JP2910138B2 - Method for producing ultrafiltration membrane - Google Patents

Method for producing ultrafiltration membrane

Info

Publication number
JP2910138B2
JP2910138B2 JP2079935A JP7993590A JP2910138B2 JP 2910138 B2 JP2910138 B2 JP 2910138B2 JP 2079935 A JP2079935 A JP 2079935A JP 7993590 A JP7993590 A JP 7993590A JP 2910138 B2 JP2910138 B2 JP 2910138B2
Authority
JP
Japan
Prior art keywords
polymer
water
ultrafiltration membrane
oxidizing
potassium hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2079935A
Other languages
Japanese (ja)
Other versions
JPH03277634A (en
Inventor
義夫 姫島
忠廣 植村
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP2079935A priority Critical patent/JP2910138B2/en
Publication of JPH03277634A publication Critical patent/JPH03277634A/en
Application granted granted Critical
Publication of JP2910138B2 publication Critical patent/JP2910138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱,耐溶剤性など耐久性が要求される分野
において使用される重合体成型物(繊維,フィルム,構
造材料,分離膜,各種部品など)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polymer molded product (fiber, film, structural material, separation membrane, various types) used in a field requiring durability such as heat resistance and solvent resistance. Parts).

[従来の技術] 従来、耐久性に優れた重合体としてはテフロン(PTF
E),ポリイミド(PI),ポリエーテルエーテルケトン
(PEEK),ポリフエニレンスルホン(PPS)をはじめ、
各種エンジニアリングプラスチックと称される重合体が
知られている。しかし、これら重合体は耐久性が高くな
るほど加工性が悪くなり、微細な構造を持つ成型物とす
ることが困難になる。この問題を解決するために、まず
比較的加工性のあるスルフィド結合を含有する重合体を
成型してから酸化処理を行い、耐久性を付与する方法が
考案されている(特開昭63-225636号,国際公開90/3210
号)。酸化剤としては過酸化水素、次亜塩素酸塩、硫
酸、塩素、塩化スルフリル、二酸化窒素、三酸化クロ
ム、過マンガン酸アルカリ、硝酸、有機過酸化物(例え
ば過酢酸、過ブチリック酸、過安息香酸、クロロ安息香
酸)などが知られている(米国特許第3,948,865号,ド
イツ特許第1938806号,特開昭63-225636号)。
[Prior art] Conventionally, as a polymer having excellent durability, Teflon (PTF
E), polyimide (PI), polyetheretherketone (PEEK), polyphenylenesulfone (PPS),
Polymers called various engineering plastics are known. However, the higher the durability of these polymers, the worse the processability becomes, and it becomes difficult to form a molded product having a fine structure. In order to solve this problem, a method has been devised in which a polymer containing a sulfide bond, which is relatively workable, is first molded and then subjected to an oxidation treatment to impart durability (JP-A-63-225636). Issue, International Publication 90/3210
issue). Oxidizing agents include hydrogen peroxide, hypochlorite, sulfuric acid, chlorine, sulfuryl chloride, nitrogen dioxide, chromium trioxide, alkali permanganate, nitric acid, and organic peroxides (eg, peracetic acid, perbutylic acid, perbenzoic acid). Acids and chlorobenzoic acid) are known (US Pat. No. 3,948,865, German Patent No. 1938806, JP-A-63-225636).

[発明が解決しようとする課題] しかし、これらの酸化剤は酸化力が不十分である、重
合体の分解や副反応を伴う酸化である、酸化剤が爆発性
であるなど問題が多かった。
[Problems to be Solved by the Invention] However, these oxidizing agents have many problems such as insufficient oxidizing power, oxidization accompanied by decomposition and side reaction of a polymer, and oxidizing agents being explosive.

本発明は、かかる従来技術の欠点を解消しようとする
ものであり、温和な反応性でありながら優れた酸化能力
と選択反応性を兼ね備えた酸化剤による重合体成型物の
製造方法を提供することを目的とする。
The present invention is intended to solve the disadvantages of the prior art, and to provide a method for producing a polymer molded product using an oxidizing agent having both mild oxidation and excellent oxidation ability and selective reactivity. With the goal.

[課題を解決するための手段] 上記目的を達成するため本発明は下記の構成からな
る。
[Means for Solving the Problems] To achieve the above object, the present invention has the following constitution.

「主鎖にスルフィド結合を有する重合体成型物を過硫
酸水素カリウムを含有する溶液で酸化処理することを特
徴とする限界濾過膜の製造方法。」 本発明において主鎖にスルフィド結合を有する重合体
とは下記の一般式で現されるものである。
"A method for producing a ultrafiltration membrane, comprising oxidizing a polymer having a sulfide bond in the main chain with a solution containing potassium hydrogen persulfate." In the present invention, a polymer having a sulfide bond in the main chain Is represented by the following general formula.

R1−SR2−X 式中R1,R2は芳香族、脂肪族、複素環から選ばれる
が、機械的強度,耐熱性を考慮すると芳香族、複素環が
好ましく、加工性を考慮すると脂肪族が好ましい。Xは
単結合、スルホン、ケトン、エーテルから選ばれるが、
R1および/またはR2が芳香族である場合、環の化学的安
定性を向上するために電子吸引性であるスルホン、ケト
ン結合が好ましい。m、nは0以上の整数を表わす。m
は小さいと酸化剤による耐久性付与効果が小さいが、m
の数が増すと結晶性が向上し、溶解性が低下したり酸化
剤の浸透を阻害することになるため、好ましくは0.1<m
/(m+n)<0.9、より好ましくは0.3<m(m+n)
<0.7である。重合体は高重合度ほど耐久性が高く、成
型物としては望ましい特性が発現するが、加工し難くな
るため、分子量は1〜10万が好ましい。そしてこれら重
合体は溶融成型,湿式凝固成型,加圧成型,焼結成型ま
たはこれらの組み合わせにより目的成型物とすることが
できる。
R 1 -S m R 2 -X n In the formula, R 1 and R 2 are selected from aromatic, aliphatic and heterocyclic rings, and are preferably aromatic and heterocyclic rings in consideration of mechanical strength and heat resistance. In consideration of the above, aliphatic is preferable. X is selected from a single bond, a sulfone, a ketone, and an ether,
When R 1 and / or R 2 are aromatic, an electron-withdrawing sulfone or ketone bond is preferable in order to improve the chemical stability of the ring. m and n represent an integer of 0 or more. m
Is small, the effect of imparting durability by the oxidizing agent is small.
When the number increases, the crystallinity improves, so that the solubility decreases or the penetration of the oxidizing agent is inhibited.
/(M+n)<0.9, more preferably 0.3 <m (m + n)
<0.7. The higher the degree of polymerization, the higher the durability of the polymer. The polymer exhibits desirable properties as a molded product, but it is difficult to process. Therefore, the molecular weight is preferably from 100,000 to 100,000. These polymers can be made into a target molded product by melt molding, wet solidification molding, pressure molding, sintering molding or a combination thereof.

本発明において過硫酸化合物とはSO5またはS2O8で現
わされる化学構造を持つ化合物を指し、一般に強い酸化
力を有する。具体的には過硫酸(ペルオキソ一硫酸,ペ
ルオキソ二硫酸),過硫酸アルカリ,過硫酸水素アルカ
リ,過硫酸アンモニウムなどが挙げられるが、本発明で
は過硫酸水素カリウムが使用される。ここで、アルカリ
としては特に限定されるものではないし、また場合によ
っては複数種を組み合わせても良いが、カリウムやナト
リウムなどのアルカリ金属元素が好ましく、特にカリウ
ムを用いたものは溶解性がよく、好ましい。中でも過硫
酸水素カリウムは硫酸水素カリウム,硫酸カリウムと2:
1:1(モル比)の混合物とすることにより安定性が向上
することが知られており特に好ましいが、これに限定さ
れるものではない。過硫酸化合物を含有する溶液はその
溶解性から水溶液であることが好ましいが、水−有機溶
媒中サスペンジョンの状態でも十分な酸化力を持ってい
るので水溶液に限定されるものではない。しかし、重合
体成型物を酸化処理する場合、重合体の分子運動を活発
にするほうが反応性が向上することから、若干量の有機
溶媒を混合した方が好ましい。例えば過硫酸水素カリウ
ム:硫酸水素カリウム:硫酸カリウム=2:1:1(モル
比)の混合物は、水/酢酸,水/メタノール,水/エタ
ノール,水/イソプロピルアルコール,水/N−メチルピ
ロリドン,水/エタノール/酢酸系において重合体を効
率よく酸化する。
In the present invention, the persulfate compound refers to a compound having a chemical structure represented by SO 5 or S 2 O 8 and generally has a strong oxidizing power. Specific examples include persulfuric acid (peroxomonosulfuric acid, peroxodisulfuric acid), alkali persulfate, alkali hydrogen persulfate, ammonium persulfate and the like. In the present invention, potassium hydrogen persulfate is used. Here, the alkali is not particularly limited, and in some cases, a plurality of types may be combined.Alkali metal elements such as potassium and sodium are preferable, and particularly those using potassium have good solubility, preferable. Among them, potassium hydrogen persulfate is combined with potassium hydrogen sulfate and potassium sulfate:
It is known that a 1: 1 (molar ratio) mixture improves the stability, which is particularly preferred, but is not limited thereto. The solution containing the persulfate compound is preferably an aqueous solution in view of its solubility, but is not limited to an aqueous solution because it has a sufficient oxidizing power even in a suspended state in a water-organic solvent. However, when oxidizing the polymer molded product, it is preferable to mix a small amount of an organic solvent since the reactivity is improved when the molecular motion of the polymer is activated. For example, a mixture of potassium hydrogen persulfate: potassium hydrogen sulfate: potassium sulfate = 2: 1: 1 (molar ratio) is water / acetic acid, water / methanol, water / ethanol, water / isopropyl alcohol, water / N-methylpyrrolidone, The polymer is efficiently oxidized in a water / ethanol / acetic acid system.

