JPH0545617B2 - - Google Patents

Info

Publication number
JPH0545617B2
JPH0545617B2 JP87248297A JP24829787A JPH0545617B2 JP H0545617 B2 JPH0545617 B2 JP H0545617B2 JP 87248297 A JP87248297 A JP 87248297A JP 24829787 A JP24829787 A JP 24829787A JP H0545617 B2 JPH0545617 B2 JP H0545617B2
Authority
JP
Japan
Prior art keywords
microporous
molded product
formula
porosity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP87248297A
Other languages
Japanese (ja)
Other versions
JPS63225636A (en
Inventor
Shiro Imai
Toshio Tsubota
Masao Umezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPS63225636A publication Critical patent/JPS63225636A/en
Publication of JPH0545617B2 publication Critical patent/JPH0545617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱性、耐薬品性に格段に優れた、
ポリフエニレンスルホン微多孔成形物に関するも
のである。 〔従来の技術〕 従来から、微多孔フイルムや微多孔膜等の微多
孔成形物は、海水の淡水化、電子工業用等の純水
製造、また製紙工業・パルプ工場の汚水処理、電
解塗装液の回収、油・水エマルシヨンの分離とい
つた工業用水の回収或いは廃液処理等の公害関
連、或いは血漿分離を目的とした人工腎臓等をは
じめとする医療関連瀘過材として、更には各種電
池のセパレーター等多方面に展開されている。 近年、かかる微多孔成形物を用いた膜分離処理
が広がるにつれ、より高温で、しかも広範囲なPH
領域に於いても優れた機械的強度を有する微多孔
成形物の要求が高まりつつある。 かかる要求に対し、フツ素原子を含有するフツ
素樹脂、例えばポリテトラフルオロエチレンやポ
リフツ化ビニリデン等が、極めて優れた耐薬品
性、耐熱性、耐候性等を有することから、かかる
樹脂を用いた微多孔成形物の提案がなされてい
る。しかし、かかる樹脂からなる微多孔成形物
は、耐熱性が高く、または機械的強度が小さく、
極めて優れた諸特性を有しながら用途によつて
は、その展開範囲が著しく制限されるという欠点
があつた。 従つて、充分な機械的強度を有し、耐熱、耐薬
品性に優れた微多孔成形物を得るため、下記に示
す(),(),()式で表される芳香族ポリス
ルホン、 等の主鎖にエーテル結合を有する構造単位からな
る重合体を用いた各種分離膜が提案されている
(特開昭54−14376号公報、特開昭61−30803号公
報等)。 しかし、かかる主鎖にエーテル結合を有する、
所謂ポリエーテルスルホンは、一般に融点を持た
ないため、アミド系有機溶媒等に溶解して、湿式
法により分離膜等に成形されていた。このため、
当然のことながら、かかるアミド系有機溶剤に対
しては溶解し、かかる有機溶剤使用下での適用は
出来ないという欠点があつた。 また、ポリスルホンとして、ポリパラフエニレ
ンスルホン
[Industrial Field of Application] The present invention is directed to
This invention relates to a polyphenylene sulfone microporous molded product. [Prior art] Microporous molded products such as microporous films and microporous membranes have traditionally been used in seawater desalination, pure water production for the electronics industry, sewage treatment in the paper industry and pulp mills, and electrolytic coating solutions. It can be used for pollution-related purposes such as industrial water recovery and waste liquid treatment such as oil and water emulsion separation, and medical-related filtration materials such as artificial kidneys for plasma separation, as well as for various batteries. It is being used in many different fields such as separators. In recent years, as membrane separation processing using such microporous molded products has spread,
Demand for microporous molded products having excellent mechanical strength is increasing in this field as well. In response to these demands, fluororesins containing fluorine atoms, such as polytetrafluoroethylene and polyvinylidene fluoride, have extremely excellent chemical resistance, heat resistance, weather resistance, etc. Microporous molded products have been proposed. However, microporous molded products made of such resins have high heat resistance or low mechanical strength.
Although it has extremely excellent properties, it has the disadvantage that its range of application is severely limited depending on the application. Therefore, in order to obtain a microporous molded product having sufficient mechanical strength and excellent heat resistance and chemical resistance, aromatic polysulfones represented by the following formulas (), (), (), Various separation membranes using polymers consisting of structural units having ether bonds in their main chains have been proposed (Japanese Patent Application Laid-open Nos. 14376-1982, 30803-1980, etc.). However, having an ether bond in such a main chain,
Since so-called polyether sulfone generally does not have a melting point, it has been dissolved in an amide-based organic solvent or the like and formed into a separation membrane or the like by a wet method. For this reason,
Naturally, it has the disadvantage that it dissolves in such amide-based organic solvents and cannot be applied in such organic solvents. Polyparaphenylene sulfone is also used as polysulfone.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、かかるポリフエニレンスルホ
ン重合体が本来有する極めて優れた耐熱性を損な
うことなく、充分な機械的強度を有し、かつ濃硫
酸や濃硝酸に対しても極めて優れた耐薬品性を有
する新規なポリフエニレンスルホン微多孔成形物
を提供することにある。 〔問題点を解決するための手段〕 本発明者らは、かかる本発明の目的を達成する
ため鋭意検討した結果、本発明に到達したもので
あり、その結果は、耐熱性はもとより、耐薬品性
までもが、格段に向上した微多孔成形物が得られ
ることを見出し本発明に至つた。 即ち、本発明は、次の構成を有する。 (1) 一般式()
The purpose of the present invention is to have sufficient mechanical strength without impairing the extremely excellent heat resistance inherent to such a polyphenylene sulfone polymer, and to have extremely excellent chemical resistance against concentrated sulfuric acid and concentrated nitric acid. The object of the present invention is to provide a novel microporous polyphenylene sulfone molded product having properties. [Means for Solving the Problems] The present inventors have arrived at the present invention as a result of intensive studies to achieve the object of the present invention, and the results have shown that not only heat resistance but also chemical resistance has been achieved. The present inventors have discovered that a microporous molded product with significantly improved properties can be obtained, leading to the present invention. That is, the present invention has the following configuration. (1) General formula ()

【式】(ここ で、X=0または1、または2)で示される構
造単位から主として成り、かつ該構造単位中に
占める。
It mainly consists of a structural unit represented by the formula (where X=0, 1, or 2) and occupies the structural unit.

【式】の構造単位比率が0,3 以上の樹脂から形成され、かつ、空孔率が10〜
90%の実質的に連続した微多孔を有し、比表面
積が0.4m2/g以上であることを特徴とするポ
リフエニレンスルホン微多孔成形物。 (2)
Formed from a resin with a structural unit ratio of [Formula] of 0.3 or more, and a porosity of 10 to 10.
A polyphenylene sulfone microporous molded article having 90% substantially continuous micropores and a specific surface area of 0.4 m 2 /g or more. (2)

【式】構造単位比率が0.5以上 である特許請求の範囲第1項に記載のポリフエ
ニレンスルホン微多孔成形物。 以下、本発明を詳細に説明する。 本発明のポリフエニレンスルホン(以下PPSO
と略称する)微多孔成形物とは、一般式()
[Formula] The polyphenylene sulfone microporous molded product according to claim 1, wherein the structural unit ratio is 0.5 or more. The present invention will be explained in detail below. Polyphenylene sulfone (hereinafter referred to as PPSO) of the present invention
A microporous molded product has the general formula ()

【式】(ここで、X=0または 1、または2)で示される構造単位から主として
成り、かつ該構造単位中に占める
[Formula] (where X = 0, 1, or 2) consists mainly of the structural unit and occupies the structural unit

【式】の構造単位比率が0.3以上で 構成されたPPSO連鎖から主として形成された微
多孔成形物をいう。 かかる
Refers to a microporous molded product mainly formed from PPSO chains with a structural unit ratio of 0.3 or more. It takes

【式】の構造単位比率 (以下、PPSO化率と略称する)が0.3未満では、
格段に優れた耐熱性は得られない。PPSO化率は
少なくとも0.3以上、好ましくは0.5以上、より好
ましくは0.7以上、特に好ましくは0.8以上が望ま
しい。 また、ここでの構造単位中での、
If the structural unit ratio of [Formula] (hereinafter abbreviated as PPSO ratio) is less than 0.3,
Exceptionally excellent heat resistance cannot be obtained. The PPSO conversion rate is preferably at least 0.3, preferably 0.5 or more, more preferably 0.7 or more, particularly preferably 0.8 or more. Also, in the structural unit here,

【式】A/[Formula] A/

【式】 B比は1.0以上が好ましく、より好ましくは2.0以
上が望ましい。3以上であれば特に好ましい。特
に、PPSO化率0.9以上で、かつA/B≧3の略全
ポリスルホン化品は、超耐熱性が得られるので、
特に好ましい。 ここで、かかる構成による主鎖は、酸素原子等
によつて主鎖同志が一部結合され、所謂三次元構
造を形成していても構わない。 また、一般式()で示した前記構造単位式で
のベンゼン環とイオウ原子との結合は、パラ結合
でも、又はメタ結合いずれにあつてもよいが、高
い結晶性の得られるパラ結合がより好ましい。 また、前記一般式()でのベンゼン環に水酸
基、酸素原子等が一部付加していてもよい。 また、本発明でいう主成分とは、前記一般式
()を少なくとも90モル%以上含有しているこ
とを意味する。かかる主成分が90モル%未満であ
ると、得られるポリマーの結晶性が低下したり、
転移温度の低下等、優れた耐熱性、耐薬品性を有
する本発明の微多孔成形物は得られ難い。 さて、本発明のPPSO微多孔成形物は、空孔率
が10〜90%の、実質的に連続した微多孔を有し、
比表面積が0.4m2/g以上の微多孔成形物からな
る。 かかる微多孔の孔径については、かかる微多孔
成形物の使用目的によつて異なるが、例えば
0.001〜0.05μの限外濾過膜の領域としては、製紙
工場、パルプ工場の汚水処理用の濾過膜として、
或いは大豆油等の食用油製造に用いる耐油性膜と
して、また、0.01〜5μの精密濾過膜の領域として
は、血漿分離や各種電池のセパレーターとして、
更には濃硫酸、濃硝酸等の精製フイルターとして
用いることが出来る。また、5μ以上のやや大き
な孔径に於いては、耐熱性保温材として用いるこ
とが出来、かかる孔径は、使用目的によつて任意
に選択出来、特に限定はない。また実質的に連続
した微多孔とは、全ての微多孔が連続している必
要はなく、該成形物が少なくとも1×104c.c./
cm2/secの通気性を有することを意味する。 一方空孔率については、10〜90%の範囲であ
る。かかる空孔率が10%未満では、濾過面積が少
なく、圧損が大きくなりすぎる。逆に90%を越え
ると、機械的強度が小さくなり用途が限られたも
のになつてしまう。また、比表面積は、0.4m2
g以上が必要であり、より好ましくは1.5m2/g
以上が望ましい。比表面積が0.4m2/g未満では、
濾過面積が少なく、すぐに目詰まりが生じ、長時
間の使用に耐えない。ここで、比表面積とは、微
多孔成形物1g当たりの有する該成形物の表面積
を意味し、所謂BET(Brunauer−Emmet−
Teller)法で測定することが出来る。 また、空孔率は、該微多孔成形物の見掛け密度
と真密度から、空孔率=(1−見掛け密度/真密
度)×100(%)で求めることが出来る。 本発明に言う微多孔成形物は、フイルム様の平
膜状、チユーブ状管状体、或いは不織布熱圧着
体、スポンジ状、粒状等の形態を包含するもので
あり、かかる微多孔成形物の形状は使用目的によ
り任意に選択出来、これらに限定されるものでは
ない。 次ぎに、本発明のPPSO微多孔成形物の一例の
具体的な製造法について、以下に説明する。 例えば本発明のPPSO微多孔成形物は、ポリフ
エニレンスルフイドから成る微多孔成形物を有機
過酸を用いて酸化することにより得ることが出来
る。 ます、はじめにポリフエニレンスルフイドを製
造する方法として、例えば、かかるポリフエニレ
ンスルフイドの特に好ましい適用例として、PPS
を製造する方法は、硫化アルカリとパラジハロゲ
ン化ベンゼンを極性有機溶媒中で高温・高圧下に
反応させることである。特に、硫化ナトリウムと
パラジクロルベンゼンを、N−メチル−ピロリド
ン等のアミド系高沸点極性溶媒中で反応させるの
が好ましい。 次いで、かかるポリフエニレンスルフイドを用
いて、空孔率が10〜90%の、実質的に連続した微
多孔を有し、比表面積が0.4m2/g以上の微多孔
成形物を形成する。かかる微多孔成形物の製造法
については、湿式(或いは乾湿式)凝固法、他成
分溶出法、フイルム延伸法、溶媒蒸発法、不織布
熱圧着法等が適用出来るが、これらの方法に限定
されるものではない。 しかる後、こうして得られたポリフエニレンス
ルフイド微多孔成形物を後述の有機過酸で処理す
ることにより、該成形物の構造単位である
[Formula] The B ratio is preferably 1.0 or more, more preferably 2.0 or more. It is particularly preferable if it is 3 or more. In particular, almost fully polysulfonated products with a PPSO conversion ratio of 0.9 or more and A/B≧3 have super heat resistance, so
Particularly preferred. Here, the main chains having such a structure may be partially bonded to each other by oxygen atoms or the like to form a so-called three-dimensional structure. In addition, the bond between the benzene ring and the sulfur atom in the structural unit formula shown in general formula () may be either a para bond or a meta bond, but a para bond is preferable because it provides high crystallinity. preferable. Moreover, a hydroxyl group, an oxygen atom, etc. may be partially added to the benzene ring in the general formula (). Moreover, the main component as used in the present invention means containing at least 90 mol% or more of the general formula (). If the main component is less than 90 mol%, the crystallinity of the obtained polymer may decrease,
It is difficult to obtain the microporous molded product of the present invention having excellent heat resistance and chemical resistance such as a lower transition temperature. Now, the PPSO microporous molded product of the present invention has substantially continuous micropores with a porosity of 10 to 90%,
It consists of a microporous molded product with a specific surface area of 0.4 m 2 /g or more. The pore diameter of such microporous material varies depending on the purpose of use of such microporous molded product, but for example,
In the range of 0.001 to 0.05μ ultrafiltration membranes, filtration membranes for sewage treatment in paper mills and pulp mills are used.
Alternatively, it can be used as an oil-resistant membrane used in the production of edible oils such as soybean oil, or as a precision filtration membrane of 0.01 to 5μ for plasma separation or as a separator for various batteries.
Furthermore, it can be used as a purification filter for concentrated sulfuric acid, concentrated nitric acid, etc. In addition, a material having a rather large pore diameter of 5 μm or more can be used as a heat-resistant heat insulating material, and such pore diameter can be arbitrarily selected depending on the purpose of use and is not particularly limited. In addition, "substantially continuous micropores" does not necessarily mean that all the micropores are continuous, and the molded product has at least 1×10 4 cc/
This means that it has air permeability of cm 2 /sec. On the other hand, the porosity is in the range of 10 to 90%. If the porosity is less than 10%, the filtration area will be small and the pressure loss will be too large. On the other hand, if it exceeds 90%, the mechanical strength will be low and the applications will be limited. Also, the specific surface area is 0.4m 2 /
g or more is required, more preferably 1.5m 2 /g
The above is desirable. When the specific surface area is less than 0.4 m 2 /g,
The filtration area is small, and clogging occurs quickly, making it difficult to withstand long-term use. Here, the specific surface area means the surface area of the microporous molded material per gram of microporous molded material, and is referred to as the so-called BET (Brunauer-Emmet-
It can be measured using the Teller method. Further, the porosity can be determined from the apparent density and true density of the microporous molded product as follows: porosity = (1-apparent density/true density) x 100 (%). The microporous molded product referred to in the present invention includes forms such as a film-like flat membrane, a tube-like tubular body, a nonwoven fabric thermocompressed body, a sponge shape, and a granular shape, and the shape of such a microporous molded product is It can be arbitrarily selected depending on the purpose of use, and is not limited to these. Next, a specific method for producing an example of the PPSO microporous molded product of the present invention will be described below. For example, the PPSO microporous molded product of the present invention can be obtained by oxidizing a microporous molded product made of polyphenylene sulfide using an organic peracid. First, as a method for producing polyphenylene sulfide, for example, as a particularly preferred application example of such polyphenylene sulfide, PPS
The method for producing it is to react an alkali sulfide and a paradihalogenated benzene in a polar organic solvent at high temperature and pressure. In particular, it is preferable to react sodium sulfide and paradichlorobenzene in an amide-based high-boiling polar solvent such as N-methyl-pyrrolidone. Next, using such polyphenylene sulfide, a microporous molded product having substantially continuous micropores with a porosity of 10 to 90% and a specific surface area of 0.4 m 2 /g or more is formed. . As for the manufacturing method of such a microporous molded product, wet (or dry-wet) coagulation method, other component elution method, film stretching method, solvent evaporation method, nonwoven fabric thermocompression bonding method, etc. can be applied, but the method is limited to these methods. It's not a thing. Thereafter, the polyphenylene sulfide microporous molded product obtained in this way is treated with an organic peracid as described below to form a structural unit of the molded product.

【式】を、少なくとも30モル%以上[Formula], at least 30 mol% or more

〔実施例〕〔Example〕

実施例 1 東レ・フイルツプスペトローリアム社製の300
℃に於ける見掛け粘度4000ポイズ、Tg90℃、
Tm280℃を有するPPS微粉末50重量部と、トリ
メリツト酸共重合ポリエチレンテレフタレート微
粉末50重量部をエクストリーダーに供給し、310
℃で混合溶解し、長さ200mm、間隙1.0mmの直線状
リツプを有するTダイから押出、幅150、厚さ
400μの未延伸シートを得た。かかるシートをフ
イルムストレツチヤーを用いて95℃で縦、横各々
3.0倍に同時2軸延伸し、続いて熱風オーブンを
用いて220℃で1分間定張熱処理して、厚さ40μ
のフイルム状試料を得た。 次いで、30%水酸化ナトリウムを用いて、トリ
メリツト酸共重合ポリエチレンテレフタレートを
分解除去し、空孔率50%、比表面積22m2/gの微
多孔フイルムを得た。 しかる後、かかる微多孔フイルムを市販の過酢
酸溶液(酢酸中9%濃度品)中に室温(30℃)で
3時間処理した後、水洗、中和、水洗の各処理を
施し乾燥した。 得られた微多孔フイルムをNMR及びESCA
(Electron Spectroscopyfor Chemical
Analysis)により分析したところ、該微多孔フ
イルムを形成するポリマーの構造単位は、
Example 1 300 manufactured by Toray Phillips Petroleum Co., Ltd.
Apparent viscosity at ℃ 4000 poise, Tg 90℃,
50 parts by weight of PPS fine powder having a Tm of 280°C and 50 parts by weight of trimellitic acid copolymerized polyethylene terephthalate fine powder were supplied to the Extreader.
Mixed and melted at ℃, extruded from a T-die with a linear lip of length 200 mm and gap of 1.0 mm, width 150 mm, thickness
A 400μ unstretched sheet was obtained. Stretch the sheet vertically and horizontally at 95℃ using a film stretcher.
Simultaneous biaxial stretching to 3.0 times, followed by constant tension heat treatment at 220°C for 1 minute using a hot air oven, resulting in a thickness of 40μ.
A film sample was obtained. Next, the trimellitic acid copolymerized polyethylene terephthalate was decomposed and removed using 30% sodium hydroxide to obtain a microporous film having a porosity of 50% and a specific surface area of 22 m 2 /g. Thereafter, the microporous film was treated in a commercially available peracetic acid solution (9% concentration product in acetic acid) at room temperature (30°C) for 3 hours, followed by washing, neutralization, and washing with water, and then drying. The obtained microporous film was subjected to NMR and ESCA.
(Electron Spectroscopy for Chemical
Analysis), the structural unit of the polymer forming the microporous film was

【式】Aが78モル%、[Formula] A is 78 mol%,

【式】Bが12モル%、[Formula] B is 12 mol%,

【式】が10モルであつた。すなわ ち、PPSO化率が0.78の微多孔フイルムが得られ
た。また、本フイルムの空孔率は50%、比表面積
は17m2/gであり、通気性は1×104c.c./cm2/sec
以上である連続性の微多孔のフイルムであつた。 かかる微多孔のフイルムは、濃硝酸、濃硫酸、
濃塩酸の各強酸、30%のアンモニア水溶液、及
び、アミド系有機溶剤を含む各種有機溶剤に対し
ても何等形態変化は生ぜず、また300℃の高温下
に、破断強力の40%の荷重をぶら下げて24時間放
置しても、クリープ破壊も認められず、大幅な耐
熱性の向上も確認された。 実施例 2 東レ・フイリツプスペトローリアム社製の300
℃に於ける見掛け粘度4500ポイズのPPS樹脂20重
量部、N−メチル−2−ピロリドン53重量部、ジ
エチレングリコール27重量部を加圧下、245℃に
て溶解し、型膜溶解を作成した。 かかる溶液を0.5mmのスリツト状口金を用いて、
口金スリツト両面から水を流出させ水中に押出
し、凝固させ、空孔率25%、比表面積5m2/gの
微多孔膜を得た。 この微多孔膜を次に、9%過酢酸溶液中に室温
で1時間処理した後、水洗、中和、水洗の各処理
を施し乾燥した。得られた微多孔膜をESCAにて
分析したところ、PPSO化率は0.78であつた。ま
た、本微多孔膜の空孔率は25%、比表面積は4
m2/gであり、通気性は1×104c.c./cm2/sec以上
である連続性の微多孔の膜であつた。 かかる微多孔膜を300℃の高温空気中に1日放
置しておいたところ、殆ど着色も認められず、高
温処理後の強力保持率も85%と極めて高いもので
あつた。 実施例 3 実施例1と同様のPPS微粉末を用い、口金温度
310℃のスリツトダイから溶融押出を行い、幅150
mm、厚さ200μの未延伸フイルムを得た。該フイ
ルムを熱風オーブンを用いて240℃で2分間定張
熱処理を行つた後、フイルムストレツチヤーを用
いて、265℃の温度にて縦、横各々1.8倍に同時2
軸延伸して、空孔率30%、比表面積15m2/gの微
多孔フイルムを得た。 かかる微多孔フイルムを9%過酢酸で1時間処
理した後、水洗、中和、水洗の各処理を施し、乾
燥した。 得られた微多孔フイルムは、PPSO化率0.85の
ものであり、空孔率は30%、比表面積は12m2/g
であり、通気性は1×104c.c./cm2/sec以上である
連続性の微多孔フイルムであつた。1.42の69%高
濃度硝酸にも分解することなく、300℃24時間処
理後の強力保持率も90%と耐薬品性、耐熱性が格
段に向上していた。 比較例 1 実施例3で9%過酢酸処理に代え、10%次亜塩
素酸ソーダを用い、90℃で1時間処理した。得ら
れた多孔物の分析をESCAで行つたところ、主体
はPPS構造であり、PPSO化率は0.12であつた。
実施例3と同様の処理を施そうとしたところ、非
常に脆くなつており、かかる処理でぼろぼろにな
つてしまつた。すなわち、PPSO化率が低い微多
孔成形品であると、耐薬品性や耐熱性が低いこと
が判明した。 比較例 2 実施例2のPPSO化前のPPS微多孔フイルムを
200℃で4時間加熱処理して空気酸化により三次
元架橋させた。構造単位はほとんど、PPS構造か
らなるものであり、PPSO構造単位は見られなか
つた。かかる比較例2のものを実施例2と同様
300℃24時間処理したところ、フイルムが溶融し、
もはやフイルム形態を保持しないものであつた。
すなわち、一部主鎖が架橋していても、PPSO化
されていないと、耐薬品性や耐熱性が低いもので
あると判明した。 〔発明の効果〕 本発明のポリフエニレンスルホン微多孔成形物
は、高濃度の濃硫酸や濃硝酸に対しても劣化する
ことなく、耐熱性、耐薬品性において格段に優れ
ている。 このため、近年需要が高まりつつある濃硫酸、
濃硝酸等の精製フイルター、或いは脱硫、脱硝煙
ガス装置に於ける各種フイルター、電池セパレー
ターや電解塗装液の回収の如き、格段の耐熱性、
耐薬品性が要求される分野のフイルター、分離膜
等に好ましく適用することが出来る。
[Formula] was 10 moles. That is, a microporous film with a PPSO conversion ratio of 0.78 was obtained. In addition, the porosity of this film is 50%, the specific surface area is 17 m 2 /g, and the air permeability is 1 × 10 4 cc/cm 2 /sec.
It was a continuous microporous film as described above. Such a microporous film can be prepared using concentrated nitric acid, concentrated sulfuric acid,
No morphological change occurred when exposed to strong acids such as concentrated hydrochloric acid, 30% ammonia aqueous solution, and various organic solvents including amide-based organic solvents. Even after hanging for 24 hours, no creep failure was observed, and a significant improvement in heat resistance was confirmed. Example 2 300 manufactured by Toray-Philips Petroleum Co., Ltd.
20 parts by weight of PPS resin having an apparent viscosity of 4500 poise at 245°C, 53 parts by weight of N-methyl-2-pyrrolidone, and 27 parts by weight of diethylene glycol were melted under pressure at 245°C to prepare a molded film. Using a 0.5 mm slit-shaped nozzle, pour the solution into
Water was allowed to flow out from both sides of the mouthpiece slit, extruded into water, and solidified to obtain a microporous membrane with a porosity of 25% and a specific surface area of 5 m 2 /g. This microporous membrane was then treated in a 9% peracetic acid solution at room temperature for 1 hour, followed by washing with water, neutralization, washing with water, and drying. When the obtained microporous membrane was analyzed by ESCA, the PPSO conversion rate was 0.78. In addition, the porosity of this microporous membrane is 25%, and the specific surface area is 4.
m 2 /g, and the membrane had a continuous microporous membrane with air permeability of 1×10 4 cc/cm 2 /sec or more. When this microporous membrane was left in high-temperature air at 300°C for one day, almost no coloration was observed, and the strength retention rate after high-temperature treatment was extremely high at 85%. Example 3 Using the same PPS fine powder as in Example 1, the die temperature was
Melt extruded from a slit die at 310°C, with a width of 150 mm.
An unstretched film with a thickness of 200 μm and a thickness of 200 μm was obtained. The film was subjected to tension heat treatment for 2 minutes at 240°C using a hot air oven, and then simultaneously stretched 1.8 times both vertically and horizontally at 265°C using a film stretcher.
A microporous film with a porosity of 30% and a specific surface area of 15 m 2 /g was obtained by axial stretching. The microporous film was treated with 9% peracetic acid for 1 hour, then washed with water, neutralized, washed with water, and dried. The obtained microporous film has a PPSO conversion ratio of 0.85, a porosity of 30%, and a specific surface area of 12 m 2 /g.
It was a continuous microporous film with air permeability of 1×10 4 cc/cm 2 /sec or more. It did not decompose even in 69% high concentration nitric acid (1.42), and the strength retention rate was 90% after treatment at 300℃ for 24 hours, significantly improving chemical resistance and heat resistance. Comparative Example 1 In place of the 9% peracetic acid treatment in Example 3, 10% sodium hypochlorite was used and treatment was performed at 90°C for 1 hour. When the obtained porous material was analyzed by ESCA, it was found that it mainly had a PPS structure, and the PPSO conversion rate was 0.12.
When I tried to perform the same treatment as in Example 3, I found that it had become extremely brittle, and the treatment turned it into tatters. In other words, it was found that microporous molded products with a low PPSO conversion rate have low chemical resistance and heat resistance. Comparative Example 2 The PPS microporous film of Example 2 before being converted into PPSO was
Three-dimensional crosslinking was performed by heat treatment at 200°C for 4 hours and air oxidation. Most of the structural units were composed of PPS structure, and no PPSO structural unit was observed. Comparative Example 2 is the same as Example 2.
When treated at 300℃ for 24 hours, the film melted and
It no longer retained its film form.
In other words, it was found that even if the main chain is partially crosslinked, if it is not converted into PPSO, the chemical resistance and heat resistance are low. [Effects of the Invention] The polyphenylene sulfone microporous molded product of the present invention does not deteriorate even when exposed to highly concentrated concentrated sulfuric acid or concentrated nitric acid, and is extremely excellent in heat resistance and chemical resistance. For this reason, concentrated sulfuric acid, the demand for which has been increasing in recent years,
Excellent heat resistance, such as purification filters for concentrated nitric acid, various filters in desulfurization and denitrification smoke gas equipment, battery separators, and recovery of electrolytic coating solutions.
It can be preferably applied to filters, separation membranes, etc. in fields where chemical resistance is required.

Claims (1)

【特許請求の範囲】 1 一般式()【式】(ここ で、X=0または1、または2)で示される構造
単位から主として成り、かつ該構造単位中に占め
る【式】の構造単位比率が0.3以上 の樹脂から形成され、かつ、空孔率が10〜90%の
実質的に連続した微多孔を有し、比表面積が0.4
m2/g以上であることを特徴とするポリフエニレ
ンスルホン微多孔成形物。 2 【式】の構造単位比率が0.5以 上である特許請求の範囲第1項に記載のポリフエ
ニレンスルホン微多孔成形物。
[Claims] 1 Mainly composed of structural units represented by the general formula () [Formula] (where X = 0, 1, or 2), and the proportion of the structural units of [Formula] in the structural units; is formed from a resin with a porosity of 0.3 or more, has substantially continuous micropores with a porosity of 10 to 90%, and has a specific surface area of 0.4.
1. A microporous molded polyphenylene sulfone having a polyphenylene sulfone density of m 2 /g or more. 2. The polyphenylene sulfone microporous molded product according to claim 1, wherein the structural unit ratio of the formula is 0.5 or more.
JP62248297A 1986-10-24 1987-10-01 Microporous polyphenylene sulfone molding Granted JPS63225636A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25190086 1986-10-24
JP61-251900 1986-10-24

Publications (2)

Publication Number Publication Date
JPS63225636A JPS63225636A (en) 1988-09-20
JPH0545617B2 true JPH0545617B2 (en) 1993-07-09

Family

ID=17229624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248297A Granted JPS63225636A (en) 1986-10-24 1987-10-01 Microporous polyphenylene sulfone molding

Country Status (1)

Country Link
JP (1) JPS63225636A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE106771T1 (en) * 1988-09-29 1994-06-15 Toray Industries POROUS MEMBRANE AND METHOD OF MANUFACTURE.
US5273657A (en) * 1989-04-18 1993-12-28 Daicel Chemical Industries, Ltd. Process for preparing modified porous membrane
JPH02277532A (en) * 1989-04-18 1990-11-14 Daicel Chem Ind Ltd Porous membrane of aromatic polymer containing thioether group and production thereof
JP2910138B2 (en) * 1990-03-27 1999-06-23 東レ株式会社 Method for producing ultrafiltration membrane

Also Published As

Publication number Publication date
JPS63225636A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
US5259950A (en) Composite membrane
CN104548975B (en) Tubular composite nanofiltration membrane
JPH0724276A (en) Membrane for separation of fluid wherein modified poly(phenylene sulfide) is used as base material
CA2029001A1 (en) Sulfonated hexafluoro bis-a polysulfone membranes and process for fluid separations
EP0417287B1 (en) Porous membrane and process for its manufacture
WO2015141653A1 (en) Composite separation membrane
CA2008502A1 (en) Membranes
JPS6356802B2 (en)
JP5895359B2 (en) Method for producing porous body
EP1127608A1 (en) Cellulose derivative hollow fiber membrane
JPH0545617B2 (en)
CN112619443A (en) Composite reverse osmosis membrane and preparation method thereof
EP0539870B1 (en) Hydrophilic asymmetric chemically resistant polyaramide membranes
JPH0569571B2 (en)
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
KR20210076966A (en) Polymer laminated hollow fiber membranes based on poly(2,5-benzimidazole), copolymer and substituted polybenzimidazole
EP0543171B1 (en) Semi-permeable porous asymmetric polyether amide membranes
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0419890B2 (en)
JP7516382B2 (en) Porous membranes for high pressure filtration
JPS62213813A (en) Method for improving water permeability of micro-porous membrane
JPH0468010B2 (en)
JPS6138207B2 (en)
KR101331066B1 (en) Polyethersulfone hollow fiber membrane and method of manufacturing the same
WO1994004253A2 (en) Polyazole polymer-based membranes for fluid separation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees