JPS62213813A - Method for improving water permeability of micro-porous membrane - Google Patents

Method for improving water permeability of micro-porous membrane

Info

Publication number
JPS62213813A
JPS62213813A JP61057107A JP5710786A JPS62213813A JP S62213813 A JPS62213813 A JP S62213813A JP 61057107 A JP61057107 A JP 61057107A JP 5710786 A JP5710786 A JP 5710786A JP S62213813 A JPS62213813 A JP S62213813A
Authority
JP
Japan
Prior art keywords
treatment
water
membrane
sulfide
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057107A
Other languages
Japanese (ja)
Inventor
Osamu Watanabe
修 渡辺
Norio Onodera
小野寺 典雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP61057107A priority Critical patent/JPS62213813A/en
Publication of JPS62213813A publication Critical patent/JPS62213813A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To enhance water permeability without loss of heat resistance, chemical resistance and mechanical strength by carrying out oxidation treatment of the surface of micro-porous membrane comprising polyphenylene sulfide as main component. CONSTITUTION:Polymer containing more than 90mol% of p-phenylene sulfide is used as polyohenylene sulfide. Less than 35% of other polymer can be blended with said polymer. Said polyphenylene sulfide is molded in a shape suitable for use. Next, the surface of membrane is treated to turn hydrophilic by oxidizing sulfur of p-phenylene sulfide, main component of polyphenylene sulfide. For oxidizing treatment, hydrogen peroxide, peracetic acid, nitrogen dioxide, permanganate, periodate, chromate and the like are used for oxidization treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 膜を用いた分離は省エネルギー型の分離であシ、近年ま
すますその応用分野が拡大している。微多孔性Vの用途
としては、純水或いは超純水の製造、空気回路の除塵フ
ィルター、the料の回収、ラテックスやエマルジョン
の#に縮及び回収、中水道のバクテリア除去などの廃水
浄化、バルブ廃水の処理、切削油、圧延廃水の処理等に
おtブる油水分離、電池用セパレーター、電解隔膜、ガ
スベント、透討触水材料、人工血管、人工肺、血漿分離
、ジュース、チーズタンパク等のam1ブドウ酒等の清
澄口過の如き食品関係、酵見、ステロイド等の分離IP
!J収の如1製薬関係、或いは気体分離膜の支持体等と
して多方面に期待され、また実用化もされている。
[Detailed Description of the Invention] [Industrial Field of Application] Separation using a membrane is an energy-saving type of separation, and its field of application has been expanding more and more in recent years. Applications of microporous V include production of pure water or ultrapure water, dust removal filters for air circuits, recovery of the materials, reduction and recovery of latex and emulsions, wastewater purification such as bacteria removal from gray water, and valves. Oil-water separation, battery separators, electrolytic diaphragms, gas vents, water permeation materials, artificial blood vessels, artificial lungs, plasma separation, juice, cheese protein, etc., which are used in wastewater treatment, cutting oil, rolling wastewater treatment, etc. am1 Separation IP for food products such as clarification of wine, fermentation, steroids, etc.
! It is expected to be used in many fields, such as in the pharmaceutical industry and as a support for gas separation membranes, and has also been put to practical use.

一部、ポリフェニレンスルフィド樹脂(以下PPSと略
称する)は、高い耐熱性と機械的強度及び剛性を持った
熱可塑性樹脂であり、200℃以下ではこれを溶解する
的削がなく、酸、アルカリ等の薬品にも侵されない優れ
た特性を持っているのでこれを分@膜として使用するな
らば、これまで困難とされていた有機溶剤系での使用、
スチームや薬品による滅菌、酸、アルカリによる洗浄を
可能とすることが期待される。このような利用分野の中
で、水系での使用は大きい分野を占めると考えられ、疎
水性のPPSの微多孔性膜の透水性を改良する本発明は
1要な意義を有するものである。
Some polyphenylene sulfide resins (hereinafter abbreviated as PPS) are thermoplastic resins with high heat resistance, mechanical strength, and rigidity, and there is no way to dissolve them at temperatures below 200°C, so acids, alkalis, etc. It has excellent properties that are not attacked by chemicals such as
It is expected that it will be possible to sterilize with steam and chemicals, and to clean with acids and alkalis. Among these fields of application, use in aqueous systems is thought to occupy a large field, and the present invention, which improves the water permeability of a hydrophobic PPS microporous membrane, has an important significance.

〔従来の技術〕[Conventional technology]

分#I膜の使用に際して轍も多いトラブルは、ファプリ
ングやスケール生成による濃度分極を原因とする目づま
シや水質の低下である。この様なトラブルを(ロ)復さ
せる手段としては、薬品を使用して化学的に付着物等を
分解、溶解、或いは分散させる方法がよく行われる。し
かし、膜面への付着物は各種の混合物であるため、単一
の薬品では十分な効果は期待することができす、場合に
よっては数種類の薬品か使用される。又、医薬、食料品
関係においては、使用に先だって脇の滅菌が必要であシ
、その安全性から近年スチーム殺菌が資趙されることか
多い。この様な観点から、耐熱性、耐薬品性に優れた膜
がイ(まれ、PPS微多孔性膜はこの蒙請に最も逼した
ものと、  が、PPSは疎水性高分子であるため、透
水性の不足か7・ な難点であった。
Troubles that occur frequently when using #I membranes include smearing and deterioration of water quality caused by concentration polarization due to fapping and scale formation. (b) As a means of reversing such troubles, methods of chemically decomposing, dissolving, or dispersing deposits using chemicals are often used. However, since the deposits on the membrane surface are a mixture of various types, a single chemical can be expected to have a sufficient effect, but in some cases several types of chemicals may be used. Furthermore, in the fields of medicine and foodstuffs, it is necessary to sterilize the armpits before use, and steam sterilization has often been recommended in recent years due to its safety. From this point of view, membranes with excellent heat resistance and chemical resistance are needed (rarely, and PPS microporous membranes are the most suitable for this request. However, since PPS is a hydrophobic polymer, it has low water permeability. The problem was probably due to a lack of sex.

一般に疎水性の高分子を水系に使用する場合、その低い
透水性と、初期に大きな圧力を必要とする欠点を解決す
る為の手段として、界面活性剤を使用して親水性を賦与
することが通常行なわれるが、洗浄を繰シ返すうちに親
水性が徐々に低下していくという間和かあり、性能回復
にもかな夛の手間がかかり、経済的ではない。
Generally, when hydrophobic polymers are used in aqueous systems, it is possible to use surfactants to impart hydrophilicity to solve the drawbacks of low water permeability and the need for large initial pressure. Although this is usually done, the hydrophilicity gradually decreases as washing is repeated, and it takes a lot of effort to restore performance, making it uneconomical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

PPSを主成分とした微多孔性膜は、その耐熱性と耐薬
品性から有機溶剤の処理には有効に使用されるが、その
本来持つ疎水性から水系への使用は従来の技術を使用す
る限9かなシの制約があった。従って本発明は、PPS
が本来持つ優れた耐熱性、耐薬品性を生かしつつ、なお
透水速度の向上した、また長期に亘って使用できる微多
孔性膜を提供しようとするものである。
Microporous membranes made mainly of PPS are effectively used for treating organic solvents due to their heat resistance and chemical resistance, but due to their inherent hydrophobicity, conventional techniques are required for use in aqueous systems. There was a limit of 9 kana. Therefore, the present invention provides PPS
The purpose is to provide a microporous membrane that has an improved water permeation rate and can be used for a long period of time while taking advantage of the excellent heat resistance and chemical resistance that it inherently has.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者らは、かかる問題点に鑑み、ppsを主成分と
する微多孔性膜の表面を瘤水化処理することにより、耐
熱性、耐薬品性を保持したままで水速過速度の大きな微
多孔性膜を得ることに成功した。すなわち本発明は、P
PSを主成分とする微多孔性膜の細孔の表面も含む微多
孔性膜の表面を酸化処理することによシ、親水化された
微多孔性膜を提供するものである。
In view of these problems, the present inventors have developed a method of increasing water overspeed while maintaining heat resistance and chemical resistance by treating the surface of a microporous membrane containing pps as a main component to form a water droplet. We succeeded in obtaining a microporous membrane. That is, the present invention provides P
The present invention provides a hydrophilic microporous membrane by oxidizing the surface of the microporous membrane, including the surface of the pores, of the microporous membrane containing PS as a main component.

本発明におけるPPSとは、ポリマーの主構成単位とし
てp−フェニレンスルフィドを90モル%以上に含有し
たポリマーをいう。10モル%未満含有できる他の構成
単位としては、例えばメタフェニレンスルフィド、3官
能性7フイド、ジフェニルケトンスルフィド、ジフェニ
ルスルホンスルフィド、ビフェニルスルフィド、置換フ
ェニルスルシ、ニトロ或いはハロケン基のいづれか)等
を例示できる。
PPS in the present invention refers to a polymer containing 90 mol% or more of p-phenylene sulfide as the main structural unit of the polymer. Examples of other structural units that can be contained in an amount of less than 10 mol% include metaphenylene sulfide, trifunctional heptad, diphenylketone sulfide, diphenylsulfone sulfide, biphenyl sulfide, substituted phenylsulfide, nitro, or haloken group.

PP5Eブレンドできる弛めポリマーの童は35%未満
である。他のポリマーが65%以上占めると微多孔の形
成、耐熱性、耐薬品性、力学的特性のいづれかに欠点が
生じてPPSの%質が失われてくる。ブレンドできる他
のポリマーとしては、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、ナイロン−6、ナイロン−
66、ポリカーボネート、ポリオキシメチレン、ポリフ
ェニレンオキシド、ポリ−4−メチルペンテン−1、ポ
リプロピレン、ポリテトラフロロエチレン、ポリエーテ
ルエーテルケトン等の結晶性ポリマーや、ポリサルホン
、ポリエーテルサルホン等の非品性ポリマーを例示でき
る。またこの様な原料樹脂は、酸化防止剤、帯電防止剤
、抗菌剤、滑剤、表面活性剤等の添加剤を必要に応じて
適菫含有することができる。
Less than 35% of the loose polymer particles can be blended with PP5E. If other polymers account for 65% or more, defects will occur in the formation of microporous, heat resistance, chemical resistance, and mechanical properties, resulting in loss of PPS quality. Other polymers that can be blended include polyethylene terephthalate, polybutylene terephthalate, nylon-6, and nylon-6.
66. Crystalline polymers such as polycarbonate, polyoxymethylene, polyphenylene oxide, poly-4-methylpentene-1, polypropylene, polytetrafluoroethylene, polyetheretherketone, and non-quality polymers such as polysulfone and polyethersulfone. can be exemplified. Further, such a raw material resin may contain an appropriate amount of additives such as an antioxidant, an antistatic agent, an antibacterial agent, a lubricant, a surfactant, and the like, if necessary.

本発明に使用する微多孔性膜は、特開昭58−6773
3号や特開昭57−168446号明細書などに記載の
方法によって、使用目的に適した形状に成形される。向
えは平膜では、p−フェニレンスルフィドを90モル%
以上含むpps’l溶融押出して、非多孔性の未延伸フ
ィルムとし、該未延伸フィルムを上記の溶融押出しと同
軸方向に定められた条件下で冷延伸、熱地伸及び熱固定
することにより微多孔性平膜に形成される。又、中空糸
膜では、前記原料樹脂を中空線維紡糸口金を通して溶融
紡糸して未延伸中空繊維とし、次いで一定条件下で熱処
理、延伸および熱固定することによシ、微多孔性中空糸
隣に形成される。
The microporous membrane used in the present invention is disclosed in Japanese Patent Application Laid-Open No. 58-6773.
No. 3, Japanese Patent Application Laid-open No. 57-168446, etc., it is molded into a shape suitable for the purpose of use. For flat membranes, p-phenylene sulfide is 90 mol%.
The pps'l containing the above is melt-extruded to produce a non-porous unstretched film, and the unstretched film is subjected to cold stretching, hot field stretching and heat setting under conditions set in the coaxial direction with the above melt extrusion. Formed into a porous flat membrane. In addition, in hollow fiber membranes, the raw material resin is melt-spun through a hollow fiber spinneret to form undrawn hollow fibers, which are then heat-treated, stretched, and heat-set under certain conditions to form a material next to the microporous hollow fibers. It is formed.

本発明の親水化処理は、PPSの表面を化学的に処理す
ることによ、2、ppsの主構成単位であるp−7二二
レンブルフアイドの硫黄を酸化して一5O7−或いは−
S〇−に實注することによりなされる。本発明の処理は
、温和な条件下で行われることが必要である。もし厳し
い条件下で処理すると、pps微多孔性膜の構造自体が
破壊されてし1い好ましくない。
The hydrophilic treatment of the present invention involves chemically treating the surface of PPS to oxidize the sulfur of p-7 22 Lemburghide, which is the main constituent unit of 2, pps, and converting it to -5O7- or -
This is done by noting S〇-. The treatment of the present invention needs to be carried out under mild conditions. If treated under harsh conditions, the structure of the PPS microporous membrane itself may be destroyed, which is not preferable.

本発明の処理方法において使用されるPPS主鎖骨裕の
−S−を一8O−もしぐは一5O1−に酸化する試薬と
しては、−1えは過酸化水素、過酢酸の如き有機過酸化
物、二酸化貨素、過マンガン酸塩、過ヨウ素酸頃及びク
ロムばか声1示される。処理された微多孔性膜は適度の
親水2Sを有することが望ましい。親水基が少なすぎる
と膜の水濡れが低いために水運過速度の改良効果が小さ
く、逆に親水基が多すぎる場合は物性に悪影響を及はす
。処理に使用する酸化剤の濃度、処理温度、処理時間に
関する一般的な条件を次に示す。
The reagent used in the treatment method of the present invention to oxidize -S- in the main chain bone of PPS to 18O- or 15O1- may be an organic peroxide such as hydrogen peroxide or peracetic acid. , nitrogen dioxide, permanganate, periodic acid, and chromium. It is desirable that the treated microporous membrane has a moderate hydrophilicity 2S. If there are too few hydrophilic groups, the water wettability of the membrane will be low and the effect of improving the water transport overrate will be small; if there are too many hydrophilic groups, on the other hand, the physical properties will be adversely affected. The general conditions regarding the concentration of the oxidizing agent used in the treatment, the treatment temperature, and the treatment time are shown below.

(1)過酸化水素を酸化剤とする場合 過酸化水素は通常市販されている60%前後のものが用
いられる。PPSの酸化は過酸化水素のみでは反応が非
常に遅いので、本発明においてはyJ74酸1ヒ水木を
硫酸溶液として使用することによ9酸化反応を行なうこ
とが好ましい。過酸化本禦−硫改溶液の調製法は、濃硫
酸(95%)を約20℃に冷却し、攪拌しながら、30
%過酸化水素水溶液を滴下することにより行なう。過酸
化水素濃度はα1〜ICLO%、好ましくは[15〜5
%である。微多孔性膜を上記溶液に浸漬して酸化処理す
る際の酸化進行度合は、過酸化水素一度は勿論のこと、
処理温度および処理時間により異なる。処理温度#′i
5℃〜50℃、好ましくは10℃〜40℃である。処理
時間は酸化剤の濃度と処理温度によって差があるので一
概には規定できないが、上記の好ましい温度および好ま
しい処理温度の範囲ではlO抄〜300秒である。
(1) When hydrogen peroxide is used as an oxidizing agent, commercially available hydrogen peroxide of about 60% is usually used. Since the oxidation of PPS is very slow with hydrogen peroxide alone, in the present invention it is preferable to carry out the 9-oxidation reaction by using yJ74 acid 1 abacus as a sulfuric acid solution. The method for preparing peroxide Honshu-sulfur modified solution is to cool concentrated sulfuric acid (95%) to about 20°C, and add it to 30°C while stirring.
% hydrogen peroxide aqueous solution dropwise. The hydrogen peroxide concentration is α1~ICLO%, preferably [15~5
%. The degree of oxidation progress when the microporous membrane is immersed in the above solution and subjected to oxidation treatment is as follows:
Varies depending on processing temperature and processing time. Processing temperature #'i
The temperature is 5°C to 50°C, preferably 10°C to 40°C. The treatment time varies depending on the concentration of the oxidizing agent and the treatment temperature, so it cannot be defined unconditionally, but within the above-mentioned preferred temperature and treatment temperature ranges, it is 10 seconds to 300 seconds.

(21過酢酸の場合 本発明に使用する過酢酸は、通常酢酸浴液として市販さ
扛ている#度40%のものを希釈して使用する。希釈剤
は、過iff′!−醒と反応しない有機溶剤がすべて使
用できるが、通常酢酸で希釈することが好ましい。本発
明において使用式れる過酢酸の濃度はCL1〜100%
、好゛fしくけ[lL5〜5.0%である。過酢酸−酪
酸′l@液による酸化速度は前記過酸化水素−硫酸系に
較べて若干遅い傾向にあるので、酸化速度を早めるため
に、処理温度は30〜100℃、好ましくは40〜80
℃で行なう。処理時間は、過酸化水素−#L酸溶液の場
合と同様一定ではないが、上記濃度および処理温度範囲
では10秒〜300秒である。
(21 In the case of peracetic acid, the peracetic acid used in the present invention is usually diluted with 40% acetic acid, which is commercially available as an acetic acid bath solution. Any organic solvent can be used, but it is usually preferable to dilute with acetic acid.The concentration of peracetic acid used in the present invention is CL1 to 100%.
, the preferred system is 5 to 5.0%. The oxidation rate of the peracetic acid-butyric acid solution tends to be slightly slower than that of the hydrogen peroxide-sulfuric acid system, so in order to accelerate the oxidation rate, the treatment temperature is 30 to 100°C, preferably 40 to 80°C.
Perform at ℃. Although the treatment time is not constant as in the case of the hydrogen peroxide-#L acid solution, it is 10 seconds to 300 seconds within the above concentration and treatment temperature range.

(3)  二酸化9累の場合 二酸化窒素ガス中で酸11Sさせることも可能であるが
、通常、空気又は屋素で希釈して使用した方が経済的で
ある。本発明においては6〜80%、好ましくは5〜2
0%の濃度の窒素気流として使用される。通常、醸化温
度は室温で行われ、処理時間は10〜300秒である。
(3) In the case of 9-dioxide, it is possible to make acid 11S in nitrogen dioxide gas, but it is usually more economical to dilute it with air or nitrogen. In the present invention, 6 to 80%, preferably 5 to 2
Used as a nitrogen stream with a concentration of 0%. Usually, the fermentation temperature is room temperature and the treatment time is 10 to 300 seconds.

このような条件下に処理し、表面酸化された微多孔性膜
は、水洗浄、希アルカリ洗浄及び水洗浄した後、乾燥す
ることにより最終製品とされる。
The microporous membrane treated under such conditions and subjected to surface oxidation is washed with water, diluted alkali, and water, and then dried to obtain a final product.

〔本発明の効果〕[Effects of the present invention]

本発明に係る親水性微多孔性膜は、以上の説明から明ら
かなように、ppsの耐熱性、耐薬品性及び機械的強度
が失われることなく、透水性が向上せしめられたもので
あシ、それ故、疎水性pps微多孔性膜では使用できな
かった水系の分野での利用を可能としたものである。
As is clear from the above description, the hydrophilic microporous membrane according to the present invention has improved water permeability without losing the heat resistance, chemical resistance, and mechanical strength of PPS. Therefore, it can be used in aqueous fields where hydrophobic pps microporous membranes could not be used.

即ち本発明の微多孔性膜は、平膜或いは中空糸状などに
賦形したものを七7ユールに組み込んで、逆浸透、限外
口過、精密ロカωなどに使用できる。具体的な応用列と
しでは例えは、バルブ工業、繊維1莱、原子カニ朶等に
おける工業用廃水の浄化、電子工業に用いられる純水或
いは超純水の製造、食料品1菓における果汁および蛋白
債の濃縮、製薬、医療関係における無菌水の製造、#素
の回収、電気化学関係の隔膜等が挙けられる。
That is, the microporous membrane of the present invention can be used in reverse osmosis, ultrafiltration, precision filtration, etc. by incorporating it into a flat membrane or hollow fiber shape. Examples of specific applications include the purification of industrial wastewater in the valve industry, textile industry, atomic crab industry, etc., the production of pure or ultrapure water used in the electronic industry, and the production of fruit juice and protein in food products. Examples include concentration of bonds, production of sterile water in the pharmaceutical and medical fields, recovery of #elements, and diaphragms for electrochemistry.

1だ多孔性膜の表面が親水化されているところから特に
中空糸に於ては耐熱性、耐薬品性、難燃性に加え、自己
呼吸性、吸汗性、静電防止性等を有する新しい繊維素材
として種々の用途への使用が可能である。このようなも
のの具体例1としては、例えば消防服、静電防止服、包
帯等を挙げることができる。
Because the surface of the porous membrane is made hydrophilic, hollow fibers in particular have new properties such as self-breathing, sweat absorption, and antistatic properties in addition to heat resistance, chemical resistance, and flame retardancy. It can be used as a fiber material for various purposes. Specific examples of such materials include firefighting suits, antistatic clothing, bandages, and the like.

以下に微多孔性膜の製造に関する参考例および本発明の
実施PIを具体的に説明するが本発明はこれに限定され
るものではない。
Reference examples related to the production of microporous membranes and implementation PIs of the present invention will be specifically explained below, but the present invention is not limited thereto.

〔参考列1〕 対数粘度(η=CL32)のPP5t−コートハンガー
型スリットダイを用いて、3本型チルロールにドラフト
率150で未延伸シートを押し出し、3段延伸熱処理機
で冷延伸(延伸倍率t3、温度20℃)、次いで熱延伸
(延伸倍率2.0、温度100℃)、熱固定(延伸倍率
α9、温度200℃)し、厚み25μm1平均孔径α2
0μm1空孔率28%の微多孔性平膜(未処理膜)1得
た。透水速度を画定したところ圧力差1 kQ/cII
?で[1011M/(−・順であった。
[Reference row 1] Using a PP5t-coat hanger type slit die with logarithmic viscosity (η = CL32), extrude the unstretched sheet onto three chill rolls at a draft rate of 150, and cold stretch it (stretch ratio t3, temperature 20°C), then hot stretching (stretching ratio 2.0, temperature 100°C) and heat setting (stretching ratio α9, temperature 200°C) to a thickness of 25 μm 1 average pore diameter α2
A microporous flat membrane (untreated membrane) 1 with a porosity of 0 μm and 28% was obtained. When the water permeation rate is defined, the pressure difference is 1 kQ/cII
? The order was [1011M/(-).

又、平膜に対する水の接触角は73°であった。Further, the contact angle of water with respect to the flat membrane was 73°.

〔参考例2〕 参考例1で使用されたものと同じppsを溶融押出紡糸
機を用いて、中空#Il維用円珈型ノズルを通してノズ
ル温度325℃に(5)定してドラフト率230にて中
空繊維を紡出した。得られた中空繊維業−組のロール間
に温度255℃の電熱型スリットヒーターを置き足長で
熱処理した。次にで 延伸倍率t5、温度110□甲、引き続いて温度240
℃にて熱固定を行ない、外径500μm%厚み40μm
1平均孔径l1120μm1空孔率28%の微多孔性中
空繊維を得た。透水速度を測定したところ圧力差111
.<//cIF?でa011rttl/ctt?・騙で
あった。
[Reference Example 2] Using a melt extrusion spinning machine, the same pps as used in Reference Example 1 was passed through a hollow #Il conical nozzle at a nozzle temperature of 325°C (5) and a draft rate of 230. A hollow fiber was spun. An electric slit heater at a temperature of 255° C. was placed between the rolls of the resulting hollow fiber set, and heat treatment was performed at the length of the legs. Next, the stretching ratio is t5, the temperature is 110□A, and then the temperature is 240
Heat set at ℃, outer diameter 500μm% thickness 40μm
A microporous hollow fiber having an average pore diameter of 1120 μm and a porosity of 28% was obtained. When the water permeation rate was measured, the pressure difference was 111
.. <//cIF? So a011rttl/ctt?・It was a deception.

実施91J1 参考例1で得られた微多孔性平膜を所定倉度のH,O2
/H,So、中に一定時間室温で浸漬し、続いて水洗し
たのち[15%一度の水酸化ナトリウム水溶液で洗浄、
水洗をhb返した後100℃で真空乾燥し、栽水性微多
孔性平眸を得た。
Implementation 91J1 The microporous flat membrane obtained in Reference Example 1 was exposed to H, O2 at a predetermined degree of storage.
/H, So, at room temperature for a certain period of time, followed by washing with water [washing with a 15% aqueous sodium hydroxide solution,
After rinsing with water, it was dried under vacuum at 100°C to obtain a microporous flat eyelet suitable for water cultivation.

濃度、処理時間を変えて処理した千勝の水に対する接触
角及び透水速度の測定結果を第−表に示した。接触角が
処理によシ減少し、水に対する濡れ性が教官され、また
透水性能が向上していることが判る。定食型電子顕微鏡
(SEM)で平膜表油全親祭したところ、参考例10士
膜と比較して若干表面に凸凹か生じるが、孔径、孔の状
態は、#′よとんどその1まであった。IRスペクトル
を測定し7たところ6500α−1に一〇Hの吸収が致
測され、処理時間、処理濃度の増大とともに吸収の増大
がみらnた。またこれらの吸収は未処理の平膜では観測
されず、処理により酸化され第−表 実MPJ2 参考N1で得られた微多孔性平膜を所定濃度のCH,C
OOOH/CH,C0OH中に50℃に温#′を保ちな
がらFi定時間浸漬し、絖いて水洗、cL5%℃度の水
酸化すl−IJウム水溶液で洗浄、さらに水洗を繰り返
した後100℃で真空乾燥し、薪水性微多孔性平膜を得
た。濃度、処理時間を変えて処理した平膜の水に対する
接触角及び透水速度の測定結果を第二表に示した。IR
測測定よびSEMcDBu察結果は、いずれも実施例1
と同機であった。
Table 1 shows the measurement results of the contact angle and water permeation rate of Senkatsu treated with water at different concentrations and treatment times. It can be seen that the contact angle is reduced by the treatment, the wettability to water is improved, and the water permeability is improved. When the surface oil of the flat membrane was inspected using a set electron microscope (SEM), the surface was slightly uneven compared to the reference example 10 membrane, but the pore diameter and condition of the pores were #1. There was even. When the IR spectrum was measured, 10H absorption was observed at 6500α-1, and the absorption increased as the treatment time and treatment concentration increased. Moreover, these absorptions were not observed in the untreated flat membrane, but were oxidized by the treatment.
Immerse Fi in OOOH/CH, COOH for a fixed period of time while maintaining the temperature at 50°C, rinse with water, wash with aqueous solution of sulfur-IJ hydroxide at cL5%°C, and repeat the washing with water at 100°C. The mixture was dried under vacuum to obtain a firewood-water-based microporous flat membrane. Table 2 shows the measurement results of the water contact angle and water permeation rate of the flat membranes treated with varying concentrations and treatment times. IR
Both measurement results and SEMcDBu observation results are based on Example 1.
It was the same aircraft.

実施例6 参考例2で得られた微多孔性中空線維を所定濃度のH,
O,/ H,So、中に一定時間室温で浸漬し、続いて
実施例1及び2と同様に洗浄、乾燥し、親水性微多孔性
中空繊維を得た。濃度、処理時間を変えて処理した中空
織##をそれぞれ100本ずつ束ねて、長さ15cIn
のモジュールとした後、透水速度を測定した。その結果
を第三表に示した。
Example 6 The microporous hollow fibers obtained in Reference Example 2 were treated with a predetermined concentration of H,
The fibers were immersed in O,/H,So for a certain period of time at room temperature, and then washed and dried in the same manner as in Examples 1 and 2 to obtain hydrophilic microporous hollow fibers. Hollow weaves ## treated with different concentrations and treatment times were bundled into 100 pieces each to a length of 15 cIn.
After making the module into a module, the water permeation rate was measured. The results are shown in Table 3.

第三表 実施例4 参考例2で得られた微多孔性中空繊維全窒素で10%濃
度まで希釈した二酸化窒素中に90秒間保持した後とり
出し、100本束ねて長さ15cytのモジュールとし
た後、透水速度を測定したところ、圧力差1 kg/c
rd’でα030m/(7)2・顛であった。
Table 3 Example 4 Microporous hollow fibers obtained in Reference Example 2 were held in nitrogen dioxide diluted with total nitrogen to a concentration of 10% for 90 seconds, then taken out, and 100 fibers were bundled to form a module with a length of 15 cyt. After that, when the water permeation rate was measured, the pressure difference was 1 kg/c.
rd' was α030m/(7)2.

Claims (1)

【特許請求の範囲】 1、ポリフエニレンサルフアイドを主成分とする微多孔
性膜の表面を酸化処理することを特徴とする微多孔性膜
の透水性改良方法。 2、特許請求範囲第一項記載の酸化処理を、過酸化水素
、有機過酸化物、二酸化窒素、過マンガン酸塩、過ヨウ
素酸塩及びクロム酸の1種以上を用いて行うことを特徴
とする微多孔性膜の透水性改良方法。
[Scope of Claims] 1. A method for improving water permeability of a microporous membrane, which comprises oxidizing the surface of the microporous membrane containing polyphenylene sulfide as a main component. 2. The oxidation treatment described in claim 1 is performed using one or more of hydrogen peroxide, organic peroxide, nitrogen dioxide, permanganate, periodate, and chromic acid. A method for improving water permeability of microporous membranes.
JP61057107A 1986-03-17 1986-03-17 Method for improving water permeability of micro-porous membrane Pending JPS62213813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057107A JPS62213813A (en) 1986-03-17 1986-03-17 Method for improving water permeability of micro-porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057107A JPS62213813A (en) 1986-03-17 1986-03-17 Method for improving water permeability of micro-porous membrane

Publications (1)

Publication Number Publication Date
JPS62213813A true JPS62213813A (en) 1987-09-19

Family

ID=13046291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057107A Pending JPS62213813A (en) 1986-03-17 1986-03-17 Method for improving water permeability of micro-porous membrane

Country Status (1)

Country Link
JP (1) JPS62213813A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
JPH02126622A (en) * 1988-11-07 1990-05-15 Nippon Chemicon Corp Electrolytic capacitor
JPH02181409A (en) * 1989-01-06 1990-07-16 Nippon Chemicon Corp Electrolytic capacitor
WO1990012638A1 (en) * 1989-04-18 1990-11-01 Daicel Chemical Industries, Ltd. Method of producing modified porous membrane
FR2730244A1 (en) * 1995-02-02 1996-08-09 Gec Alsthom Acb Polyphenylene sulphide diaphragm treatment
JPH1186844A (en) * 1996-09-26 1999-03-30 Toray Ind Inc Battery electrode and battery using it
JP2006212480A (en) * 2005-02-01 2006-08-17 Ngk Insulators Ltd Carbon film and separation method of water and organic solvent using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
JPH02126622A (en) * 1988-11-07 1990-05-15 Nippon Chemicon Corp Electrolytic capacitor
JPH02181409A (en) * 1989-01-06 1990-07-16 Nippon Chemicon Corp Electrolytic capacitor
WO1990012638A1 (en) * 1989-04-18 1990-11-01 Daicel Chemical Industries, Ltd. Method of producing modified porous membrane
FR2730244A1 (en) * 1995-02-02 1996-08-09 Gec Alsthom Acb Polyphenylene sulphide diaphragm treatment
JPH1186844A (en) * 1996-09-26 1999-03-30 Toray Ind Inc Battery electrode and battery using it
JP2006212480A (en) * 2005-02-01 2006-08-17 Ngk Insulators Ltd Carbon film and separation method of water and organic solvent using it

Similar Documents

Publication Publication Date Title
EP1435261B1 (en) Method for production of a hollow fiber membrane
JPS6335726B2 (en)
DE69019544T2 (en) Membranes.
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
JPS61283305A (en) Porous hollow yarn membrane
JPS62213813A (en) Method for improving water permeability of micro-porous membrane
CN105771700A (en) Mixed diamine monomer adopted chlorine-resistant nanofiltration membrane and preparation method therefor
Idris et al. Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes
JP3216910B2 (en) Porous hollow fiber membrane
JPS63296940A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPS6138208B2 (en)
JPH0569571B2 (en)
JPS6138207B2 (en)
JPS60248202A (en) Hollow fiber membrane and its preparation
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0468010B2 (en)
JP2005042074A (en) Production method for porous membrane
JPS6134033A (en) Microporous membrane
JPH0545617B2 (en)
KR100977397B1 (en) Porous and symmetric hollow fiber membranes supported by a reinforce element and manufacturing method thereof
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
KR20140103385A (en) Modified poly(tetrafluoroethylene) membrane and manufacturing method thereof
JPH06128406A (en) Production of porous membrane of polytetrafluoroethylene-based resin
JP5398084B2 (en) Oxidation-resistant hydrophilic polysulfone-based hollow fiber membrane and method for producing the same
JPH028047B2 (en)