酸化溶液の濃度は、重合体を分解しないような濃度で
あれば特に限定はない。例えば、過硫酸水素カリウム:
硫酸水素カリウム:硫酸カリウム=2:1:1(モル比)の
混合物水溶液の場合、20℃では0〜25.6重量%,71℃で
は0〜33.5重量%の範囲で任意に選択できるが、反応の
効率の面からは15〜22重量%が特に好ましい。
The concentration of the oxidizing solution is not particularly limited as long as it does not decompose the polymer. For example, potassium hydrogen persulfate:
In the case of a mixture aqueous solution of potassium hydrogen sulfate: potassium sulfate = 2: 1: 1 (molar ratio), it can be arbitrarily selected from 0 to 25.6% by weight at 20 ° C. and from 0 to 33.5% by weight at 71 ° C. From the viewpoint of efficiency, 15 to 22% by weight is particularly preferable.

酸化溶液のpHは、重合体を分解しないような濃度であ
れば特に限定はない。例えば、過硫酸水素カリウム:硫
酸水素カリウム:硫酸カリウム=2:1:1(モル比)の混
合物水溶液の場合、3.0重量%水溶液においてpHは2.0に
なるが、pHが5以上になると安定性が急激に減少するこ
とから酸化処理中はpHを5以下に保つことが好ましい。
The pH of the oxidizing solution is not particularly limited as long as it does not decompose the polymer. For example, in the case of a mixture aqueous solution of potassium hydrogen persulfate: potassium hydrogen sulfate: potassium sulfate = 2: 1: 1 (molar ratio), the pH becomes 2.0 in a 3.0% by weight aqueous solution, but the stability becomes higher when the pH becomes 5 or more. It is preferable to maintain the pH at 5 or less during the oxidation treatment since the pH rapidly decreases.

酸化処理方法は、a)酸化溶液中に重合体成型物を浸
漬し必要であれば加熱する方法,b)酸化溶液を成型物に
塗布または含浸して必要であれば加熱する方法,c)酸化
液(必要であれば加熱したもの)を吹き付ける方法など
があり、成型物の形態や目的に応じて処理方法を選ぶこ
とが望ましい。
Oxidation treatment methods include a) a method of immersing a polymer molded article in an oxidizing solution and heating if necessary, b) a method of applying or impregnating an oxidizing solution to the molded article and heating if necessary, c) oxidizing. There is a method of spraying a liquid (heated if necessary), and it is desirable to select a treatment method according to the form and purpose of the molded product.

酸化温度は重合体の浸漬法の場合、分子運動を考慮す
ると50〜95℃が好ましく、酸化剤溶液の安定性を考える
と50〜80℃が好ましい。塗布法および吹き付け法におい
ては最高170℃までの加熱が可能であるが、酸化剤の安
定性を考慮すると50〜120℃程度の加熱が好ましく用い
られる。
In the case of the polymer immersion method, the oxidation temperature is preferably from 50 to 95 ° C in consideration of the molecular motion, and is preferably from 50 to 80 ° C in consideration of the stability of the oxidizing agent solution. Heating up to 170 ° C. is possible in the coating method and the spraying method, but heating at about 50 to 120 ° C. is preferably used in consideration of the stability of the oxidizing agent.

酸化処理時間は目的とする要求特性に合わせていかな
る時間も取り得る。酸化率は処理時間に対して1次に比
例して増加するが、酸化率は酸化剤の重合体内への拡散
がある一定以上起こらないことから一定値以上は増加し
ない。これは成形物の厚みに依存しており、例えば微小
な粒子の集合体と考えられている多孔膜などはその粒径
に依存する。また酸化処理時間は酸化剤濃度や処理温度
にも依存し、濃度が濃いほど、温度が高いほど処理時間
は短くとも高い酸化率を得ることができる。
The oxidation treatment time can be any time according to the required required characteristics. The oxidation rate increases linearly with the treatment time, but the oxidation rate does not increase beyond a certain value because diffusion of the oxidizing agent into the polymer does not occur more than a certain amount. This depends on the thickness of the molded product. For example, a porous membrane which is considered to be an aggregate of fine particles depends on the particle size. The oxidation treatment time also depends on the concentration of the oxidizing agent and the treatment temperature. As the concentration is higher and the temperature is higher, a higher oxidation rate can be obtained even if the treatment time is shorter.

重合体成型物の形態は特に限定されないが、処理方法
の性質上繊維,フィルム,多孔体など比較的薄い成型物
は全体を、構造物,部品など厚みのある成型物は表面を
改質することになる。成型物の耐久性の面からは重合体
全てが酸化されることが好ましいが、表面改質において
も十分な耐久性を付与できる場合も多く、酸化の度合い
には特に制限はない。
The form of the polymer molded product is not particularly limited, but due to the nature of the treatment method, relatively thin molded products such as fibers, films, and porous materials must be modified as a whole, and thick molded products such as structures and parts must be modified. become. From the viewpoint of the durability of the molded product, it is preferable that the entire polymer is oxidized. However, in many cases, sufficient durability can be imparted even in surface modification, and the degree of oxidation is not particularly limited.

重合体成型物が微多孔性膜である場合は、本発明によ
る酸化法を施すことにより、耐熱,耐溶剤性に優れた分
離膜となる。耐熱,耐溶剤性とは、一定時間高温または
溶剤中に微多孔膜を暴露した後の、溶質(例えばポリエ
チレングリコール)阻止率や透水性の変化が少ないこと
をいうが、例えば食品・バイオ製品の製造過程で用いら
れるスチーム殺菌に対する耐性を持つ従来の重合体では
オングストロームレベルでの孔径変化の抑制が困難であ
った。
When the polymer molding is a microporous membrane, the oxidation method according to the present invention results in a separation membrane having excellent heat resistance and solvent resistance. Heat resistance and solvent resistance refer to small changes in solute (eg, polyethylene glycol) rejection and water permeability after exposure of a microporous membrane to high temperature or a solvent for a certain period of time. It has been difficult to suppress the change in pore size at the angstrom level with conventional polymers having resistance to steam sterilization used in the production process.

酸化率は全て酸化されることが好ましいが、40%程度
の酸化率でも十分な耐久性を付与できる。この酸化率は
酸化剤の酸化力に加え、重合体の膨潤も重要であり、成
型物の形態を崩さないでしかも酸化剤が効率よく反応で
きるような膨潤条件を選ぶことが大切である。
The oxidation rate is preferably all oxidized, but a sufficient durability can be imparted with an oxidation rate of about 40%. This oxidation rate is important not only for the oxidizing power of the oxidizing agent but also for the swelling of the polymer, and it is important to select swelling conditions that do not disturb the form of the molded product and allow the oxidizing agent to react efficiently.

以下に実施例について説明するが、本発明はかかる実
施例に限定されるものではない。
Examples will be described below, but the present invention is not limited to these examples.

[実施例] 参考例1 ポリ(フェニレンスルフィドスルホン)(PPSS)は特
開昭63-270736号に記載の方法により合成した。
Example Reference Example 1 Poly (phenylene sulfide sulfone) (PPSS) was synthesized by the method described in JP-A-63-270736.

すなわち、温度および圧力測定装置、攪拌機並びに加
熱装置を備えた約1のオートクレーブに、ビス(4−
クロロフェニル)スルホン154.7g、炭酸ナトリウム56.5
g,酢酸ナトリウム43.7g,硫化水素ナトリウム(NaSH 59.
0重量%水溶液として使用)50.7g,N−メチル−2−ピロ
リドン(NMP)211.7gおよび脱イオン水14.4gを入れた。
攪拌しながら混合物を25℃から200℃で3時間攪拌し
た。次ぎにNMP160mlおよび脱イオン水26.7mlの混合物を
注入した。攪拌を約150℃になるまで継続した。反応混
合物を固体の粒状物質として反応容器から取り出し、液
体を吸引した。その固体物質を脱イオン水の熱湯(約90
℃,約600ml)で洗浄し、濾過し、濾過器上で一度ゆす
いだ。この工程を2回繰り返し、次いで冷脱イオン水で
最終洗浄手順を終え水溶性不純物を除去した。攪拌機,
加熱/冷却機並びに温度計および圧力計を装着した約1
のオートクレーブに上記の精製回収済み重合体40g,脱
イオン水400gおよび酢酸亜鉛[Zn(C2H3O2・2H2O]4.0g
を入れた。重合体/酢酸亜鉛水溶液混合物を攪拌しなが
ら185℃に加熱し、引き続き攪拌しながらその温度に1
時間保持した。次ぎに混合物を室温に冷却し、攪拌しな
がら回収済み重合体を熱湯(約90℃、約400ml)で一度
洗浄した。回収済み重合体を160℃の温度で減圧乾燥し
た。このようにして得られた重合体のゲル浸透クロマト
グラフィーによる重量平均分子量は31600(ポリスチレ
ン換算)であった。
That is, in one autoclave equipped with a temperature and pressure measuring device, a stirrer and a heating device, a screw (4-
Chlorophenyl) sulfone 154.7 g, sodium carbonate 56.5
g, sodium acetate 43.7 g, sodium hydrogen sulfide (NaSH 59.
50.7 g of N-methyl-2-pyrrolidone (NMP) and 14.4 g of deionized water.
The mixture was stirred with stirring at 25 ° C to 200 ° C for 3 hours. Then a mixture of 160 ml of NMP and 26.7 ml of deionized water was injected. Stirring was continued until about 150 ° C. The reaction mixture was removed from the reaction vessel as solid particulate matter and the liquid was aspirated. The solid substance is deionized water boiling water (about 90
C., about 600 ml), filtered and rinsed once on the filter. This step was repeated twice, then the final washing procedure was completed with cold deionized water to remove water-soluble impurities. Stirrer,
About 1 equipped with a heating / cooling machine, thermometer and pressure gauge
In an autoclave, 40 g of the purified and recovered polymer described above, 400 g of deionized water, and 4.0 g of zinc acetate [Zn (C 2 H 3 O 2 .2H 2 O)]
Was put. The polymer / aqueous zinc acetate aqueous mixture is heated to 185 ° C. with stirring and then brought to that temperature with stirring.
Hold for hours. The mixture was then cooled to room temperature, and the recovered polymer was washed once with boiling water (about 90 ° C., about 400 ml) while stirring. The recovered polymer was dried under reduced pressure at a temperature of 160 ° C. The weight average molecular weight of the polymer obtained by gel permeation chromatography was 31600 (in terms of polystyrene).

以下、この重合体をPPSS(ポリフェニレンスルフィド
スルホン)と略記する。このPPSSは、 の化学式で表される。
Hereinafter, this polymer is abbreviated as PPSS (polyphenylene sulfide sulfone). This PPSS It is represented by the following chemical formula.

参考例2 参考例1により得られたPPSS重合体16gを84gの乾燥ジ
メチルイミダゾリジノン(DMI)中に加え、この重合体
混合物を蓄えた容器を窒素雰囲気下にした後、180℃に
加熱して重合体を溶解した。次いで孔径10μmのポリテ
トラフルオロエチレン製メンブレンフィルターで不溶分
を濾別した。縦30cm、横20cmの大きさのポリエステル繊
維からなるタフタ(縦糸、横糸ともに150デニールのマ
ルチフィラメント糸、織密度縦90本/インチ,横67本/
インチ、厚さ160μm)をガラス板上に固定し、重合体
溶液をタフタ上に150μmの平均厚みで流廷した後、直
ちに水中(25℃)に浸漬して多孔質を得た。
REFERENCE EXAMPLE 2 16 g of the PPSS polymer obtained in Reference Example 1 was added to 84 g of dry dimethylimidazolidinone (DMI), and the container storing the polymer mixture was placed under a nitrogen atmosphere and then heated to 180 ° C. To dissolve the polymer. Then, insoluble components were filtered off with a polytetrafluoroethylene membrane filter having a pore diameter of 10 μm. Taffeta made of polyester fiber of 30cm length and 20cm width (multi-filament yarn of 150 denier for both warp and weft, 90 / inch in weaving density, 67 / width)
(Inch, 160 μm thick) was fixed on a glass plate, and the polymer solution was cast on a taffeta with an average thickness of 150 μm, and immediately immersed in water (25 ° C.) to obtain a porous material.

得られた膜を1000ppmポリエチレングリコール(分子
量10万)を原水として圧力1kg/cm2,温度25℃で評価し
たところ阻止率=89.9%,透水量=2.03m3/m2・日(30
分値)の性能であった。
When the obtained membrane was evaluated using 1000 ppm polyethylene glycol (molecular weight 100,000) as raw water at a pressure of 1 kg / cm 2 and a temperature of 25 ° C., the rejection rate was 89.9%, and the water permeability was 2.03 m 3 / m 2 · day (30
(Min value).

実施例1 500mlセパラブルフラスコ中に過硫酸水素カリウム/
硫酸水素カリウム/硫酸カリウムの2/1/1(モル比)混
合物(“OXONE",Aldrich社)75g,水400g,酢酸50gを加え
溶解後,70℃に加熱した。
Example 1 In a 500 ml separable flask, potassium hydrogen persulfate /
75 g of a mixture of potassium hydrogen sulfate / potassium sulfate (molar ratio) (“OXONE”, Aldrich), 75 g of water, and 50 g of acetic acid were added and dissolved, followed by heating to 70 ° C.

この溶液中に参考例2で得られた膜を、100分浸漬し
水洗した。
The film obtained in Reference Example 2 was immersed in this solution for 100 minutes and washed with water.

得られた膜を1000ppmポリエチレングリコール(分子
量10万)を原水として圧力1kg/cm2,温度25℃で評価し
たところ阻止率=89.6%,透水量=2.03m3/m2・日(30
分値)の性能であった。
The obtained membrane was evaluated using 1000 ppm polyethylene glycol (molecular weight 100,000) as raw water at a pressure of 1 kg / cm 2 and a temperature of 25 ° C. When the rejection was 89.6% and the water permeability was 2.03 m 3 / m 2 · day (30
(Min value).

実施例2 実施例1で得られた膜をジメチルホルムアミド(DM
F)に24時間浸漬後、水洗し、1000ppmポリエチレングリ
コール(分子量10万)を原水として圧力1kg/cm2,温度2
5℃で評価したところ阻止率=94.9%,透水量=1.64m3
/m2・日(30分値)の性能であった。
Example 2 The membrane obtained in Example 1 was treated with dimethylformamide (DM
F) After immersion in water for 24 hours, washed with water, using 1000 ppm polyethylene glycol (molecular weight 100,000) as raw water, pressure 1 kg / cm 2 , temperature 2
When evaluated at 5 ° C, rejection = 94.9%, water permeability = 1.64m 3
/ M 2 · day (30 minutes value).

実施例3 実施例2において浸漬溶媒がメチルエチルケトン(ME
K)であること以外は同じ条件で評価を行ったところ、
阻止率=92.4%,透水量=1.87m3/m2・日(30分値)の
性能であった。
Example 3 In Example 2, the immersion solvent was methyl ethyl ketone (ME
K) was evaluated under the same conditions except that
The rejection was 92.4%, and the water permeability was 1.87 m 3 / m 2 · day (30 minutes).

実施例4 実施例2において浸漬溶媒がN−メチルピロリドン
(NMP)であること以外は同じ条件で評価を行ったとこ
ろ、阻止率=92.4%,透水量=2.05m3/m2・日(30分
値)の性能であった。
Example 4 Evaluation was performed under the same conditions as in Example 2 except that the immersion solvent was N-methylpyrrolidone (NMP). The inhibition rate was 92.4%, and the water permeability was 2.05 m 3 / m 2 · day (30 days). (Min value).

実施例5 実施例2において浸漬溶媒がテトラヒドロフラン(TH
F)であること以外は同じ条件で評価を行ったところ、
阻止率=92.7%,透水量=2.05m3/m2・日(30分値)の
性能であった。
Example 5 In Example 2, the immersion solvent was tetrahydrofuran (TH
F), the evaluation was performed under the same conditions except that
The rejection was 92.7%, and the water permeability was 2.05 m 3 / m 2 · day (30 minutes value).

実施例6 実施例2において浸漬溶媒がエタノールであること以
外は同じ条件で評価を行ったところ、阻止率=92.4%,
透水量=1.71m3/m2・日(30分値)の性能であった。
Example 6 Evaluation was performed under the same conditions as in Example 2 except that the immersion solvent was ethanol, and the rejection was 92.4%.
Permeability = 1.71 m 3 / m 2 · day (30 minute value).

実施例7 実施例2において浸漬溶媒がピリジンであること以外
は同じ条件で評価を行ったところ、阻止率=95.1%,透
水量=1.65m3/m2・日(30分値)の性能であった。
Example 7 Evaluation was performed under the same conditions as in Example 2 except that the immersion solvent was pyridine, and the rejection was 95.1% and the water permeability was 1.65 m 3 / m 2 · day (30 minutes value). there were.

実施例8 実施例1で得られた膜をエタノールに30分浸漬後、ベ
ンゼンに24時間浸漬し、再びエタノールに30分浸漬して
から水洗した。1000ppmポリエチレングリコール(分子
量10万)を原水として圧力1kg/cm2,温度25℃で評価し
たところ阻止率=92.2%,透水量=1.94m3/m2・日(30
分値)の性能であった。
Example 8 The film obtained in Example 1 was immersed in ethanol for 30 minutes, immersed in benzene for 24 hours, immersed again in ethanol for 30 minutes, and washed with water. Evaluated at a pressure of 1 kg / cm 2 and a temperature of 25 ° C. using 1000 ppm polyethylene glycol (molecular weight 100,000) as raw water, the rejection = 92.2%, the water permeability = 1.94 m 3 / m 2 · day (30
(Min value).

実施例9 実施例8においてベンゼンの代わりに塩化メチレンを
用いたこと以外は同じ条件で評価を行ったところ、阻止
率=94.0%,透水量=1.34m3/m2・日(30分値)の性能
であった。
Example 9 Evaluation was performed under the same conditions as in Example 8 except that methylene chloride was used instead of benzene. The rejection was 94.0%, and the water permeability was 1.34 m 3 / m 2 · day (30-minute value). Performance.

実施例10 実施例1で得られた膜を蒸留水を入れた300mlビーカ
ーに入れ、120℃,1kg/cm2のオートクレーブ中で8時間
加熱した。この膜を1000ppmポリエチレングリコール
(分子量10万)を原水として圧力1kg/cm2,温度25℃で
評価したところ阻止率=88.4%,透水量=1.92m3/m2
日(30分値)の性能であった。
Example 10 The membrane obtained in Example 1 was placed in a 300 ml beaker containing distilled water, and heated in an autoclave at 120 ° C. and 1 kg / cm 2 for 8 hours. When this membrane was evaluated using 1000 ppm polyethylene glycol (molecular weight 100,000) as raw water at a pressure of 1 kg / cm 2 and a temperature of 25 ° C., the rejection was 88.4%, and the water permeability was 1.92 m 3 / m 2.
It was the performance of the day (30 minutes value).

比較例1 参考例2で得られた膜を実施例10と同じ条件で評価し
たところ、阻止率=76.0%,透水量=1.87m3/m2・日
(30分値)の性能であった。
Comparative Example 1 When the membrane obtained in Reference Example 2 was evaluated under the same conditions as in Example 10, the performance was as follows: rejection = 76.0%, water permeability = 1.87 m 3 / m 2 · day (30 minutes value). .

実施例11 参考例2で得られたPPSS重合体のDMI溶液をガラス板
上に薄く塗布し、120℃のオーブン中で15分間溶媒を蒸
発、乾燥した。室温まで放冷後、重合体薄膜が形成され
たガラス板を水中に浸漬し、薄膜を剥離させた。得られ
た薄膜の膜厚は約1〜3μmであった。この薄膜を実施
例1と同じ条件で4時間酸化処理を行ったところ、塩化
メチレン浸漬に対して形態変化を起さない薄膜とするこ
とができた。
Example 11 A DMI solution of the PPSS polymer obtained in Reference Example 2 was thinly applied on a glass plate, and the solvent was evaporated and dried in an oven at 120 ° C. for 15 minutes. After cooling to room temperature, the glass plate on which the polymer thin film was formed was immersed in water to peel the thin film. The thickness of the obtained thin film was about 1 to 3 μm. When this thin film was subjected to oxidation treatment for 4 hours under the same conditions as in Example 1, it was possible to obtain a thin film that did not change its form when dipped in methylene chloride.

比較例2 実施例11において、酸化処理を施さないこと以外は同
様の方法で得られた薄膜を塩化メチレンに浸漬したとこ
ろ、急激な収縮が起こり薄膜の形態を保持できなかっ
た。
Comparative Example 2 A thin film obtained in the same manner as in Example 11 except that the oxidation treatment was not performed was immersed in methylene chloride. As a result, rapid shrinkage occurred and the shape of the thin film could not be maintained.

[発明の効果] 本発明の方法を用いることにより、耐熱性、耐溶剤性
などの耐久性に優れた重合体成型物を製造することがで
きた。特に本発明によれば、安全で温和な条件下で、極
めて耐熱、耐溶剤性に優れた限外濾過膜を効率よく供給
することが可能となった。
[Effects of the Invention] By using the method of the present invention, a polymer molded product having excellent durability such as heat resistance and solvent resistance could be produced. In particular, according to the present invention, it has become possible to efficiently supply an ultrafiltration membrane having extremely excellent heat resistance and solvent resistance under safe and mild conditions.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−259037(JP,A) 特開 昭63−225636(JP,A) 特開 昭63−22835(JP,A) 特開 昭59−196322(JP,A) 特開 昭60−25513(JP,A) 米国特許3948865(US,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A 1-259037 (JP, A) JP-A 63-225636 (JP, A) JP-A 63-22835 (JP, A) JP-A 59-1990 196322 (JP, A) JP-A-60-25513 (JP, A) US Patent 3,948,865 (US, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主鎖にスルフィド結合を有する重合体成型
物を過硫酸水素カリウムを含有する溶液で酸化処理する
ことを特徴とする限外濾過膜の製造方法。
1. A method for producing an ultrafiltration membrane, comprising oxidizing a molded polymer having a sulfide bond in the main chain with a solution containing potassium hydrogen persulfate.
【請求項2】特許請求の範囲第(1)項において、過硫
酸水素カリウムを含有する溶液が、さらに硫酸水素カリ
ウムまたは硫酸カリウムを含有する水溶液であることを
特徴とする限外濾過膜の製造方法。
2. The ultrafiltration membrane according to claim 1, wherein the solution containing potassium hydrogen persulfate is an aqueous solution further containing potassium hydrogen sulfate or potassium sulfate. Method.
【請求項3】特許請求の範囲第(1)または(2)項に
おいて、酸化処理温度が50〜95℃であることを特徴とす
る限外濾過膜の製造方法。
3. The method for producing an ultrafiltration membrane according to claim 1, wherein the oxidation treatment temperature is 50 to 95 ° C.
【請求項4】特許請求の範囲第(1)〜(3)項のいず
れかにおいて、重合体成型物が微多孔性膜であることを
特徴とする限外濾過膜の製造方法。
4. The method for producing an ultrafiltration membrane according to any one of claims (1) to (3), wherein the molded polymer is a microporous membrane.
JP2079935A 1990-03-27 1990-03-27 Method for producing ultrafiltration membrane Expired - Fee Related JP2910138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2079935A JP2910138B2 (en) 1990-03-27 1990-03-27 Method for producing ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2079935A JP2910138B2 (en) 1990-03-27 1990-03-27 Method for producing ultrafiltration membrane

Publications (2)

Publication Number Publication Date
JPH03277634A JPH03277634A (en) 1991-12-09
JP2910138B2 true JP2910138B2 (en) 1999-06-23

Family

ID=13704177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2079935A Expired - Fee Related JP2910138B2 (en) 1990-03-27 1990-03-27 Method for producing ultrafiltration membrane

Country Status (1)

Country Link
JP (1) JP2910138B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010411A1 (en) * 2005-03-07 2006-09-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Sulfonated poly (arylenes) as hydrolytically and thermo-oxidatively stable polymers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948865A (en) 1974-10-31 1976-04-06 Phillips Petroleum Company Chemical treatment of arylene sulfide polymers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225636A (en) * 1986-10-24 1988-09-20 Toray Ind Inc Microporous polyphenylene sulfone molding
JPH01259037A (en) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd Highly heat-resistant polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948865A (en) 1974-10-31 1976-04-06 Phillips Petroleum Company Chemical treatment of arylene sulfide polymers

Also Published As

Publication number Publication date
JPH03277634A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
EP0480039B1 (en) Composite membrane
US5273657A (en) Process for preparing modified porous membrane
EP0053344A1 (en) Stabilized polyphenylene sulfide and method for producing same
JPS6211505A (en) Asymmetric semipermeable membrane
DE2703587A1 (en) METHOD OF MANUFACTURING SEMIPERMEABLES MEMBRANES
KR960004612B1 (en) Porous membrane and the manufacturing process thereof
CA1179460A (en) Semipermeable membranes and process for producing the same
JP2910138B2 (en) Method for producing ultrafiltration membrane
JPS6225159A (en) Sulfonated polyaryl ether sulfone solution, production of asymmetric semipermeable membrane and purifying method
US5907029A (en) Soluble polyarylene sulfoxides, a process for their preparation and their use
JPH0596141A (en) Production of composite membrane for reverse osmotic method
US3527853A (en) Process for manufacturing semipermeable cellulose acetate membranes suitable for desalination
JP2855206B2 (en) Porous selective permeable membrane made of polyaniline and method for producing the same
JP2005042074A (en) Production method for porous membrane
JP2722253B2 (en) Sulfonation of sulfur-containing aromatic resins
JP2819713B2 (en) Porous membrane and method for producing the same
JPH0365229A (en) Composite membrane for use in pervaporation
JPS59189913A (en) Preparation of ultrafiltration membrane
JPH0232009B2 (en)
JP2881931B2 (en) Composite membrane for gas separation
JPS6058210A (en) Preparation of cellulose ester type hollow yarn membrane
JPH04202528A (en) Fluorine-containing polybenzoxazole and its production
JPH03278824A (en) Gas separating membrane
JPH03213130A (en) Hydrophilic membrane
JPS61409A (en) Preparation of dry semipermeable membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees