本の
アームの一方に設けられ当該アームの屈折率を可変制御
する電極と、2本のアームの他方に設けられこれら2本
のアーム間に構造的光路長差を与える光路長差発生部と
を有する。
In order to achieve this object, the variable wavelength optical filter of the present invention comprises a plurality of filter sections connected in multiple stages. Each filter unit is formed by connecting a plurality of Mach-Zehnder interferometers in multiple stages, and each interferometer is composed of two 1 × 2Y branch outputs and 2 × 1Y branch inputs coupled through a connection waveguide. An arm, an electrode provided on one of the two arms to variably control the refractive index of the arm, and an optical path length difference provided on the other of the two arms to provide a structural optical path length difference between the two arms. And a generator.

【0011】そして同一のフィルタ部に属する各干渉器
の電極長Le を、公比2の等比数列を形成するように異
ならせると共に、同一のフィルタ部に属する各干渉器の
構造的光路長差Lo を、電極長Le の短い順に公比2の
等比数列を形成するように異ならせる。さらに同一のフ
ィルタ部に属する各干渉器の(電極長Le )/(構造的
光路長差Lo )で表される比を等しくし、かつ、当該比
を、各フィルタ部毎に異ならせる。
The electrode lengths L e of the interferometers belonging to the same filter section are made different so as to form a geometric progression of a common ratio 2, and the structural optical path lengths of the interferometers belonging to the same filter section are set. The difference L o is made different so as to form a geometric progression with a common ratio of 2 in ascending order of the electrode length L e . Further, the ratio represented by (electrode length L e ) / (structural optical path length difference L o ) of each interferometer belonging to the same filter unit is made equal, and the ratio is made different for each filter unit.

【0012】[0012]

【作用】このような構成によれば、(1)同一のフィル
タ部に属する各干渉器の電極長Le を公比2の等比数列
を形成するように異ならせ、(2)同一のフィルタ部に
属する各干渉器の構造的光路長差Lo を電極長Le の短
い順に公比2の等比数列を形成するように異ならせ、
(3)同一のフィルタ部に属する各干渉器の(電極長L
e )/(構造的光路長差Lo )で表される比を等しく
し、かつ、(4)当該比(電極長Le )/(構造的光路
長差Lo )を各フィルタ部毎に異ならせる。
According to such a configuration, (1) the electrode lengths L e of the interferometers belonging to the same filter section are made different so as to form a geometric progression of a common ratio of 2, and (2) the same filter is used. The structural optical path length difference L o of each interferometer belonging to the section is made different so as to form a geometric progression of a common ratio 2 in the ascending order of the electrode length L e .
(3) (electrode length L of each interferometer belonging to the same filter unit
e ) / (structural optical path length difference L o ), and (4) the ratio (electrode length L e ) / (structural optical path length difference L o ), for each filter section. Make them different.

【0013】従って、各フィルタ部の光透過特性は、複
数の光透過帯域aが現れかつこれら光透過帯域aのピー
ク位置が一定の波長間隔bで離間するような特性とな
る。しかも各フィルタ部の波長間隔bの大きさは異な
る。この発明の波長可変光フィルタの光透過帯域Aは各
フィルタ部の透過帯域aが一致する波長範囲であるの
で、光透過帯域Aは複数個現れしかもこれら光透過帯域
Aのピーク位置は一定の波長間隔Bで離間する。波長間
隔Bは各フィルタ部の波長間隔bの最小公倍数であるの
で、波長間隔Bを広くすることができる。
Therefore, the light transmission characteristics of each filter section are such that a plurality of light transmission bands a appear and the peak positions of these light transmission bands a are separated by a constant wavelength interval b. Moreover, the size of the wavelength interval b of each filter portion is different. Since the light transmission band A of the wavelength tunable optical filter of the present invention is a wavelength range in which the transmission bands a of the respective filter parts coincide with each other, a plurality of light transmission bands A appear and the peak position of these light transmission bands A is a constant wavelength. Space B apart. Since the wavelength interval B is the least common multiple of the wavelength interval b of each filter unit, the wavelength interval B can be widened.

【0014】また、干渉器が有する一方及び他方の導波
路間の等価屈折率差を電極を介し変化させると、フィル
タ部の光透過帯域aのピーク位置が移動する。従って一
方及び他方の導波路間の等価屈折率差を各フィルタ部毎
に任意好適に変化させることによって光透過帯域Aのピ
ーク位置を移動させ、よって、この発明の波長可変光フ
ィルタの透過波長を変化させることができる。
Further, when the equivalent refractive index difference between the one and the other waveguides of the interferometer is changed via the electrode, the peak position of the light transmission band a of the filter portion moves. Therefore, the peak position of the light transmission band A is moved by appropriately and appropriately changing the equivalent refractive index difference between the one and the other waveguides for each filter unit, and thus the transmission wavelength of the wavelength tunable optical filter of the present invention is changed. Can be changed.

【0015】さらに、光透過帯域a幅特に半値幅の広い
フィルタ部と狭いフィルタ部とを形成できるので、各フ
ィルタ部の光透過帯域aのピーク位置が分離したい光の
波長から多少ずれてもこの発明の波長可変光フィルタか
ら出力される光の出力強度の低下を少なくできる。
Further, since a filter portion having a wide width of the light transmission band a, especially a wide half value width and a narrow filter portion can be formed, even if the peak position of the light transmission band a of each filter portion is slightly deviated from the wavelength of the light to be separated, this The decrease in the output intensity of the light output from the tunable optical filter of the invention can be reduced.

【0016】[0016]

【実施例】以下、図面を参照し、この発明の実施例につ
き説明する。尚、図面はこの発明が理解できる程度に概
略的に示してあるにすぎず、従ってこの発明を図示例に
限定するものではない。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the present invention can be understood, and therefore the present invention is not limited to the illustrated examples.

【0017】図1はこの発明の実施例の構成を概略的に
示す平面図である。この実施例の可変波長光フィルタ
は、2段のフィルタ部10、12を備え、前段のフィル
タ部10の出力を次段のフィルタ部12の入力に接続し
て成る。 (フィルタ部10の構成)フィルタ部10は、複数段の
マッハツェンダー型の干渉器14を備えこれら干渉器1
4を多段接続して成る。各干渉器14は、1×2Y分岐
16の一方の出力と2×1Y分岐18の一方の入力とを
接続導波路20を介し結合して構成したアーム24と、
1×2Y分岐16の他方の出力と2×1Y分岐18の他
方の入力とを接続導波路22を介し結合して構成したア
ーム26と、一方のアーム24に設けられ当該アーム2
4の屈折率を可変制御する電極28と、他方のアーム2
6に設けられこれらアーム24、26間に構造的光路長
差を与える光路長差発生部30とを有する。
FIG. 1 is a plan view schematically showing the structure of an embodiment of the present invention. The tunable wavelength optical filter of this embodiment includes two stages of filter units 10 and 12, and the output of the preceding stage filter unit 10 is connected to the input of the next stage filter unit 12. (Configuration of Filter Unit 10) The filter unit 10 includes a plurality of stages of Mach-Zehnder interferometers 14
4 is connected in multiple stages. Each interferometer 14 includes an arm 24 configured by coupling one output of the 1 × 2Y branch 16 and one input of the 2 × 1Y branch 18 via a connection waveguide 20, and
An arm 26 configured by coupling the other output of the 1 × 2Y branch 16 and the other input of the 2 × 1Y branch 18 via a connection waveguide 22, and the arm 26 provided on one arm 24.
Electrode 28 for variably controlling the refractive index of 4 and the other arm 2
6 and an optical path length difference generation unit 30 that provides a structural optical path length difference between the arms 24 and 26.

【0018】さらにフィルタ部10に属する各干渉器1
4の電極長Le を、公比2の等比数列を形成するように
異ならせると共に、フィルタ部10に属する各干渉器1
4の構造的光路長差Lo を、電極長Le の短い順に公比
2の等比数列を形成するように異ならせる。そしてフィ
ルタ部10に属する各干渉器14の(電極長Le )/
(構造的光路長差Lo )で表される比αを等しくする。
Further, each interferometer 1 belonging to the filter section 10
4 of the electrode length L e, with varied so as to form a geometric progression of common ratio 2, the interferometer 1 belonging to the filter unit 10
The structural optical path length difference L o of No. 4 is made different so as to form a geometric progression with a common ratio of 2 in ascending order of the electrode length L e . Then, (electrode length L e ) / of each interferometer 14 belonging to the filter unit 10
The ratio α represented by (structural optical path length difference L o ) is made equal.

【0019】この実施例では、フィルタ部10の各干渉
器14を基板32に設け、干渉器14の出力を当該干渉
器14の次の段の干渉器14の入力に接続するようにし
て、順次に、各段の干渉器14を接続してゆき、多段接
続する。
In this embodiment, each interferometer 14 of the filter section 10 is provided on the substrate 32, and the output of the interferometer 14 is connected to the input of the interferometer 14 at the next stage of the interferometer 14 in order. Then, the interferometers 14 at the respective stages are connected to make a multi-stage connection.

【0020】各干渉器14のY分岐16、18は対称Y
分岐及び接続導波路20、22は長さの等しい直線導波
路である。アーム24はY分岐16の一方の出力分岐1
6a、接続導波路20及びY分岐18の一方の入力分岐
18aを順次に接続して成り、アーム26はY分岐16
の他方の出力分岐16b、接続導波路22及びY分岐1
8の他方の入力分岐18bを順次に接続して成る。電極
28をアーム24の一部又は全体例えば接続導波路20
に設け、接続導波路20の屈折率を電極28を介して電
気的に可変制御する。例えば、接続導波路20に電界を
及ぼし電気光学効果により、或は、接続導波路20にキ
ャリアを注入しプラズマ効果により、屈折率を制御す
る。
The Y branches 16 and 18 of each interferometer 14 are symmetrical Y
The branching and connecting waveguides 20 and 22 are straight waveguides having the same length. The arm 24 is one output branch 1 of the Y branch 16.
6a, the connection waveguide 20, and one input branch 18a of the Y branch 18 are sequentially connected, and the arm 26 is formed by the Y branch 16a.
The other output branch 16b, the connection waveguide 22, and the Y branch 1
The other input branch 18b of 8 is sequentially connected. The electrode 28 is connected to a part or the whole of the arm 24, for example, the connection waveguide 20.
, And the refractive index of the connection waveguide 20 is electrically variably controlled via the electrode 28. For example, an electric field is applied to the connection waveguide 20 to control the refractive index by the electro-optic effect, or by injection of carriers into the connection waveguide 20 and the plasma effect.

【0021】また光路長差発生部30をアーム26の一
部又は全体例えば接続導波路22に設け、光路長差発生
部30を設けたアーム26部分(以下、アーム26部分
I)の導波路形状、形成材料及びそのほかの設計条件を
任意好適に定めることによって、アーム26部分Iとア
ーム24との間に構造的な等価屈折率差を予め設けてお
く。光路長差発生部30を設けていないアーム26部分
の等価屈折率は、アーム24の等価屈折率と等しくす
る。例えば、アーム26部分Iの導波路幅とアーム24
の導波路幅とを異ならせることにより、或は、アーム2
6部分Iとアーム24とを屈折率の異なる形成材料から
形成したりすることによって、等価屈折率差を設ける。
Further, the optical path length difference generating part 30 is provided in a part or the whole of the arm 26, for example, in the connection waveguide 22, and the shape of the waveguide of the arm 26 part (hereinafter, arm 26 part I) in which the optical path length difference generating part 30 is provided. , The structural equivalent refractive index difference is provided in advance between the arm 26 portion I and the arm 24 by arbitrarily setting the forming material and other design conditions. The equivalent refractive index of the arm 26 where the optical path length difference generator 30 is not provided is equal to the equivalent refractive index of the arm 24. For example, the waveguide width of the arm 26 part I and the arm 24
By changing the waveguide width of the arm 2 or the arm 2
The equivalent refractive index difference is provided by forming the 6 part I and the arm 24 from forming materials having different refractive indexes.

【0022】光がアーム24の始点P1から終点Q1に
至るまでの光路長と(点P1、Q1については図1参
照)、アーム26の始点P1から終点Q1に至るまでの
光路長との間に構造的に光路長差を与える方法として等
価屈折率を異ならせるほか、例えば、アーム24の始点
P1から終点Q1に至る幾何学的長さとアーム26の始
点P1から終点Q1に至る幾何学的長さとを異ならせる
ようにしても良い。この場合には、アーム26部分I例
えば接続導波路22を曲がり導波路としてアーム24、
26の間に幾何学的長さの差を設ければ良い。
Between the light path length from the start point P1 of the arm 24 to the end point Q1 (refer to FIG. 1 for the points P1 and Q1) and the light path length from the start point P1 of the arm 26 to the end point Q1. As a method of structurally providing a difference in optical path length, the equivalent refractive index is made different, and, for example, the geometric length from the start point P1 of the arm 24 to the end point Q1 and the geometric length from the start point P1 of the arm 26 to the end point Q1 are set. May be different. In this case, the arm 26 portion I, for example, the connection waveguide 22 is used as a curved waveguide to form the arm 24,
It suffices to provide a geometrical length difference between 26.

【0023】そして、フィルタ部10を総個数j個の干
渉器14により構成し、各干渉器14の電極長Le を電
極長の短い順にLe101、Le102、……、Le10jと表すも
のとすれば、1番短い干渉器14の電極長Le101=l
e10 、2番目に短い干渉器14の電極長Le102=2・l
e10 、……、j番目に短い干渉器14の電極長Le10j
j-1 ・le10 とする。ここで電極長はアーム24に沿
った電極28の長さである。
The filter unit 10 is composed of a total of j interfering devices 14, and the electrode length L e of each interfering device 14 is represented by L e101 , L e102 , ..., L e10j in ascending order of electrode length. If so, the electrode length L e101 of the shortest interferometer 14 = l
e10 , the electrode length of the second shortest interferometer 14 L e102 = 2 · l
e10 , ..., The electrode length L e10j of the j-th shortest interferometer 14 =
2 j-1 · l e10 . Here, the electrode length is the length of the electrode 28 along the arm 24.

【0024】さらに、各干渉器14のアーム24、26
の間の構造的光路長差Lo を電極長Le の短い順にL
o101、Lo102、……、Lo10jと表すものとすれば、電極
長の1番短い干渉器14の光路長差Lo101=lo10 、電
極長の2番目に短い干渉器14の光路長差Lo102=2・
o10 、……、電極長のj番目に短い干渉器14の光路
長差Lo10j=2j-1 ・lo10 とする。そして各干渉器1
4の(電極長Le )/(構造的光路長差Lo )=αを等
しくする。例えば、Le101/Lo101=Le102/Lo102
……=Le10j/Lo10j=α≒1とする。 (フィルタ部12の構成)フィルタ部12は、複数段の
マッハツェンダー型の干渉器34を備えこれら干渉器3
4を多段接続して成る。各干渉器34は、1×2Y分岐
36の一方の出力と2×1Y分岐38の一方の入力とを
接続導波路40を介し結合して構成したアーム42と、
1×2Y分岐36の他方の出力と2×1Y分岐38の他
方の入力とを接続導波路44を介し結合して構成したア
ーム46と、一方のアーム42に設けられ当該アーム4
2の屈折率を可変制御する電極48と、他方のアーム4
6に設けられこれらアーム42、46間に構造的光路長
差を与える光路長差発生部50とを有する。
Further, the arms 24, 26 of each interferometer 14 are
Between the structural optical path lengths L o in the order of increasing electrode length L e
The light path length difference L o101 = l o10 , the light path length difference of the interferometer 14 having the second shortest electrode length is expressed as o101 , L o102 , ..., L o10j. L o102 = 2 ・
l o10, ......, and the optical path length difference L o10j = 2 j-1 · l o10 short interferometer 14 to j-th electrode length. And each interferometer 1
4 (electrode length L e ) / (structural optical path length difference L o ) = α. For example, L e101 / L o101 = L e102 / L o102 =
...... = L e10j / L o10j = α≈1 . (Configuration of Filter Unit 12) The filter unit 12 includes a plurality of stages of Mach-Zehnder type interferometers 34.
4 is connected in multiple stages. Each interferometer 34 includes an arm 42 configured by coupling one output of the 1 × 2Y branch 36 and one input of the 2 × 1Y branch 38 via a connection waveguide 40,
An arm 46 configured by coupling the other output of the 1 × 2Y branch 36 and the other input of the 2 × 1Y branch 38 via a connection waveguide 44, and the arm 4 provided on the one arm 42.
The electrode 48 for variably controlling the refractive index of 2 and the other arm 4
6 and an optical path length difference generating section 50 that provides a structural optical path length difference between the arms 42 and 46.

【0025】さらにフィルタ部12に属する各干渉器3
4の電極長Le を、公比2の等比数列を形成するように
異ならせると共に、フィルタ部12に属する各干渉器3
4の構造的光路長差Lo を、電極長Le の短い順に公比
2の等比数列を形成するように異ならせる。そしてフィ
ルタ部12に属する各干渉器34の(電極長Le )/
(構造的光路長差Lo )で表される比βを等くし、かつ
当該比βを他のフィルタ部10の干渉器14に関する比
αと異ならせる(α≠βとする)。
Further, each interferometer 3 belonging to the filter section 12
4 of the electrode length L e, with varied so as to form a geometric progression of common ratio 2, the interferometer 3 belonging to the filter unit 12
The structural optical path length difference L o of No. 4 is made different so as to form a geometric progression with a common ratio of 2 in ascending order of the electrode length L e . Then, (electrode length L e ) / of each interferometer 34 belonging to the filter unit 12
The ratio β represented by (structural optical path length difference L o ) is made equal, and the ratio β is made different from the ratio α for the interferometer 14 of the other filter unit 10 (α ≠ β).

【0026】この実施例では、フィルタ部12の各干渉
器34を基板52に設け、干渉器34の出力を当該干渉
器34の次の段の干渉器34の入力に接続するようにし
て、順次に、各段の干渉器34を接続してゆき、多段接
続する。
In this embodiment, each interferometer 34 of the filter section 12 is provided on the substrate 52, and the output of the interferometer 34 is connected to the input of the interferometer 34 of the next stage of the interferometer 34 in order. Then, the interferometers 34 at each stage are connected to make a multi-stage connection.

【0027】各干渉器34のY分岐36、38は対称Y
分岐及び接続導波路40、44は長さの等しい直線導波
路である。アーム42はY分岐36の一方の出力分岐3
6a、接続導波路40及びY分岐38の一方の入力分岐
38aを順次に接続して成り、アーム46はY分岐36
の他方の出力分岐36b、接続導波路44及びY分岐3
8の他方の入力分岐38bを順次に接続して成る。電極
48をアーム42の一部又は全体例えば接続導波路40
に設け、接続導波路40の屈折率を電極48を介して電
気的に可変制御する。
The Y branches 36 and 38 of each interferometer 34 are symmetrical Y
The branching and connecting waveguides 40 and 44 are straight waveguides having the same length. The arm 42 is one output branch 3 of the Y branch 36.
6a, the connection waveguide 40, and one input branch 38a of the Y branch 38 are sequentially connected, and the arm 46 is connected to the Y branch 36.
The other output branch 36b, the connection waveguide 44, and the Y branch 3
The other input branch 38b of 8 is sequentially connected. The electrode 48 is connected to a part or the whole of the arm 42, for example, the connection waveguide 40.
, And the refractive index of the connection waveguide 40 is electrically variably controlled via the electrode 48.

【0028】また光路長差発生部50をアーム46の一
部又は全体例えば接続導波路44に設け、光路長差発生
部50を設けたアーム46部分(以下、アーム46部分
II)の導波路形状、形成材料及びそのほかの設計条件を
任意好適に定めることによって、アーム46部分IIとア
ーム42との間に構造的な等価屈折率差を予め設けてお
く。光路長差発生部50を設けていないアーム46部分
の等価屈折率は、アーム42の等価屈折率と等しくす
る。
Further, the optical path length difference generating part 50 is provided in a part or the whole of the arm 46, for example, in the connection waveguide 44, and the arm 46 part provided with the optical path length difference generating part 50 (hereinafter, arm 46 part).
A structural equivalent refractive index difference is previously provided between the arm 46 portion II and the arm 42 by arbitrarily and appropriately defining the waveguide shape, forming material, and other design conditions of II). The equivalent refractive index of the arm 46 where the optical path length difference generating unit 50 is not provided is made equal to the equivalent refractive index of the arm 42.

【0029】光路長差発生部28と同様に、光路長差発
生部50を種々に変更できる。例えば、アーム42の始
点P2から終点Q2に至る幾何学的長さとアーム46の
始点P2から終点Q2に至る幾何学的長さとを異ならせ
るようにしても良い(点P2、Q2については図1参
照)。
Similar to the optical path length difference generating section 28, the optical path length difference generating section 50 can be variously modified. For example, the geometric length from the start point P2 of the arm 42 to the end point Q2 may be different from the geometric length from the start point P2 of the arm 46 to the end point Q2 (refer to FIG. 1 for the points P2 and Q2). ).

【0030】そしてフィルタ部12を総個数k個の干渉
器34により構成し各干渉器34の電極長Le を電極長
の短い順にLe121、Le122、……、Le12kと表すものと
すれば、1番短い干渉器34の電極長Le121=le12
2番目に短い干渉器34の電極長Le122=2・le12
……k番目に短い干渉器34の電極長Le12k=2k-1
e12 とする。ここで電極長はアーム42に沿った電極
48の長さである。
The filter unit 12 is composed of a total of k interfering devices 34, and the electrode length L e of each interfering device 34 is represented as L e121 , L e122 , ..., L e12k in the ascending order of electrode length. For example, the electrode length L e121 = l e12 of the shortest interferometer 34,
The electrode length L e122 of the second shortest interferometer 34 = 2 · l e12 ,
The electrode length of the k-th shortest interferometer 34 L e12k = 2 k-1
Let it be l e12 . Here, the electrode length is the length of the electrode 48 along the arm 42.

【0031】さらに、各干渉器34のアーム24、26
の間の構造的光路長差Lo を電極長Le の短い順にL
o121、Lo122、……、Lo12kと表すものとすれば、電極
長の1番短い干渉器34の光路長差Lo121=lo12 、電
極長の2番目に短い干渉器34の光路長差Lo122=2・
o12 、……、電極長のk番目に短い干渉器34の光路
長差Lo12k=2k-1 ・lo12 とする。そして各干渉器3
4の(電極長Le )/(構造的光路長差Lo )=βを等
しくし、かつ当該比βをフィルタ部10の干渉器14に
関する比αと異ならせる。例えば、Le121/Lo121=L
e122/Lo122=……=Le12k/Lo12k=β≒4とする。
Further, the arms 24, 26 of each interferometer 34 are
Between the structural optical path lengths L o in the order of increasing electrode length L e
o121, L o122, ......, if represents the L o12k, the optical path length difference between the 1st short interferometer 34 of the electrode length L o121 = l o12, the optical path length difference between the shorter interferometer 34 to the second electrode length L o122 = 2
l o12, ......, and the optical path length difference L o12k = 2 k-1 · l o12 short interferometer 34 to the k-th electrode length. And each interferometer 3
4 (electrode length L e ) / (structural optical path length difference L o ) = β, and the ratio β is different from the ratio α of the filter unit 10 for the interferometer 14. For example, L e121 / L o121 = L
Let e122 / Lo122 = ... = Le12k / Lo12k = β≈4 .

【0032】β/α=(2j-1 ・lo10 )/(2k-1
o12 )とすることにより、フィルタ部10、12双方
の電極長を等しくすることができ、従って同一基板サイ
ズの基板32、52を用いてこの実施例の可変波長光フ
ィルタを構成することができるようになる。この場合、
好ましくはlo10 =lo12 ・2h (h=1、2、3、…
…)とするのが良い。
Β / α = (2 j- 1l 10 ) / (2 k- 1 )
L o12 ), the electrode lengths of both filter parts 10 and 12 can be made equal, and therefore, the tunable wavelength optical filter of this embodiment can be constructed by using the substrates 32 and 52 of the same substrate size. Like in this case,
Preferably, l o10 = l o12 · 2 h (h = 1, 2, 3, ...
...) is good.

【0033】フィルタ部12が備える初段の干渉器34
の入力をフィルタ部10が備える最終段の干渉器14の
出力と接続して、この実施例の可変波長光フィルタを構
成する。
The first-stage interferometer 34 included in the filter unit 12
Is connected to the output of the interferometer 14 at the final stage of the filter unit 10 to form the tunable wavelength optical filter of this embodiment.

【0034】次にこの実施例の可変波長光フィルタの動
作に概略的に説明する。図2はこの実施例の可変波長光
フィルタの原理的な動作の説明に供する図である。ここ
ではk=jかつh=2(このときα≒1、β≒4とな
る)として、フィルタ部10単独の光透過特性を図2
(A)に、フィルタ部12単独の光透過特性を図2
(B)に、及びフィルタ部10、12の光透過特性を合
成して得られる光透過特性すなわちこの実施例の可変波
長光フィルタの光透過特性を図2(C)に示す。これら
図の縦軸に光出力強度を及び横軸に光の波長を取って示
す。
Next, the operation of the variable wavelength optical filter of this embodiment will be briefly described. FIG. 2 is a diagram for explaining the principle of operation of the variable wavelength optical filter of this embodiment. Here, assuming that k = j and h = 2 (in this case, α≈1, β≈4), the light transmission characteristics of the filter unit 10 alone are shown in FIG.
FIG. 2A shows the light transmission characteristics of the filter unit 12 alone.
FIG. 2C shows the light transmission characteristics obtained by combining the light transmission characteristics of the filter units 10 and 12 with each other, that is, the light transmission characteristics of the variable wavelength optical filter of this embodiment. In these figures, the vertical axis represents the light output intensity and the horizontal axis represents the wavelength of light.

【0035】フィルタ部10単独の光透過特性は、複数
の光透過帯域a10が現れかつこれら帯域a10のピーク位
置が一定の波長間隔b10で離間するような特性となる
(図2(A))。同様に、フィルタ部12単独の光透過
特性も、複数の光透過帯域a12が現れかつこれら帯域a
12のピーク位置が一定の波長間隔b12で離間するような
特性となる(図2(B))。α≠βとするので、波長間
隔b10≠b12となる。またフィルタ部10が備える干渉
器14の光路長差Lo をフィルタ部12が備える干渉器
34の光路長差Lo よりも長くしているので、フィルタ
部10の透過帯域a10のほうがフィルタ部12の透過帯
域a12よりも狭くなる。
The light transmission characteristics of the filter section 10 alone are such that a plurality of light transmission bands a 10 appear and the peak positions of these bands a 10 are separated by a constant wavelength interval b 10 (see FIG. 2A). )). Similarly, in the light transmission characteristics of the filter unit 12 alone, a plurality of light transmission bands a 12 appear and these band a
The characteristic is such that the 12 peak positions are separated by a constant wavelength interval b 12 (FIG. 2 (B)). Since α ≠ β, the wavelength interval b 10 ≠ b 12 . Further, since the optical path length difference L o of the interferometer 14 included in the filter unit 10 is set to be longer than the optical path length difference L o of the interferometer 34 included in the filter unit 12, the transmission band a 10 of the filter unit 10 is larger. It is narrower than the transmission band a 12 of 12 .

【0036】従って、この実施例の可変波長光フィルタ
の透過帯域Aは透過帯域a10、a12が一致する範囲であ
るので、透過帯域Aを狭くすることができる。しかも波
長間隔b10≠b12であるので、透過帯域Aのピーク位置
の波長間隔Bは波長間隔b10、b12の最小公倍数とな
る。従って透過帯域Aの帯域幅が狭くかつ波長間隔Bの
広い光透過特性を有する可変波長フィルタを構成でき
る。β/α=2g (g=1、2、3、……)とすること
によって、波長間隔b10、b12の最小公倍数をb12とす
ることができる。
Therefore, the transmission band A of the variable wavelength optical filter of this embodiment is a range where the transmission bands a 10 and a 12 coincide with each other, so that the transmission band A can be narrowed. Moreover, since the wavelength interval b 10 ≠ b 12 , the wavelength interval B at the peak position of the transmission band A is the least common multiple of the wavelength intervals b 10 and b 12 . Therefore, a variable wavelength filter having a light transmission characteristic in which the bandwidth of the transmission band A is narrow and the wavelength interval B is wide can be configured. By setting β / α = 2 g (g = 1, 2, 3, ...), the least common multiple of the wavelength intervals b 10 and b 12 can be set to b 12 .

【0037】フィルタ部10の透過帯域a10のピーク位
置は、アーム24の等価屈折率を電極28を介して電気
的に変化させると、移動する。同様に、フィルタ部12
の透過帯域a12のピーク位置は、アーム42の等価屈折
率を電極48を介して電気的に変化させると、移動す
る。このように透過帯域a10及び又はa12のピーク位置
を任意好適に移動させることにより、この実施例の可変
波長光フィルタの透過帯域Aのピーク位置を移動させる
ことができる。
The peak position of the transmission band a 10 of the filter section 10 moves when the equivalent refractive index of the arm 24 is electrically changed via the electrode 28. Similarly, the filter unit 12
The peak position of the transmission band a 12 of is moved when the equivalent refractive index of the arm 42 is electrically changed via the electrode 48. Thus, the peak position of the transmission band A of the variable wavelength optical filter of this embodiment can be moved by arbitrarily and appropriately moving the peak positions of the transmission bands a 10 and / or a 12 .

【0038】好ましくは、アーム24、42双方の等価
屈折率を電気的に変化させないときに、設計の基準とな
る所望の波長λ0 において、フィルタ部10の透過帯域
10のピーク位置とフィルタ部12の透過帯域a12のピ
ーク位置とが一致するように、フィルタ部10、12を
設計する。このときλ0 ±h・b10(hは整数)で表さ
れる波長のなかの所望の波長を、この実施例の可変波長
光フィルタの透過波長とする場合(透過波長の粗調整を
行う場合)には、図2(A)中に実線で示すようにフィ
ルタ部10のアーム24の等価屈折率を電気的に変化さ
せない状態で、フィルタ部12のアーム42の等価屈折
率を電気的に変化させて、図2(B)及び(C)中に点
線で示すようにフィルタ部12の透過帯域a12のピーク
位置をフィルタ部10の透過帯域a10のピーク位置に一
致させる。また(λ0 ±h・b10)+γで表されるの波
長のなかの所望の波長を、この実施例の可変波長光フィ
ルタの透過波長とする場合(透過波長の微調整を行なう
場合)には、図2(A)中に一点鎖線で示すようにフィ
ルタ部10のアーム42の等価屈折率を電気的に変化さ
せて透過帯域a10のピーク位置をγだけ移動させ、次い
で透過帯域a10をγだけ移動させた状態を保持したまま
フィルタ部12のアーム42の等価屈折率を電気的に変
化させて、図2(B)及び(C)中に点線で示すように
フィルタ部12の透過帯域a12のピーク位置をフィルタ
部10の透過帯域a10のピーク位置に一致させる。
Preferably, when the equivalent refractive indexes of both arms 24 and 42 are not electrically changed, the peak position of the transmission band a 10 of the filter section 10 and the filter section at a desired wavelength λ 0 which is a design reference. The filter units 10 and 12 are designed so that the peak positions of the transmission band a 12 of 12 coincide with each other. At this time, when a desired wavelength among the wavelengths represented by λ 0 ± h · b 10 (h is an integer) is set as the transmission wavelength of the variable wavelength optical filter of this embodiment (when rough adjustment of the transmission wavelength is performed) 2A, the equivalent refractive index of the arm 42 of the filter unit 12 is changed electrically while the equivalent refractive index of the arm 24 of the filter unit 10 is not changed electrically as shown by the solid line in FIG. Then, the peak position of the transmission band a 12 of the filter unit 12 is made to coincide with the peak position of the transmission band a 10 of the filter unit 10 as indicated by the dotted line in FIGS. 2B and 2C. When a desired wavelength among the wavelengths represented by (λ 0 ± h · b 10 ) + γ is set as the transmission wavelength of the variable wavelength optical filter of this embodiment (when fine adjustment of the transmission wavelength is performed). 2A, the equivalent refractive index of the arm 42 of the filter unit 10 is electrically changed to move the peak position of the transmission band a 10 by γ, and then the transmission band a 10 as shown by the dashed line in FIG. Is moved by γ, the equivalent refractive index of the arm 42 of the filter unit 12 is electrically changed to transmit the light through the filter unit 12 as shown by a dotted line in FIGS. 2B and 2C. The peak position of the band a 12 is matched with the peak position of the transmission band a 10 of the filter unit 10.

【0039】このように透過帯域a10、a12のピーク位
置を一致させるとき、透過帯域a10、a12の帯域幅が双
方ともに狭い場合はこの実施例の可変波長光フィルタか
ら出力される光の強度を充分に大きくするためには透過
帯域a10、a12のピーク位置のずれを小さくしなければ
ならい。しかしこの実施例では、透過帯域a10の帯域幅
を狭く及び透過帯域a12の帯域幅を広くしているので、
これら帯域a10、a12のピーク位置が多少大きくずれて
もこの実施例の可変波長光フィルタから出力される光の
強度を充分に大きくでき、従ってこれらのピーク位置の
調整精度を緩やかにすることができる。
In this way, when the peak positions of the transmission bands a 10 and a 12 are made to coincide with each other, if the bandwidths of the transmission bands a 10 and a 12 are both narrow, the light output from the variable wavelength optical filter of this embodiment is In order to sufficiently increase the intensity of P, the deviation of the peak positions of the transmission bands a 10 and a 12 must be reduced. However, in this embodiment, since the bandwidth of the transmission band a 10 is narrow and the bandwidth of the transmission band a 12 is wide,
Even if the peak positions of these bands a 10 and a 12 are slightly deviated, the intensity of the light output from the tunable wavelength optical filter of this embodiment can be made sufficiently large, and therefore the adjustment accuracy of these peak positions can be made gentle. You can

【0040】フィルタ部10のアーム24、26間に予
め構造的に等価屈折率差を与えて光路長差を与えた場合
に、フィルタ部10のアーム24の等価屈折率を電気的
に変化させていない状態での等価屈折率nから電気的に
最大に変化させた状態での等価屈折率n+Δnまで変化
させたとき、透過帯域a10のピーク位置がΔλT10 だけ
変化するとすれば、ΔλT10 は次式(10)のように表
せる。好ましくは、ΔλT10 =b10と等しくするのが良
い。 ΔλT10 /λ0 =α・(Δn/δn) …(10) 但し、δnはフィルタ部10のアーム24、26間に光
路長差発生部30により構造的に与えられた等価屈折率
差を表す。またフィルタ部10の分岐16、18及びア
ーム24、26の光路長差発生部30を除く部分の屈折
率は電気的に変化させていない状態で屈折率nに等しい
ものとする。
When the difference in optical path length is given in advance between the arms 24 and 26 of the filter section 10 by structurally providing the difference in optical path length, the equivalent index of refraction of the arm 24 in the filter section 10 is electrically changed. when electrically varied from the equivalent refractive index n + [Delta] n in the state of changing to a maximum of the equivalent refractive index n in the absence, if the peak position of the transmission band a 10 is changed by [Delta] [lambda] T10, [Delta] [lambda] T10 is next It can be expressed as in Expression (10). It is preferable to make Δλ T10 = b 10 . Δλ T10 / λ 0 = α · (Δn / δn) (10) However, δn represents the equivalent refractive index difference structurally given by the optical path length difference generating unit 30 between the arms 24 and 26 of the filter unit 10. . Further, the refractive index of the portions of the filter unit 10 excluding the optical path length difference generating unit 30 of the branches 16 and 18 and the arms 24 and 26 is equal to the refractive index n in a state where it is not electrically changed.

【0041】この場合、フィルタ部10の透過帯域a10
半値幅ΔλW10 は次式(11)のように表せる。 ΔλW10 /λ=λ/(2・Lomax10・δn) …(11) 但し、Lomax10は最大の光路長差を表し、Lomax10=2
j-1 ・lo10 である。
In this case, the transmission band a 10 of the filter unit 10
The full width at half maximum Δλ W10 can be expressed by the following equation (11). Δλ W10 / λ = λ / (2 · L omax10 · δn ) (11) where L omax10 represents the maximum optical path length difference, and L omax10 = 2
It is j-1 · 10 .

【0042】同様にして、フィルタ部12のアーム42
の等価屈折率を電気的に変化させていない状態での等価
屈折率nから電気的に最大に変化させた状態での等価屈
折率n+Δnまで変化させたとき、透過帯域a12のピー
ク位置がΔλT12 だけ変化するとすれば、ΔλT12 は次
式(12)のように表せる。好ましくは、ΔλT12 =b
12とするのが良い。 ΔλT12 /λ0 =β・(Δn/δn) …(12) 但し、δn12はフィルタ部10のアーム42、46間に
光路長差発生部50により構造的に与えられた等価屈折
率差を表す。またフィルタ部12の分岐36、38及び
アーム42、46の光路長差発生部50を除く部分の屈
折率は電気的に変化させていない状態で屈折率n12に等
しいものとする。
Similarly, the arm 42 of the filter unit 12 is
When the equivalent refractive index n is changed from the equivalent refractive index n in the state where it is not electrically changed to the equivalent refractive index n + Δn in the state where it is changed to the maximum electrically, the peak position of the transmission band a 12 is Δλ. If only T12 changes, Δλ T12 can be expressed by the following equation (12). Preferably Δλ T12 = b
12 is good. Δλ T12 / λ 0 = β · (Δn / δn) (12) where δn 12 is an equivalent refractive index difference structurally provided by the optical path length difference generating unit 50 between the arms 42 and 46 of the filter unit 10. Represent Further, the refractive index of the portions of the filter unit 12 excluding the optical path length difference generating unit 50 of the branches 36 and 38 and the arms 42 and 46 is equal to the refractive index n 12 in a state where it is not electrically changed.

【0043】この場合、フィルタ部12の透過帯域a12
半値幅ΔλW12 は次式(13)のように表せる。 ΔλW12 /λ=λ/(2・Lomax12・δn) …(13) 但し、Lomax12は最大の光路長差を表し、Lomax12=2
k-1 ・lo12 である。
In this case, the transmission band a 12 of the filter unit 12
The full width at half maximum Δλ W12 can be expressed by the following equation (13). Δλ W12 / λ = λ / (2 · L omax12 · δn ) (13) where L omax12 represents the maximum optical path length difference, and L omax12 = 2
k-1 · l o12 .

【0044】またフィルタ部10のアーム24、26間
にこれらアーム24、26の幾何学的長さを異ならせて
光路長差を与えた場合に、フィルタ部10のアーム24
の等価屈折率をnからn+Δnまで変化させたときのΔ
λT10 は次式(14)のように表せる。 ΔλT10 /λ0 =α・(Δn/n) …(14) 但し、フィルタ部10の分岐16、18及びアーム2
4、26の屈折率は電気的に変化させていない状態で屈
折率nに等しいものとする。
When the geometrical lengths of the arms 24 and 26 of the filter section 10 are made different to give a difference in optical path length, the arm 24 of the filter section 10 is made.
Δ when the equivalent refractive index of is changed from n to n + Δn
λ T10 can be expressed by the following equation (14). Δλ T10 / λ 0 = α · (Δn / n) (14) However, the branches 16 and 18 of the filter unit 10 and the arm 2
The refractive indices of 4 and 26 are equal to the refractive index n in a state where they are not electrically changed.

【0045】この場合、フィルタ部10の透過帯域a10
半値幅ΔλW10 は次式(15)のように表せる。 ΔλW10 /λ=λ/(2・Lomax10・n) …(15) 同様にして、フィルタ部12のアーム42、46間にこ
れらアーム42、46の幾何学的長さを異ならせて光路
長差を与えた場合に、フィルタ部12のアーム42の等
価屈折率をnからn+Δnまで変化させたときのΔλ
T12 は次式(16)のように表せる。 ΔλT12 /λ0 =β・(Δn/n) …(16) 但し、フィルタ部12の分岐36、38及びアーム4
2、46の屈折率は電気的に変化させていない状態で屈
折率nに等しいものとする。
In this case, the transmission band a 10 of the filter unit 10
The full width at half maximum Δλ W10 can be expressed by the following equation (15). Δλ W10 / λ = λ / (2 · L omax10 · n) (15) Similarly, the geometric lengths of the arms 42 and 46 of the filter unit 12 are made different, and the optical path length is changed. When the difference is given, Δλ when the equivalent refractive index of the arm 42 of the filter unit 12 is changed from n to n + Δn
T12 can be expressed by the following equation (16). Δλ T12 / λ 0 = β · (Δn / n) (16) However, the branches 36 and 38 of the filter unit 12 and the arm 4
The refractive indices of 2 and 46 are equal to the refractive index n in a state where they are not electrically changed.

【0046】この場合、フィルタ部12の透過帯域a12
半値幅ΔλW12 は次式(17)のように表せる。 ΔλW12 /λ=λ/(2・Lomax12・n) …(17) この実施例の可変波長光フィルタの透過帯域Aの半値幅
は、波長間隔b10、b12の最小公倍数をb12とすれば、
(11)式或は(15)式で表されるΔλW10/λ0
等しく、チューニング幅(透過帯域Aのピーク位置の最
大移動幅)は(12)式或は(16)式で表されるΔλ
T12 /λ0 に等しく、さらにチャネル数はΔλT12 /Δ
λW10 =β・(2・Δn・Lomax10)/λに等しくな
る。この実施例によれば、チャネル数を従来のβ倍とす
ることができる。フィルタ部12の電極長の最大値をフ
ィルタ部10のLomax10と等しくするとき、β=L
omax10/Lomax12となる。
In this case, the transmission band a 12 of the filter unit 12
The full width at half maximum Δλ W12 can be expressed by the following equation (17). Half-width of Δλ W12 / λ = λ / ( 2 · L omax12 · n) ... (17) transmission band A of the variable wavelength optical filter of this embodiment, the least common multiple of the wavelength interval b 10, b 12 and b 12 if,
It is equal to Δλ W10 / λ 0 expressed by the equation (11) or the equation (15), and the tuning width (the maximum movement width of the peak position of the transmission band A) is expressed by the equation (12) or the equation (16). Δλ
Equal to T12 / λ 0 , and the number of channels is Δλ T12 / Δ
λ W10 = β · (2 · Δn · Lomax10 ) / λ. According to this embodiment, the number of channels can be increased by β times that of the conventional one. When the maximum value of the electrode length of the filter unit 12 is made equal to L omax10 of the filter unit 10, β = L
It becomes omax10 / L omax12 .

【0047】この発明は、上述した実施例にのみ限定さ
れるものではなく従って各構成成分の形状、寸法、配設
位置、数値的条件及びそのほかを任意好適に変更でき
る。
The present invention is not limited to the above-mentioned embodiments, and therefore, the shape, size, arrangement position, numerical conditions and the like of each component can be arbitrarily changed.

【0048】[0048]

【発明の効果】上述した説明からも明らかなように、こ
の発明の可変波長光フィルタによれば、光透過帯域幅特
に半値幅の広いフィルタ部と狭いフィルタ部とを形成で
きるので、各フィルタ部の光透過帯域aのピーク位置が
分離したい光の波長から多少ずれてもこの発明の波長可
変光フィルタから出力される光の出力強度の低下を少な
くできる。従って透過帯域aのピーク位置の調整精度を
緩やかにしてフィルタのチューニングを行ない易くする
ことができる。
As is apparent from the above description, according to the tunable wavelength optical filter of the present invention, it is possible to form a filter portion having a wide light transmission band width, particularly a half value width, and a narrow filter portion. Even if the peak position of the light transmission band a is slightly deviated from the wavelength of the light to be separated, the decrease in the output intensity of the light output from the wavelength tunable optical filter of the present invention can be suppressed. Therefore, the adjustment accuracy of the peak position of the transmission band a can be moderated to facilitate the tuning of the filter.

【0049】またこの発明の可変波長光フィルタの透過
帯域Aは各フィルタ部の透過帯域aが一致する範囲であ
るので、透過帯域Aを狭くできる。しかもこの発明の可
変波長光フィルタの透過帯域Aのピーク位置の波長間隔
Bは各フィルタ部の透過帯域aのピーク位置の波長間隔
bの最小公倍数となるので、波長間隔Bを広くすること
ができる。
Further, the transmission band A of the variable wavelength optical filter of the present invention is a range in which the transmission bands a of the respective filter parts coincide with each other, so that the transmission band A can be narrowed. Moreover, since the wavelength interval B between the peak positions of the transmission band A of the variable wavelength optical filter of the present invention is the least common multiple of the wavelength interval b between the peak positions of the transmission band a of each filter section, the wavelength interval B can be widened. .

【0050】従ってこの発明によれば、1チャネル当り
の透過帯域が狭くてチューニング幅が広くしかもチュー
ニングの行ない易い可変波長光フィルタを提供できる。
Therefore, according to the present invention, it is possible to provide a variable wavelength optical filter having a narrow transmission band per channel, a wide tuning width, and easy tuning.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の構成を概略的に示す平面図
である。
FIG. 1 is a plan view schematically showing the configuration of an embodiment of the present invention.

【図2】(A)〜(C)は実施例の原理的な動作の説明
に供する図である。
2A to 2C are diagrams for explaining the principle operation of the embodiment.

【符号の説明】[Explanation of symbols]

10、12:フィルタ部 14、34:マッハツェンダー型の干渉器 16、32:1×2Y分岐 18、38:2×1Y分岐 20、22、40、44:接続導波路 24、26、42、46:アーム 28、40:電極 30、50:光路長差発生部 10, 12: Filter unit 14, 34: Mach-Zehnder type interferometer 16, 32: 1 × 2Y branch 18, 38: 2 × 1Y branch 20, 22, 40, 44: Connection waveguide 24, 26, 42, 46 : Arm 28, 40: Electrode 30, 50: Optical path length difference generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多段接続した複数のフィルタ部を備え、 各フィルタ部は、複数のマッハツェンダー型の干渉器を
多段接続して成り、 各干渉器は、1×2Y分岐の出力及び2×1Y分岐の入
力を接続導波路を介し結合して構成した2本のアーム
と、2本のアームの一方に設けられ当該アームの屈折率
を可変制御する電極と、2本のアームの他方に設けられ
これら2本のアーム間に構造的光路長差を与える光路長
差発生部とを有し、 同一のフィルタ部に属する各干渉器の電極長Le を、公
比2の等比数列を形成するように異ならせ、 同一のフィルタ部に属する各干渉器の構造的光路長差L
o を、電極長Le の短い順に公比2の等比数列を形成す
るように異ならせ、 同一のフィルタ部に属する各干渉器の(電極長Le )/
(構造的光路長差Lo)で表される比を等しくし、か
つ、当該比を、各フィルタ部毎に異ならせて成ることを
特徴とする可変波長光フィルタ。
1. A plurality of filter sections connected in multiple stages, each filter section being formed by connecting a plurality of Mach-Zehnder interferors in multiple stages, each interferometer comprising a 1 × 2Y branch output and a 2 × 1Y branch. Two arms formed by coupling branch inputs through a connection waveguide, an electrode provided on one of the two arms to variably control the refractive index of the arm, and provided on the other of the two arms An optical path length difference generating section that gives a structural optical path length difference between these two arms is formed, and the electrode lengths L e of the interferometers belonging to the same filter section form a geometric progression of a common ratio of 2. And the structural optical path length difference L of each interferometer belonging to the same filter unit.
The o, electrode length ascending order of L e varied so as to form a geometric progression of Oyakehi 2, each interferometer that belong to the same filter unit (electrode length L e) /
A variable wavelength optical filter characterized in that a ratio represented by (structural optical path length difference L o ) is made equal and the ratio is made different for each filter section.
JP18713892A 1992-07-14 1992-07-14 Variable wavelength optical filter Withdrawn JPH0635007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18713892A JPH0635007A (en) 1992-07-14 1992-07-14 Variable wavelength optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18713892A JPH0635007A (en) 1992-07-14 1992-07-14 Variable wavelength optical filter

Publications (1)

Publication Number Publication Date
JPH0635007A true JPH0635007A (en) 1994-02-10

Family

ID=16200794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18713892A Withdrawn JPH0635007A (en) 1992-07-14 1992-07-14 Variable wavelength optical filter

Country Status (1)

Country Link
JP (1) JPH0635007A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001626A1 (en) * 1986-08-26 1988-03-10 Mitsui Petrochemical Industries, Ltd. CATALYST FOR POLYMERIZING alpha-OLEFIN AND POLYMERIZATION PROCESS
WO1988002378A1 (en) * 1986-09-24 1988-04-07 Mitsui Petrochemical Industries, Ltd. Process for polymerizing olefin
WO1988005057A1 (en) * 1986-12-27 1988-07-14 Mitsui Petrochemical Industries, Ltd. Catalyst for olefin polymerization and process for its preparation
JP2010091737A (en) * 2008-10-07 2010-04-22 Oki Electric Ind Co Ltd Optical resonator and tunable laser
CN103399378A (en) * 2013-08-05 2013-11-20 东南大学 Cascaded Mach-Zehnder interferometer based reconfigurable comb filter and preparation method thereof
CN113054528A (en) * 2019-12-28 2021-06-29 华为技术有限公司 Laser chip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001626A1 (en) * 1986-08-26 1988-03-10 Mitsui Petrochemical Industries, Ltd. CATALYST FOR POLYMERIZING alpha-OLEFIN AND POLYMERIZATION PROCESS
WO1988002378A1 (en) * 1986-09-24 1988-04-07 Mitsui Petrochemical Industries, Ltd. Process for polymerizing olefin
WO1988005057A1 (en) * 1986-12-27 1988-07-14 Mitsui Petrochemical Industries, Ltd. Catalyst for olefin polymerization and process for its preparation
JP2010091737A (en) * 2008-10-07 2010-04-22 Oki Electric Ind Co Ltd Optical resonator and tunable laser
CN103399378A (en) * 2013-08-05 2013-11-20 东南大学 Cascaded Mach-Zehnder interferometer based reconfigurable comb filter and preparation method thereof
CN113054528A (en) * 2019-12-28 2021-06-29 华为技术有限公司 Laser chip

Similar Documents

Publication Publication Date Title
US5379318A (en) Alternating grating tunable DBR laser
Arianfard et al. Three waveguide coupled sagnac loop reflectors for advanced spectral engineering
US4896948A (en) Simplified double-cavity tunable optical filter using voltage-dependent refractive index
US4146297A (en) Tunable optical waveguide directional coupler filter
EP0602839A1 (en) Asymmetric Y-branch optical device
JP5458194B2 (en) Semiconductor tunable laser
CN101022206A (en) Tunable semiconductor laser
CN101593931B (en) Semiconductor laser with wavelength capable of tuning without mode skip
WO2016082541A1 (en) Wide-range tunable laser and tuning method thereof
CN101800397B (en) Semiconductor laser using semi-wave coupled ring resonator to achieve mode selection
JPH0635007A (en) Variable wavelength optical filter
CN110044484B (en) Cascaded dual-ring enhanced Fourier transform spectrometer
JP3003205B2 (en) Tunable filter
CN201038595Y (en) Tunable semiconductor laser
JPH08234149A (en) Optical filter using electron - optical material
JPH07501628A (en) Integrated tunable wavelength optical filter
CN113484949A (en) Integrated optical uploading and downloading filter structure with ultra-large free spectral range
JP2731307B2 (en) Wavelength selection element
Porzi et al. High-performance silicon photonics optical filters with high-order distributed feedback resonators
JP5735364B2 (en) Semiconductor tunable filter and semiconductor tunable laser
JPH0545680A (en) Light wavelength filter element and light wavelength filter device
JPH0643410A (en) Optical wavelength filter device
WO2007107186A1 (en) Integrated laser optical source
JP2690637B2 (en) Tunable optical filter
CN110221458B (en) Micro-ring electro-optical switch array device with wavelength conversion characteristic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005