JPS63225636A - Microporous polyphenylene sulfone molding - Google Patents

Microporous polyphenylene sulfone molding

Info

Publication number
JPS63225636A
JPS63225636A JP62248297A JP24829787A JPS63225636A JP S63225636 A JPS63225636 A JP S63225636A JP 62248297 A JP62248297 A JP 62248297A JP 24829787 A JP24829787 A JP 24829787A JP S63225636 A JPS63225636 A JP S63225636A
Authority
JP
Japan
Prior art keywords
microporous
molding
acid
formula
polyphenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62248297A
Other languages
Japanese (ja)
Other versions
JPH0545617B2 (en
Inventor
Shiro Imai
史朗 今井
Toshio Tsubota
坪田 敏男
Masao Umezawa
正夫 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPS63225636A publication Critical patent/JPS63225636A/en
Publication of JPH0545617B2 publication Critical patent/JPH0545617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the title molding excellent in heat resistance, chemical resistance and mechanical strengths and suitable for a filter for purifying concn. sulfuric acid, conc. nitric acid or the like, by oxidizing a microporous molding comprising polyphenylene sulfide with an organic peroxide. CONSTITUTION:A microporous molding comprising polyphenylene sulfide having continuous micropores of a porosity of 10-90% and a specific surface area >=0.4m<2>/g is formed from a polyphenylene sulfide such as poly-p-phenylene sulfide obtained by reacting, for example, an alkali sulfide with a p- dihalobenzene at a high temperature and a high pressure in a high-boiling polar solvent of an maide type such as N-methyl-pyrrolidone by a wet coagulation process. This molding is oxidized by immersion in an organic peracid such as peracetic acid to obtain the title molding formed from a resin mainly consisting of structural units of formula I (wherein X is 0-2) and having a ratio of structural units of formula II (wherein Y is 1 or 2) to structural units of formula I >=0.3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性、耐薬品性に格段に優れた、ポリフェ
ニレンスルホン微多孔成形物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a microporous polyphenylene sulfone molded product that has excellent heat resistance and chemical resistance.

〔従来の技術〕[Conventional technology]

従来から、微多孔フィルムや微多孔膜等の微多孔成形物
は、海水の淡水化、電子工業用等の純水製造、また製紙
工業・パルプ工場の汚水処理、電解塗装液の回収、油・
水エマルシロンの分離といった工業用水の回収或いは廃
液処理等の公害関連、或いは血漿分離を目的とした人工
腎臓等をはじめとする医療関連濾過材として、更には各
種電池のセパレーター等多方面に展開されている。
Microporous molded products such as microporous films and microporous membranes have traditionally been used in seawater desalination, pure water production for the electronics industry, sewage treatment in the paper industry and pulp mills, recovery of electrolytic coating fluids, oil and
It has been used in a variety of fields, including pollution-related industrial water recovery and waste liquid treatment such as water emulsion separation, medical-related filtration materials such as artificial kidneys for plasma separation, and even as separators for various batteries. There is.

近年、かかる微多孔成形物を用いた膜分離処理が広がる
につれ、より高温で、しかも広範囲なpHTiI域に於
いても優れた機械的強度を有する微多孔成形物の要求が
高まりつつある。
In recent years, as membrane separation processes using such microporous molded products have become widespread, there has been an increasing demand for microporous molded products that have excellent mechanical strength even at higher temperatures and in a wide pHTiI range.

かかる要求に対し、フッ素原子を含有するフッ素樹脂、
例えばボリテよラフルオロエチレンやポリフッ化ビニリ
デン等が、極めて優れた耐薬品性、耐熱性、耐候性等を
有することから、かかる樹脂を用いた微多孔成形物の提
案がなされている。しかし、かかる樹脂は機械的強度が
小さく、極めて優れた緒特性を有しながら用途によって
は、その展開範囲が著しく制限されるという欠点があっ
た。
In response to such demands, fluororesins containing fluorine atoms,
For example, since fluoroethylene, polyvinylidene fluoride, and the like have extremely excellent chemical resistance, heat resistance, weather resistance, etc., microporous molded products using such resins have been proposed. However, such resins have low mechanical strength, and although they have extremely excellent properties, they have the disadvantage that their range of application is severely limited depending on the application.

従って、充分な機械的強度を有し、耐熱、耐薬品性に優
れた微多孔成形物を得るため、下記に示す(I)、(I
I)、(III)式で表される芳香族ポリスルホン、 等の主鎖にエーテル結合を有する構造単位からなる重合
体を用いた各種分離膜が提案されている(特開昭54−
14376号公報、特公昭61−30803号公報等)
Therefore, in order to obtain a microporous molded product having sufficient mechanical strength and excellent heat resistance and chemical resistance, the following (I) and (I)
Various separation membranes using polymers consisting of structural units having an ether bond in the main chain, such as aromatic polysulfones represented by formulas I) and (III), have been proposed (Japanese Patent Application Laid-Open No. 1983-1999).
14376, Special Publication No. 61-30803, etc.)
.

しかし、かかる主鎖にエーテル結合を有する、所謂ポリ
エーテルスルホンは、一般に融点を持たないため、アミ
ド系有機溶媒等に溶解して、湿式法により分離膜等に成
形されていた。このため、当然のことながら、かかるア
ミド系有機溶剤に対しては溶解し、かかる有機溶剤使用
下での適用は出来ないという欠点があった。
However, so-called polyether sulfone having an ether bond in its main chain generally does not have a melting point, so it has been dissolved in an amide-based organic solvent or the like and formed into a separation membrane or the like by a wet method. For this reason, as a matter of course, there is a drawback that it dissolves in such amide-based organic solvents and cannot be applied in such organic solvents.

かかるポリマーは、融点500℃以上で、かつ溶解し得
る溶媒が存在しないため、有用な成形体への成形・加工
が事実上不可能であった。
Since such polymers have a melting point of 500° C. or more and there is no solvent in which they can be dissolved, it has been virtually impossible to mold or process them into useful molded bodies.

一方、近年ポリスルポンと同様、主鎖にイオウ原子を有
するポリマーとして、ポリフェニレンスルフィド、特に
ポリパラフェニレンスルフィド(以下PPSと略す)が
、熱可塑性ポリマーとしては、優れた耐熱性、電気絶縁
性、耐薬品性、難燃性を有することから、かかるPPs
を用いた分離用微多孔成形物として特開昭58−677
33号公報、特開昭60−202659号公報、特開昭
60−203268号公報等が提案されている。
On the other hand, in recent years, polyphenylene sulfide, especially polyparaphenylene sulfide (hereinafter abbreviated as PPS), is a polymer having sulfur atoms in the main chain, similar to polysulfone, and as a thermoplastic polymer, it has excellent heat resistance, electrical insulation, and chemical resistance. Such PPs have properties such as
JP-A-58-677 as a microporous molded product for separation using
33, JP-A-60-202659, JP-A-60-203268, etc. have been proposed.

しかしながら、かかるポリフェニレンスルフィドに於て
も、200〜250℃の高温下では強度低下が大きく、
かかる高温下での使用には耐え難いものであった。また
濃硫酸や濃硝酸では一部溶解や分解が生じる等の問題を
有し、半導体製造分野に於いて需要が高まりつつある濃
硫酸、濃硝酸の精製用フィルター等への適用は出来なか
った。
However, even in such polyphenylene sulfide, the strength decreases significantly at high temperatures of 200 to 250°C.
It was difficult to withstand use at such high temperatures. In addition, concentrated sulfuric acid and concentrated nitric acid have problems such as partial dissolution and decomposition, and cannot be applied to filters for purifying concentrated sulfuric acid and concentrated nitric acid, which are in increasing demand in the semiconductor manufacturing field.

従って、その展開範囲は著しく制限されたものであり、
未だ成形加工性に優れ、充分な機械的強度を有し、かつ
耐熱性、耐薬品性の両特性を高度に満足するものは見出
されていなかった。
Therefore, its scope of development is extremely limited.
No material has yet been found that has excellent moldability, sufficient mechanical strength, and highly satisfies both heat resistance and chemical resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、かかるポリフェニレンスルホン重合体
が本来有する極めて優れた耐熱性を損なうことなく、充
分な機械的強度を有し、かつ濃硫酸や濃硝酸に対しても
極めて優れた耐薬品性を有する新規なポリフェニレンス
ルホン微多孔成形物を提供することにある。
The purpose of the present invention is to provide polyphenylene sulfone polymers with sufficient mechanical strength and excellent chemical resistance even to concentrated sulfuric acid and concentrated nitric acid without impairing the extremely excellent heat resistance inherent in the polyphenylene sulfone polymer. An object of the present invention is to provide a novel microporous polyphenylene sulfone molded product having the following properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる本発明の目的を達成する1または
2)に変性すれば、耐熱性はもとより、耐薬品性までも
が、格段に向上した微多孔成形物が得られることを見出
し本発明に至った。
The present inventors discovered that by modifying 1 or 2) which achieves the object of the present invention, a microporous molded product with significantly improved heat resistance and even chemical resistance can be obtained. This led to the invention.

即ち、本発明は、次の構成を有する。That is, the present invention has the following configuration.

たは11または2)で示される構造単位から主と構造単
位比率が0.3以上の樹脂から形成され、かつ、空孔率
が10〜90%の実質的に連続した微多孔を有し、比表
面積が0.4 cd / g以上であることを特徴とす
るポリフェニレンスルホン微多孔成形物。
or 11 or 2) is formed from a resin having a main to structural unit ratio of 0.3 or more, and has substantially continuous micropores with a porosity of 10 to 90%, A microporous polyphenylene sulfone molded product having a specific surface area of 0.4 cd/g or more.

である特許請求の範囲第(1)項に記載のポリフェニレ
ンスルホン微多孔成形物。
A polyphenylene sulfone microporous molded article according to claim (1).

以下9本発明の詳細な説明する。Hereinafter, nine aspects of the present invention will be described in detail.

本発明のポリフェニレンスルホン(以下PPsたは2)
で示される構造単位から主として成り、だし、Y=1ま
たは2)の構造単位比率が0.3以上で構成されたポリ
フェニレンスルホン連鎖から主として形成された微多孔
成形物をいう。
Polyphenylene sulfone of the present invention (hereinafter referred to as PPs or 2)
It refers to a microporous molded product mainly composed of polyphenylene sulfone chains composed mainly of the structural units shown in the formula (Y=1 or 2) with a structural unit ratio of 0.3 or more.

は2)の構造単位比率(以下、ppso化率と略称する
)が0.3未満では、格段に優れた耐熱性は得られない
。PP5O化率は少なくとも0.3以上、好ましくは0
.5以上、より好ましくは0.7以上が望ましい。
If the structural unit ratio (hereinafter referred to as ppso ratio) of 2) is less than 0.3, extremely excellent heat resistance cannot be obtained. The PP5O conversion rate is at least 0.3, preferably 0.
.. It is desirable that it be 5 or more, more preferably 0.7 or more.

(B)比は1.0以上が好ましく、より好ましくは2.
0以上が望ましい。3以上であれば特に好ましい。特に
、ppso化率0.9以上で、かつ(A)/(B)≧3
の略全ポリスルホン化品は、超耐熱性が得られるので、
特に好ましい。
(B) The ratio is preferably 1.0 or more, more preferably 2.0.
0 or more is desirable. It is particularly preferable if it is 3 or more. In particular, the ppso conversion rate is 0.9 or more, and (A)/(B)≧3
Almost all polysulfonated products have super heat resistance, so
Particularly preferred.

ここで、かかる構成による主鎖は、酸素原子等によって
主鎖同志が一部結合され、所謂三次元構造を形成してい
ても構わない。
Here, the main chains having such a structure may be partially bonded to each other by oxygen atoms or the like to form a so-called three-dimensional structure.

また、一般式で示した上記構造単位式でのベンゼン環と
イオウ原子との結合は、バラ結合でも、又はメタ結合い
ずれであってもよいが、高い結晶性の得られるバラ結合
がより好ましい。
Further, the bond between the benzene ring and the sulfur atom in the above structural unit formula shown in the general formula may be a loose bond or a meta bond, but a loose bond is more preferable because it provides high crystallinity.

また、上記構造単位式でのベンゼン環に水酸基、酸素原
子等が一部付加していてもよい。
Further, a hydroxyl group, an oxygen atom, etc. may be partially added to the benzene ring in the above structural unit formula.

また、本発明でいう主成分とは、上記構造単位を少なく
とも90モル%以上含有していることを意味する。かか
る主成分が90モル%未満であると、得られるポリマー
の結晶性が低下したり、転移温度の低下等、優れた耐熱
性・耐薬品性を有する本発明の微多孔成形物は得られ難
い。一方、ポリフェニレンスルフィド90モル%の他の
10モル%未満の構造単位としては、エーテル結合、ビ
フェニル結合、ナフチル結合、置換フェニルスノ、レフ
イド結合等を含んでいても差支えない。
Moreover, the main component as used in the present invention means containing at least 90 mol% or more of the above-mentioned structural units. If the content of the main component is less than 90 mol%, the crystallinity of the obtained polymer will decrease, the transition temperature will decrease, and it will be difficult to obtain the microporous molded product of the present invention having excellent heat resistance and chemical resistance. . On the other hand, other structural units of less than 10 mol % in the 90 mol % polyphenylene sulfide may include ether bonds, biphenyl bonds, naphthyl bonds, substituted phenylsino, lephid bonds, and the like.

さて、本発明のポリフェニレンスルホン微多孔成形物は
、空孔率が10〜90%の、実質的に連続した微多孔を
有し、比表面積が0.4nf/g以上の微多孔成形物が
好ましい。
Now, the polyphenylene sulfone microporous molded product of the present invention is preferably a microporous molded product having substantially continuous micropores with a porosity of 10 to 90% and a specific surface area of 0.4 nf/g or more. .

かかる微多孔の孔径については、かかる微多孔成形物の
使用目的によって異なるが、例えば0.001〜0.0
5μの限外濾過膜の領域としそは、製紙工場、パルブ工
場の汚水処理用の濾過膜として、或いは大豆油等の食用
油製造に用いる耐油性膜として、また、0.01〜5μ
の精密濾過膜の領域としては、血漿分離や各種電池のセ
パレーターとして、更には濃硫酸、濃硝酸等の精製フィ
ルターとして用いることが出来る。また、5μ以上のや
や大きな孔径に於いては、耐熱性保温材として用いるこ
とが出来、かかる孔径は、使用目的によって任意に選択
出来、特に限定はない。また実質的に連続した微多孔と
は、全ての微多孔が連続している必要はなく、該成形物
が少なくともI X I O’cc / cla/ s
eeの通気性を有することを意味する。
The pore diameter of the microporous material varies depending on the purpose of use of the microporous molded product, but is, for example, 0.001 to 0.0.
The ultrafiltration membrane area of 5μ can be used as a filtration membrane for sewage treatment in paper mills and pulp factories, or as an oil-resistant membrane used in the production of edible oils such as soybean oil.
In the field of microfiltration membranes, it can be used for plasma separation, as a separator for various batteries, and as a purification filter for concentrated sulfuric acid, concentrated nitric acid, etc. In addition, when the pore size is slightly larger than 5 μm, it can be used as a heat-resistant heat insulating material, and the pore size can be arbitrarily selected depending on the purpose of use and is not particularly limited. Further, the term "substantially continuous microporous" does not mean that all the micropores are continuous, and the molded article has at least IXIO'cc/cla/s.
This means that it has an air permeability of ee.

一方空隙率については、10〜90%の範囲が好ましい
。かかる空孔率が10%未満では、濾過面積が少なく、
圧損が大きくなりすぎる。逆に90%を越えると、機械
的強度が小さくなり用途が限られたものになってしまう
、また、比表面積は、0.4m/g以上、より好ましく
は1.5rrr/g以上が望ましい、比表面積が0.4
n(/g未満では、濾過面積が少なく、すぐに目詰まり
が生じ、長時間の使用に耐えない。ここで、比表面積と
は、微多孔成形物1μ当たりの有する該成形物の表面積
を意味し、所謂BET (Brunauer −Emm
e t−Te 11 e r)法で測定することが出来
る。
On the other hand, the porosity is preferably in the range of 10 to 90%. When the porosity is less than 10%, the filtration area is small;
Pressure loss becomes too large. On the other hand, if it exceeds 90%, the mechanical strength will be low and the applications will be limited.In addition, the specific surface area is desirably 0.4 m/g or more, more preferably 1.5 rrr/g or more. Specific surface area is 0.4
If it is less than n(/g, the filtration area is small, clogging occurs quickly, and it cannot withstand long-term use. Here, the specific surface area means the surface area of the microporous molded product per 1μ of the molded product. The so-called BET (Brunauer-Emm
It can be measured by the e t-Te 11 e r) method.

また、空孔率は、該微多孔成形物の見掛は密度と真密度
から、空孔率=(1−見掛は密度/真密度)X100 
(%)で求めることが出来る。
In addition, the porosity can be determined from the apparent density and true density of the microporous molded material, porosity = (1 - apparent density/true density) x 100
It can be found in (%).

本発明に言う微多孔成形物は、フィルム様の平膜状、チ
ューブ状管状体、或いは不織布熱圧着体、スポンジ状、
粒状等の形態を包含するものであり、かかる微多孔成形
物の形状は使用目的により任意に選択出来、これらに限
定されるものではない。
The microporous molded article referred to in the present invention is a film-like flat membrane, a tube-like body, a nonwoven thermocompressed body, a sponge-like body,
This includes forms such as granules, and the shape of the microporous molded product can be arbitrarily selected depending on the purpose of use, and is not limited to these.

次ぎに、本発明のppso微多孔成形物の製造法につい
て、以下に説明する。
Next, the method for manufacturing the ppso microporous molded product of the present invention will be explained below.

本発明のppso微多孔成形物は、ポリフエニレンスル
フィドから成る微多孔成形物を有機過酸を用いて酸化す
ることにより基本的には得ることが出来る。
The ppso microporous molded product of the present invention can basically be obtained by oxidizing a microporous molded product made of polyphenylene sulfide using an organic peracid.

まず、はじめにポリフェニレンスルフィドを製造する方
法としては、例えば、かかるポリフェニレンスルフィド
の特に好ましい適用例としてのポリパラフェニレンスル
フィド(P P S)を製造スる方法としては、硫化ア
ルカリとパラジハロゲン化ベンゼンを極性有機溶媒中で
高温・高圧下に反応させることによって得ることが出来
る。特に、硫化ナトリウムとパラジクロルベンゼンを、
N−メチル−ピロリドン等のアミド系高沸点極性溶媒中
で反応させるのが好ましい。
First, as a method for producing polyphenylene sulfide, for example, as a method for producing polyparaphenylene sulfide (PPS), which is a particularly preferred application example of such polyphenylene sulfide, an alkali sulfide and para-dihalogenated benzene are polarized. It can be obtained by reacting in an organic solvent at high temperature and high pressure. In particular, sodium sulfide and paradichlorobenzene,
It is preferable to carry out the reaction in an amide-based high boiling point polar solvent such as N-methyl-pyrrolidone.

次いで、かかるポリフェニレンスルフィドを用いて、空
孔率が10〜90%の、実質的に連続した微多孔を有し
、比表面積が0.4nf/g以上の微多孔成形物を形成
する。かかる微多孔成形物の製造法については、湿式(
或いは乾湿式)凝固法、他成分溶出法、フィルム延伸法
、溶媒蒸発法、不織布熱圧着法等が適用出来るが、これ
らの方法に限定されるものではない。
Next, using the polyphenylene sulfide, a microporous molded product having substantially continuous micropores with a porosity of 10 to 90% and a specific surface area of 0.4 nf/g or more is formed. Regarding the manufacturing method of such microporous molded products, wet method (
Alternatively, a wet/dry coagulation method, another component elution method, a film stretching method, a solvent evaporation method, a nonwoven fabric thermocompression bonding method, etc. can be applied, but the method is not limited to these methods.

しかる後、こうして得られたポリフェニレンスルフィド
微多孔成形物を後述の有機過酸で処理す2)に変性する
(以下ppso化と称す)ことにより、本発明は達成さ
れる。
Thereafter, the present invention is achieved by modifying the thus obtained microporous polyphenylene sulfide molded product as described in 2) with an organic peracid (hereinafter referred to as ppso conversion).

かかるppso化率が30モル%未満では、該微多孔成
形物の表面層のみしかppso化されない。この程度で
は耐熱性・耐薬品性の大幅な向上は望めない。このため
、ppso化率は少なくとも30モル%以上、好ましく
は50モル%以上、より好ましくは70モル%以上が望
ましく、微多孔成形物の比表面積が大きくなるほど、高
PP5O化品が得られ易い。かかるppso化の際に、
有機過酸によって、主鎖が酸素原子等によって結合され
、所謂三次元架橋が生じても何等本発明に於いては差支
えない。
If the ppso conversion rate is less than 30 mol %, only the surface layer of the microporous molded article is converted into ppso. At this level, a significant improvement in heat resistance and chemical resistance cannot be expected. Therefore, the ppso conversion rate is desirably at least 30 mol% or more, preferably 50 mol% or more, and more preferably 70 mol% or more, and the larger the specific surface area of the microporous molded product, the easier it is to obtain a high PP5O product. When converting to ppso,
There is no problem in the present invention even if the main chains are bonded by oxygen atoms or the like and so-called three-dimensional crosslinking occurs due to the organic peracid.

また、かかるPP5o化により、耐熱性、耐薬品性のみ
ならず、親水性までもが向上するため、各種電池のセパ
レーターには尚好適である。
In addition, the conversion to PP5o improves not only heat resistance and chemical resistance but also hydrophilicity, making it suitable for separators for various batteries.

本発明に使用される有機過酸としては、過蟻酸、過酢酸
、過安息香酸、過プロピオン酸、過酪酸、mクロル遇安
息香酸、過トリクロル酢酸、過トリフロル酢酸、遇フタ
ル酸等が挙げられる。中でも反応速度の速さ、取り扱い
の容易さから過酢酸が好ましい。
Examples of the organic peracids used in the present invention include performic acid, peracetic acid, perbenzoic acid, perpropionic acid, perbutyric acid, m-chlorobenzoic acid, pertrichloroacetic acid, pertrifluoroacetic acid, and phthalic acid. . Among these, peracetic acid is preferred because of its high reaction rate and ease of handling.

かかる有機過酸は、アルデヒドの触媒下での酸化法(例
えば、過酢酸のAMP法)又は気相部分酸化法(気相法
)、或いは、過酸化水素とカルボン酸の無水物または塩
化物からの合成、過酸化シアロイルとナトリウムメトキ
シドとの反応等により生成することが出来る。
Such organic peracids can be prepared by catalytic oxidation of aldehydes (e.g. AMP of peracetic acid) or gas phase partial oxidation (vapor phase), or from hydrogen peroxide and anhydrides or chlorides of carboxylic acids. It can be produced by the synthesis of sialoyl peroxide and sodium methoxide, etc.

かかる有機過酸によるポリフェニレンスルフィドのpp
soへの変性は、前記ポリフェニレンスルフィド微多孔
成形物を有機過酸中に浸漬することによって、達成され
るが、かかる処理条件は、微多孔成形物の空孔率、比表
面積、或いは使用する有機過酸の反応速度等により異な
り一概に限定は出来ないが、過酢酸を用いる場合、室温
下でも高ppso化率を達成することが出来る。尚かか
る有機過酸は爆発性の薬品であり、特に高温下では爆発
し易く、かかる点からも、低温で、容易に高スルホン化
率が達成し易い比表面積の大きな微多孔成形物はど好ま
しい。
pp of polyphenylene sulfide by such organic peracid.
The modification to so is achieved by immersing the microporous molded polyphenylene sulfide in an organic peracid, but the treatment conditions depend on the porosity and specific surface area of the microporous molded product, or the Although it varies depending on the reaction rate of peracid and cannot be absolutely limited, when peracetic acid is used, a high ppso conversion rate can be achieved even at room temperature. In addition, such organic peracids are explosive chemicals and are likely to explode, especially at high temperatures.From this point of view, microporous molded products with a large specific surface area that can easily achieve a high sulfonation rate at low temperatures are preferable. .

以下に実施例について説明するが、本発明はかかる実施
例に限定されるものではない。
Examples will be described below, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1 東し・フィリップスペトローリアム社製の300℃に於
は志見掛は粘度4000ボイズ、7g90℃、Tm28
0℃を有するpps微粉末50重量部と、トリメリット
酸共重合ポリエチレンテレフタレート微粉末50重量部
をエクストルーダーに供給し、310℃で混合溶融し、
長さ200鶴、間隙1.0 mの直線状リップを有する
Tダイから押出、幅150、厚さ400μの未延伸シー
トを得た。かかるシートをフィルムストレッチャーを用
いて95℃で縦、横各々3.0倍に同時2軸延伸し、続
いて熱風オーブンを用いて220℃で1分間定張熱処理
し、厚さ40μのフィルム状試料を得た。
Example 1 At 300℃ manufactured by Toshi Phillips Petroleum Co., Ltd., the viscosity is 4000 voise, 7g, 90℃, Tm 28
50 parts by weight of pps fine powder having a temperature of 0°C and 50 parts by weight of trimellitic acid copolymerized polyethylene terephthalate fine powder were supplied to an extruder, mixed and melted at 310°C,
An unstretched sheet with a width of 150 μm and a thickness of 400 μm was obtained by extrusion from a T-die having a linear lip length of 200 mm and a gap of 1.0 m. This sheet was simultaneously biaxially stretched to 3.0 times in length and width at 95°C using a film stretcher, and then subjected to tension heat treatment for 1 minute at 220°C using a hot air oven to form a film with a thickness of 40μ. A sample was obtained.

次いで、30%水酸化ナトリウムを用いて、トリメリッ
ト酸共重合ポリエチレンテレフタレートを分解除去し、
空孔率50%、比表面積22d/gの微多孔フィルムを
得た。
Next, trimellitic acid copolymerized polyethylene terephthalate was decomposed and removed using 30% sodium hydroxide,
A microporous film with a porosity of 50% and a specific surface area of 22 d/g was obtained.

しかる後、かかる微多孔フィルムを市販の過酢酸溶液(
酢酸中9%濃度品)中に室温(30℃)で3時間処理し
た後、水洗、中和、水洗の各処理を施し乾燥した。
Thereafter, the microporous film was soaked in a commercially available peracetic acid solution (
After being treated in acetic acid (9% concentration product) at room temperature (30°C) for 3 hours, it was washed with water, neutralized, washed with water, and dried.

得られた微多孔フィルムをNMR及びESCA(Ele
ctron  5pectroscopyfor  C
hemical  Analysis)かかる微多孔フ
ィルムは、濃硝酸、濃硫酸、濃塩酸の各強酸、30%の
アンモニア水溶液、及び、アミド系有機溶剤を含む各種
有機溶剤に対しても何等形態変化は生ぜず、また300
℃の高温下に、破断強力の40%の荷重をぶら下げて2
4時間放置しても、クリ−、プ破壊も認められず、大幅
な耐熱性の向上も確認された。
The obtained microporous film was subjected to NMR and ESCA (Ele
ctron 5pectroscopy for C
(chemical analysis) Such a microporous film does not undergo any form change when exposed to strong acids such as concentrated nitric acid, concentrated sulfuric acid, and concentrated hydrochloric acid, 30% ammonia aqueous solution, and various organic solvents including amide organic solvents. 300
2 by hanging a load of 40% of the breaking strength under a high temperature of ℃.
Even after being left for 4 hours, neither creep nor breakage was observed, and a significant improvement in heat resistance was confirmed.

実施例2 東し・フィリップスペトローリアム社製の300℃に於
ける見掛は粘度4500ポイズのPPS樹脂20重量部
、N−メチル−2−ピロリドン53重量部、ジエチレン
・グリコール27重量部を加圧下、245℃にて溶解し
、製膜溶液を作成した。
Example 2 20 parts by weight of PPS resin with an apparent viscosity of 4500 poise at 300°C manufactured by Toshi-Philips Petroleum, 53 parts by weight of N-methyl-2-pyrrolidone, and 27 parts by weight of diethylene glycol were added. The mixture was dissolved under pressure at 245° C. to prepare a membrane-forming solution.

かかる溶液を0.5 vsのスリット状口金を用いて、
口金スリット両面から水を流出させ水中に押出し、凝固
させ、空孔率25%、比表面積5rrr/gの微多孔膜
を得た。
This solution was poured into a 0.5 vs. slit-like nozzle,
Water was allowed to flow out from both sides of the mouthpiece slit, extruded into water, and solidified to obtain a microporous membrane with a porosity of 25% and a specific surface area of 5 rrr/g.

この微多孔膜を次に、9%過酢酸溶液中に室温で1時間
処理した後、水洗、中和、水洗の各処理を施し乾燥した
。得られた微多孔膜をESCAにて分析したところ、p
pso化率は78゛%であった。
This microporous membrane was then treated in a 9% peracetic acid solution at room temperature for 1 hour, followed by washing with water, neutralization, washing with water, and drying. When the obtained microporous membrane was analyzed by ESCA, p
The pso conversion rate was 78%.

かかる微多孔膜を300℃のt温空気中に1日放置して
おいたところ、殆ど着色も認められず、高温処理後の強
力保持率も85%と極めて高いものであった。
When this microporous membrane was left in air at a temperature of 300° C. for one day, almost no coloration was observed, and the strength retention rate after high-temperature treatment was extremely high at 85%.

実施例3 実施例1と同様のPPSを用い、口金温度310℃のス
リットダイから溶融押出を行い、幅1501m、厚さ2
00μの未延伸フィルムを得た。該フィルムを熱風オー
ブンを用いて240℃で2分間定張熱処理を行った後、
フィルムストレッチャーを用いて、265℃の温度にて
縦、横各々1.8倍に同時2軸延伸して、空孔率30%
、比表面積15nf/gの微多孔フィルムを得た。
Example 3 Using the same PPS as in Example 1, melt extrusion was performed through a slit die with a die temperature of 310°C to obtain a product with a width of 1501 m and a thickness of 2.
An unstretched film of 00μ was obtained. After performing tension heat treatment on the film at 240°C for 2 minutes using a hot air oven,
Using a film stretcher, simultaneously biaxially stretched to 1.8 times in length and width at a temperature of 265°C to obtain a porosity of 30%.
A microporous film with a specific surface area of 15 nf/g was obtained.

かかる微多孔フィルムを9%過酢酸で1時間処理した後
、水洗、中和、水洗の各処理を施し、乾燥した。
The microporous film was treated with 9% peracetic acid for 1 hour, then washed with water, neutralized, washed with water, and dried.

得られた微多孔フィルムは、ppso化率85%のもの
であり、比重1.42の69%高濃度硝酸にも分解する
ことなく、300℃24時間処理後の強力保持率も90
%と耐薬品性、耐熱性が格段に向上していた。
The obtained microporous film has a ppso conversion rate of 85%, does not decompose even in 69% high concentration nitric acid with a specific gravity of 1.42, and has a strength retention rate of 90% after treatment at 300°C for 24 hours.
%, chemical resistance, and heat resistance were significantly improved.

比較例1 実施例3で9%過酢酸処理に代え、10%次亜塩素酸ソ
ーダを用い、90℃で1時間処理した後、実施例3と同
様の処理を施そうとしたところ、非常に脆(なっており
、かかる処理でぼろぼろになってしまった。
Comparative Example 1 In place of the 9% peracetic acid treatment in Example 3, 10% sodium hypochlorite was used, and after treatment at 90°C for 1 hour, an attempt was made to perform the same treatment as in Example 3. It had become brittle and crumbled from the treatment.

比較例2 実施例2のスルホン化前のPPS微多孔フィルムを20
0℃で4時間加熱処理して空気酸化により三次元架橋さ
せた。かかる比較例2のものを実施例2と同様300℃
24時間処理したところ、フィルムが溶融し、もはやフ
ィルム形態を保持しないものであった。
Comparative Example 2 The PPS microporous film of Example 2 before sulfonation was
Three-dimensional crosslinking was performed by heat treatment at 0° C. for 4 hours and air oxidation. Comparative Example 2 was heated at 300°C as in Example 2.
When treated for 24 hours, the film melted and no longer retained its film form.

〔発明の効果〕〔Effect of the invention〕

となく、耐熱性、耐薬品性において格段に優れている。 However, it has excellent heat resistance and chemical resistance.

このため、近年需要が高まりつつある濃硫酸、濃硝酸等
の精製フィルター、或いは脱硫、脱硝煙ガス装置に於け
る各糧フィルター、電池セパレーターや電解塗装液の回
収の如き、格段の耐熱性、耐薬品性が要求される分野の
、フィルター、分離膜等に好ましく適用することが出来
る。
For this reason, the demand for purification filters such as concentrated sulfuric acid and concentrated nitric acid has been increasing in recent years, various filters for desulfurization and denitrification smoke gas equipment, battery separators, and recovery of electrolytic coating liquids. It can be preferably applied to filters, separation membranes, etc. in fields where chemical properties are required.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式▲数式、化学式、表等があります▼(ここ
で、X=0ま たは1、または2)で示される構造単位から主として成
り、かつ該構造単位中に占める ▲数式、化学式、表等があります▼(ただし、Y=1ま
たは2)の 構造単位比率が0.3以上の樹脂から形成され、かつ、
空孔率が10〜90%の実質的に連続した微多孔を有し
、比表面積が0.4m^2/g以上であることを特徴と
するポリフェニレンスルホン微多孔成形物。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (Here, X = 0, 1, or 2) Mainly consists of the structural unit and occupies the structural unit ▲ Numerical formula, chemical formula, table, etc. etc. ▼ (However, Y = 1 or 2) is formed from a resin with a structural unit ratio of 0.3 or more, and
A polyphenylene sulfone microporous molded article having substantially continuous micropores with a porosity of 10 to 90% and a specific surface area of 0.4 m^2/g or more.
(2)▲数式、化学式、表等があります▼の構造単位比
率が0.5以上 である特許請求の範囲第(1)項に記載のポリフェニレ
ンスルホン微多孔成形物。
(2) The polyphenylene sulfone microporous molded product according to claim (1), wherein the structural unit ratio of ▲ with mathematical formulas, chemical formulas, tables, etc. is 0.5 or more.
JP62248297A 1986-10-24 1987-10-01 Microporous polyphenylene sulfone molding Granted JPS63225636A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25190086 1986-10-24
JP61-251900 1986-10-24

Publications (2)

Publication Number Publication Date
JPS63225636A true JPS63225636A (en) 1988-09-20
JPH0545617B2 JPH0545617B2 (en) 1993-07-09

Family

ID=17229624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248297A Granted JPS63225636A (en) 1986-10-24 1987-10-01 Microporous polyphenylene sulfone molding

Country Status (1)

Country Link
JP (1) JPS63225636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
WO1990012638A1 (en) * 1989-04-18 1990-11-01 Daicel Chemical Industries, Ltd. Method of producing modified porous membrane
JPH02277532A (en) * 1989-04-18 1990-11-14 Daicel Chem Ind Ltd Porous membrane of aromatic polymer containing thioether group and production thereof
JPH03277634A (en) * 1990-03-27 1991-12-09 Toray Ind Inc Production of polymer molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
US5112487A (en) * 1988-09-29 1992-05-12 Toray Industries, Inc. Porous membrane and production process thereof
WO1990012638A1 (en) * 1989-04-18 1990-11-01 Daicel Chemical Industries, Ltd. Method of producing modified porous membrane
JPH02277532A (en) * 1989-04-18 1990-11-14 Daicel Chem Ind Ltd Porous membrane of aromatic polymer containing thioether group and production thereof
JPH03277634A (en) * 1990-03-27 1991-12-09 Toray Ind Inc Production of polymer molding

Also Published As

Publication number Publication date
JPH0545617B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US5273657A (en) Process for preparing modified porous membrane
US5259950A (en) Composite membrane
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
EP0417287B1 (en) Porous membrane and process for its manufacture
KR20180048692A (en) Patent application title: PROCESS FOR PREPARING COATING FILM FOR COST-INDUCED PHASES AND METHOD FOR PRODUCING POROUS HYBRIDS
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
JP5895359B2 (en) Method for producing porous body
US5849195A (en) Composite membrane, process of manufacturing it and process of using it
JPS63225636A (en) Microporous polyphenylene sulfone molding
KR100748999B1 (en) Preparation method of membrane using oxidized metal and carbon powder
JPH0569571B2 (en)
JPH0419890B2 (en)
KR20210076966A (en) Polymer laminated hollow fiber membranes based on poly(2,5-benzimidazole), copolymer and substituted polybenzimidazole
US4488886A (en) Amorphous aryl substituted polyarylene oxide membranes
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
KR20130040621A (en) The preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
EP0131559B1 (en) Amorphous aryl substituted polyarylene oxide membranes
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPS62213813A (en) Method for improving water permeability of micro-porous membrane
JPH0468010B2 (en)
WO2020127454A1 (en) Porous membranes for high pressure filtration
JPS6138207B2 (en)
JP2022542975A (en) Membrane containing blend of polyarylethersulfone and polyaryletherketone and method of making same
WO1994004253A2 (en) Polyazole polymer-based membranes for fluid separation
CN113195081A (en) Porous membranes for high pressure filtration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees