JPH0545164B2 - - Google Patents
Info
- Publication number
- JPH0545164B2 JPH0545164B2 JP61042505A JP4250586A JPH0545164B2 JP H0545164 B2 JPH0545164 B2 JP H0545164B2 JP 61042505 A JP61042505 A JP 61042505A JP 4250586 A JP4250586 A JP 4250586A JP H0545164 B2 JPH0545164 B2 JP H0545164B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- beam splitter
- polarized light
- lights
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 47
- 230000010287 polarization Effects 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 13
- 241000282326 Felis catus Species 0.000 claims description 9
- 230000005855 radiation Effects 0.000 description 29
- 230000004907 flux Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Optical Transform (AREA)
Description
【発明の詳細な説明】
〈技術分野〉
本発明はエンコーダーに関し、特に回転物体に
取付けた回折格子に可干渉光束を入射させ、該回
折格子からの回折光を利用して、物体の回転状態
を検出するエンコーダーに関する。[Detailed Description of the Invention] <Technical Field> The present invention relates to an encoder, and in particular to an encoder that makes a coherent light beam incident on a diffraction grating attached to a rotating object, and uses the diffracted light from the diffraction grating to determine the rotational state of the object. Concerning the encoder to be detected.
〈従来技術〉
近年NC工作機械や半導体焼付装置等の精密機
械においては1μm以下(サブミクロン)の単位で
測定することのできる精密な測定器が要求されて
いる。<Prior Art> In recent years, precision machines such as NC machine tools and semiconductor printing equipment have required precision measuring instruments that can measure in units of 1 μm or less (submicron).
従来よりサブミクロンの単位で測定することの
できる測定器としては、レーザー等の可干渉性光
束を用い移動物体からの回折光より干渉縞を形成
させ、該干渉縞を利用したリニアエンコーダーが
良く知られている。 Conventionally, a linear encoder that uses a coherent light beam such as a laser to form interference fringes from diffracted light from a moving object is well-known as a measuring instrument capable of measuring in submicron units. It is being
一方、フロツピーデスクの駆動等のコンピユー
ター機器、プリンター等の事務機器、あるいは
NC工作機械さらにはVTRのキヤプステンモータ
ーや回転ドラム等の回転機構の回転速度や回転速
度の変動量を検出する為の手段として光電的なロ
ータリーエンコーダーが利用されてきている。 On the other hand, computer equipment such as floppy desk drives, office equipment such as printers, or
Photoelectric rotary encoders have been used as a means to detect the rotational speed and variation in rotational speed of rotating mechanisms such as NC machine tools and VTR capsten motors and rotating drums.
光電的なロータリーエンコーダーは例えば第3
図に示すように回転軸30に連絡した円板35の
周囲に透光部と遮光部を等間隔に設けた、所謂メ
インスケール31とこれに対応してメインスケー
ルと等しい間隔で透光部と遮光部とを設けた所謂
固定のインデツクススケール32との双方のスケ
ールを投光手段33と受光手段34で挟んで対抗
配置した所謂インデツクススケール方式の構成を
採つている。この方法はメインスケールの回転に
伴つて双方のスケールの透光部と遮光部の間隔に
同期した信号が得られ、この信号を周波数解折し
て回転軸の回転速度の変動を検出している。この
為、双方のスケールの透光部と遮光部とのスケー
ル間隔を細かくすればする程、検出精度を高める
ことができる。しかしながらスケール間隔を細か
くすると回折光の影響で受光手段からの出力信号
のS/N比が低下し、検出精度が低下してしまう
欠点があつた。この為メインスケールの透光部と
遮光部の格子の総本数を固定させ、透光部と遮光
部の間隔を回折光の影響を受けない程度まで拡大
しようとするとメインスケールの円板の直径が増
大し更に厚さも増大し装置全体が大型化し、この
結果被検回転物体への負荷が大きくなつてくる等
の欠点があつた。 For example, a photoelectric rotary encoder
As shown in the figure, a so-called main scale 31 has light-transmitting parts and light-shielding parts provided at equal intervals around a disk 35 connected to a rotating shaft 30, and correspondingly, a so-called main scale 31 has light-transmitting parts and light-shielding parts provided at equal intervals to the main scale. A so-called fixed index scale 32 is provided with a light shielding part, and a so-called index scale type structure is adopted in which both scales are placed opposite to each other with a light projecting means 33 and a light receiving means 34 sandwiching the scales. In this method, as the main scale rotates, a signal is obtained that is synchronized with the interval between the light-transmitting part and the light-blocking part of both scales, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. . Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy can be. However, when the scale interval is narrowed, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. This increases the size and thickness of the device, making the entire device larger, resulting in disadvantages such as an increase in the load on the rotating object to be tested.
この様な従来のロータリーエンコーダーの欠点
を解消する1つの手段として、干渉縞を利用した
前述のリエアエンコーダーの測定原理を直接ロー
タリーエンコーダーに適用することも考えられ
る。 As one means to eliminate such drawbacks of the conventional rotary encoder, it is conceivable to directly apply the measurement principle of the above-mentioned rear-air encoder using interference fringes to the rotary encoder.
この種の干渉縞を利用するエンコーダの構成の
1つにレーザー等の光源から出射する可干渉光束
を分解して複数の光束を回折格子の同一位置に入
射させたり、又は、回折格子の異なる位置に入射
させたりし、夫々同一位置から出射する回折光同
志の重ね合わせや、又は、異なる位置から出射す
る回折光同志の重ね合わせにより干渉縞を得る方
法がある。この場合、従来の方式では、装置の小
型化の為に半導体レーザーを用い、半導体レーザ
ーから出射した直線偏光したレーザー光を1/4波
長板により円偏光として偏光ビームスプツターに
入射させ、P偏光及びS偏光の互いに強度が等し
い光束に分割し利用していた。 One of the configurations of an encoder that uses this type of interference fringes is to separate the coherent light beam emitted from a light source such as a laser and make multiple light beams enter the same position on the diffraction grating, or to make them enter different positions on the diffraction grating. There is a method of obtaining interference fringes by superimposing diffracted lights emitted from the same position, or by superimposing diffracted lights emitted from different positions. In this case, the conventional method uses a semiconductor laser to miniaturize the device, and the linearly polarized laser light emitted from the semiconductor laser is converted into circularly polarized light by a 1/4 wavelength plate and incident on the polarization beam splitter, and the P-polarized light is and S-polarized light, which are divided into light beams of equal intensity and utilized.
しかしながら、装置の小型化と共に、部品数を
減らしコストを下げることはこの種の装置に限ら
ず種々の装置に求められることであり、その意味
では単に光束を分割する目的だけの為に、1/4波
長板の如き特殊な光学部品を使用することは好ま
しくなかつた。 However, along with the miniaturization of the device, reducing the number of parts and lowering costs is required not only for this type of device but also for various devices, and in that sense, the 1/2 It was not desirable to use special optical components such as a four-wave plate.
〈発明の概要〉
本発明の目的は、上記従来の問題点に鑑み、小
型化、低価格化が更に要求されるエンコーダーに
於いて、1/4波長板等の特殊な光学部品を用いず
に光束の分割が可能な分解能が高いエンコーダー
を提供することにある。<Summary of the Invention> In view of the above-mentioned conventional problems, an object of the present invention is to provide an encoder that is required to be smaller and lower in price without using special optical parts such as a 1/4 wavelength plate. The object of the present invention is to provide an encoder with high resolution capable of dividing a luminous flux.
上記目的を達成する為に、本発明に係るエンコ
ーダーは、放射状の回折格子が形成してある円盤
の回転状態を検出するエンコーダーにおいて、波
長λの直線偏光光を放射する半導体レーザーと偏
光ビームスプリツターと前記半導体レーザーが放
射した直線偏光光を前記偏光ビームスリツターに
向ける指向手段とを有し、前記半導体レーザー及
び前記指向手段は前記直線偏光光が前記偏光ビー
ムスプリツターに入射する際の前記直線偏光光の
偏光方向が前記偏光ビームスプリツターの直交偏
波面の直交軸に対して45度を成すよう配置され、
更に、前記偏光ビームスプリツターにより前記直
線偏光光が分割されて生じた一対の偏光光を前記
放射状回折格子の前記円盤の中心に関してほぼ対
称な2箇所に入射せしめるべく前記一対の偏光光
の各偏光光毎に設けた入射手段と、前記放射状回
折格子の前記2箇所から生じる1次回折光の各々
を該1次回折光が生じた箇所に戻して再回折せし
め、前記2箇所から生じる1次の再回折光を前記
入射手段を介して前記偏光ビームスプリツターに
入射させるよう前記1次回折光毎に設けたキヤツ
ツアイ光学系とを有し、前記各入射手段又は前記
各キヤツツアイ光学系は前記偏光ビームスプリツ
ターからの偏光光の偏光方向に対して前記偏光ビ
ームスプリツターに入射させる1次の再回折光の
偏光方向を直交せしめるλ/4板を備え、更に、
前記偏光ビームスプリツターにより合成された前
記各1次の再回折光同士を互いに干渉せしめるこ
とにより干渉光を形成し、該干渉光を前記円盤の
回転状態を示す信号に変換する手段を有すること
を特徴とする。 In order to achieve the above object, an encoder according to the present invention includes a semiconductor laser that emits linearly polarized light with a wavelength λ and a polarizing beam splitter in an encoder that detects the rotational state of a disk on which a radial diffraction grating is formed. and directing means for directing the linearly polarized light emitted by the semiconductor laser toward the polarizing beam splitter, the semiconductor laser and the directing means directing the linearly polarized light toward the polarizing beam splitter. arranged such that the polarization direction of the polarized light forms an angle of 45 degrees with respect to the orthogonal axis of the orthogonal polarization plane of the polarization beam splitter,
Furthermore, in order to cause the pair of polarized lights generated by splitting the linearly polarized light by the polarizing beam splitter to enter two substantially symmetrical locations with respect to the center of the disc of the radial diffraction grating, each polarization of the pair of polarized lights is An input means provided for each light and each of the first-order diffracted lights generated from the two locations of the radial diffraction grating is returned to the location where the first-order diffraction light was generated to be re-diffracted, and the first-order re-diffraction generated from the two locations is a cat's-eye optical system provided for each of the first-order diffracted lights so that the light enters the polarizing beam splitter via the incident means, and each of the incident means or each cat's-eye optical system is configured to input light from the polarizing beam splitter to the polarizing beam splitter. a λ/4 plate that makes the polarization direction of the first-order re-diffraction light incident on the polarization beam splitter perpendicular to the polarization direction of the polarized light;
The method further includes means for forming interference light by causing the respective first-order re-diffracted lights combined by the polarization beam splitter to interfere with each other, and converting the interference light into a signal indicating the rotational state of the disk. Features.
尚、本発明の更なる特徴は以下に示す実施例か
ら理解出来るであろう。 Further features of the present invention will be understood from the examples shown below.
〈実施例〉
第1図は本発明に係るエンコーダーの実施例を
示す図で、ロータリーエンコーダーを示してい
る。図中、1はレーザ、2はレーザ1から出射す
る可干渉光束を平行光束にするコリメータレン
ズ、3は2個の台形プリズムを貼り合わせて成る
光学部品、4は光学部品3の貼り合わせ面で、偏
光ビームスプリツターを構成する。5及び7は反
射鏡、6は回転物体上に取付けられた放射格子
で、回転物体の回転中心と放射格子の中心0で大
略一致している。8及び10は1/4波長板で放射
格子6に入射出する光束の偏光方向を変える。9
及び10は放射格子6から出射する特定次数の回
折光を再度放射格子6に指向させる為の反射手段
で、キヤツアイ光学系から成る。12は1/4波長
板で、光学部品3を介して重ね合わされた光束の
偏光方位を円偏光にする。13は光分割器、14
及び16は偏光板、15及び17は受光手段で光
電変換素子等から成る。又、0は放射格子6の中
心を、M1,M2は放射格子6上の任意の点を示
す。<Embodiment> FIG. 1 is a diagram showing an embodiment of an encoder according to the present invention, and shows a rotary encoder. In the figure, 1 is a laser, 2 is a collimator lens that converts the coherent beam emitted from the laser 1 into a parallel beam, 3 is an optical component made by bonding two trapezoidal prisms, and 4 is the bonded surface of the optical component 3. , which constitutes a polarizing beam splitter. 5 and 7 are reflecting mirrors, and 6 is a radiation grating mounted on a rotating object, and the rotation center of the rotating object and the center 0 of the radiation grating approximately coincide with each other. 8 and 10 are 1/4 wavelength plates that change the polarization direction of the light beam entering and exiting the radiation grating 6. 9
and 10 are reflecting means for redirecting the diffracted light of a specific order emitted from the radiation grating 6 to the radiation grating 6, which is comprised of a cat's-eye optical system. Reference numeral 12 denotes a 1/4 wavelength plate, which changes the polarization direction of the light beams superimposed via the optical component 3 into circularly polarized light. 13 is a light splitter, 14
and 16 are polarizing plates, and 15 and 17 are light receiving means consisting of photoelectric conversion elements and the like. Further, 0 indicates the center of the radiation grating 6, and M 1 and M 2 indicate arbitrary points on the radiation grating 6.
本実施例ではレーザ1より放射される光束をコ
リメータレンズ2によつて平行光束とし光学部品
3に入射させ、光学部品3を成す台形プリズムの
斜面で反射させた後、その光分割面4へ所定の角
度で入射する様に指向する。この光分割面4に入
射した平行光束は1:1の強度比で反射光束と透
過光束の2つの直線偏光した光束に分割される。
尚、本実施例に於るレーザ1は半導体レーザを用
いている為、光束は予め所定の方向に直線偏光し
ている。さて、光分割面4で分割された2光束の
内、反射光束は光学部品3の光束入射出面と斜面
とで内部反射を繰り返し、入射時と平行な状態で
光学部品3から出射する。出射した反射光束は反
射鏡5により放射格子6の所定の位置M1へ所定
の入射角で入射するが、このとき放射格子6から
の特定次数、例えばm次の回折光が放射格子6か
ら略垂直に放射するように光束を入射させてい
る。そして放射格子6に入射し回折した透過回折
光のうち特定次数の回折光を1/4波長板8を介し
て反射手段9により反射させ、同一光路を逆行さ
せ放射格子6上の略同一位置M1に再入射させて
いる。即ち、ここでは、放射格子6により垂直に
出射した回折光が1/4波長板8により一旦その偏
光方位を円偏光に変化せしめられ、反射手段9で
反射され再度1/4波長板を通過することにより、
放射格子6により再回折された特定次数の回折光
を入射したときと90度偏光方位の異なる直線偏光
光として、反射鏡5に指向している。そして、反
射鏡5で反射された特定次数の回折光は再度同一
光路を逆行し、光学部品3に入射して内面反射を
繰り返しその光分割面4へ達する。 In this embodiment, the light beam emitted from the laser 1 is made into a parallel light beam by the collimator lens 2 and is made incident on the optical component 3. After being reflected by the slope of the trapezoidal prism forming the optical component 3, it is directed to the light splitting surface 4 at a predetermined angle. Orient it so that it is incident at an angle of . The parallel light beam incident on the light splitting surface 4 is split into two linearly polarized light beams, a reflected light beam and a transmitted light beam, at an intensity ratio of 1:1.
Incidentally, since the laser 1 in this embodiment uses a semiconductor laser, the light beam is linearly polarized in advance in a predetermined direction. Of the two light beams split by the light splitting surface 4, the reflected light beam undergoes internal reflection repeatedly on the light beam entrance/exit surface and the slope of the optical component 3, and exits from the optical component 3 in a state parallel to the time of incidence. The emitted reflected light flux is incident on a predetermined position M1 of the radiation grating 6 at a predetermined angle of incidence by the reflecting mirror 5, but at this time, the diffracted light of a specific order, for example, the m order, from the radiation grating 6 is approximately The light beam is incident so that it radiates vertically. Then, the diffracted light of a specific order among the transmitted diffracted light incident on the radiation grating 6 and diffracted is reflected by the reflecting means 9 via the quarter-wave plate 8, and is caused to travel backward along the same optical path to approximately the same position M on the radiation grating 6. 1 is re-injected. That is, here, the diffracted light vertically emitted by the radiation grating 6 is once changed in its polarization direction to circularly polarized light by the quarter-wave plate 8, reflected by the reflecting means 9, and passes through the quarter-wave plate again. By this,
The diffracted light of a specific order re-diffracted by the radiation grating 6 is directed toward the reflecting mirror 5 as linearly polarized light with a polarization direction that is 90 degrees different from that when it was incident. Then, the diffracted light of the specific order reflected by the reflecting mirror 5 travels back along the same optical path again, enters the optical component 3, repeats internal reflection, and reaches the light splitting surface 4.
尚、本実施例では上述した様に光分割面4から
反射手段9に至る特定次数の回折光の往復光路を
同一としている。又、反射手段9として適用して
いるキヤツツアイ光学は、反射鏡を集光レンズの
略焦点面上に配置し、集光レンズに平行に入射し
てきた特定次数の回折光のみを反射鏡で反射させ
た後、元の光路を逆戻りするようにしている。そ
して、その他の次数の回折光を所定の手段により
遮光するものであり、通常の反射鏡等を用いて回
折光を反射させるのに比べ、例えばレーザーの発
振波長が変化し、回折角が多少変化しても略同じ
光路で戻すことができる特徴がある。 In this embodiment, as described above, the round trip optical path of the diffracted light of a specific order from the light splitting surface 4 to the reflecting means 9 is the same. In addition, the cat's eye optics used as the reflecting means 9 places a reflecting mirror approximately on the focal plane of the condensing lens, and only the diffracted light of a specific order that is incident parallel to the condensing lens is reflected by the reflecting mirror. After that, the light path is reversed. Then, the diffracted light of other orders is blocked by a predetermined means, and compared to reflecting the diffracted light using a normal reflecting mirror, for example, the oscillation wavelength of the laser changes, and the diffraction angle changes somewhat. It has the characteristic that it can be returned using almost the same optical path even if the
又、キヤツツアイ光学系に第1図に示す反射手
段9の如き屈折率分布型レンズ、例えば日本板硝
子社製のセルフオツクマイクロレンズ(商品名)
等を適用し、その両端平面な点に着目して片面に
反射膜を設けることにより、構成が簡便で且つ又
生産性に富む光学素子として本発明に有効に適用
することができる。 In addition, a gradient index lens such as the reflecting means 9 shown in FIG. 1 is added to the cat's eye optical system, such as a self-occurring micro lens (trade name) manufactured by Nippon Sheet Glass Co., Ltd.
By applying the above, and providing a reflective film on one side by paying attention to the fact that both ends thereof are flat, it is possible to effectively apply the present invention as an optical element having a simple structure and high productivity.
一方、光分割面4は分割された2つの光束の内
透過した光束は、光学部品3の光束入射面及び光
学部品3を成す他方の台形プリズムの斜面で反射
され、光学部品3から出射して反射鏡7により放
射格子6上の所定の位置M2に入射する。ここで
も透過光束の場合同様、放射格子6から出射する
特定次数、例えばn次の透過回折光が放射格子6
に対して垂直に出射する様、反射鏡7によりある
入射角でM2に入射せしめられる。M2に入射し回
折した透過回折光の内所定次数の回折光は、前述
の反射手段9と同様の反射手段11により1/4波
長板10を介して同一光路を逆行し、放射格子6
の略同一位置M2へ再入射する。従つて、ここで
も放射格子6より再回折された特定次数の回折光
は放射格子6に入射した時とは90゜偏光方位の異
なる直線偏光光として反射鏡7に指向される。そ
して、反射鏡7で反射された特定次数の回折光は
再度同一光路を逆行し、光学部品3に入射して内
面反射を繰り返し光分割面4へ達する。 On the other hand, the light beam transmitted by the light splitting surface 4 out of the two divided light beams is reflected by the light beam incident surface of the optical component 3 and the slope of the other trapezoidal prism forming the optical component 3, and is emitted from the optical component 3. The light is incident on a predetermined position M 2 on the radiation grating 6 by the reflecting mirror 7 . Here, as in the case of the transmitted light flux, the transmitted diffracted light of a specific order, for example, the n-th order, emitted from the radiation grating 6 is
The light is made incident on M 2 at a certain angle of incidence by the reflecting mirror 7 so that the light is emitted perpendicularly to M2 . The diffracted light of a predetermined order among the transmitted diffracted light incident on M 2 and diffracted travels backward along the same optical path via a quarter-wave plate 10 by a reflecting means 11 similar to the above-mentioned reflecting means 9, and then passes through a radiation grating 6.
The beam re-enters at approximately the same position M2 . Therefore, here as well, the diffracted light of a specific order re-diffracted by the radiation grating 6 is directed to the reflecting mirror 7 as linearly polarized light having a polarization direction different by 90° from that when it was incident on the radiation grating 6. Then, the diffracted light of the specific order reflected by the reflecting mirror 7 travels back along the same optical path again, enters the optical component 3, repeats internal reflection, and reaches the light splitting surface 4.
このとき、透過光束も前述の反射光束と同様に
光分割面4から反射手段11に至る特定次数の回
折光の往復光路を同一としている。そして反射手
段9を介してきた回折光を重なり合わせた後、1/
4波長板12を介し円偏光とし、光分割器13で
2つの光束に分割し、各々の光束を互いの偏光方
位を45度傾けて配置した偏光板14,16を介し
双方の光束に90度の位相差を付けた直線偏光とし
て各々の受光手段15,17に入射させている。
そして受光手段15,17により形成された2光
束の干渉縞の強度を検出している。 At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the light splitting surface 4 to the reflecting means 11, as in the case of the reflected light beam described above. Then, after overlapping the diffracted lights that have passed through the reflection means 9, 1/
The light is circularly polarized through a four-wavelength plate 12, split into two beams by a light splitter 13, and each beam is polarized by 90 degrees through polarizing plates 14 and 16, which are arranged with their polarization directions tilted at 45 degrees. The light is input to each of the light receiving means 15 and 17 as linearly polarized light with a phase difference of .
Then, the intensity of the interference fringes of the two beams formed by the light receiving means 15 and 17 is detected.
さて、本実施例のエンコーダーに於ては、光学
部品3の光分割面4により何ら特殊な光学素子を
用いることなくレーザ1から出射した光束を同一
の光量比で透過光束と反射光束とに分けている。
同一の光量比にするのは前記の干渉縞強度を検出
する際に最も干渉縞の明暗比(ビジビリテイー)
が良くなる様にする為のものであり、放射格子6
の位置M1及びM2で得られる特定次数の回折光の
強度が略一致する様に構成される。以下、本実施
例に於る光分割面4の機能に関して詳述する。 Now, in the encoder of this embodiment, the light beam emitted from the laser 1 is divided into a transmitted light beam and a reflected light beam at the same light quantity ratio by the light splitting surface 4 of the optical component 3 without using any special optical element. ing.
The reason for making the light intensity ratio the same is to obtain the brightness ratio (visibility) of the interference fringes that is the best when detecting the intensity of the interference fringes mentioned above.
This is to improve the radiation grating 6.
The structure is such that the intensities of the diffracted light of a specific order obtained at positions M 1 and M 2 are substantially the same. Hereinafter, the function of the light splitting surface 4 in this embodiment will be explained in detail.
第2図は本実施例の光分割面の機能説明図であ
り、4は第1図の光分割面を示しており、説明を
容易にする為通常の偏光ビームスプリツターに置
換して図示している。又、図中の2種類の矢印
L,Aは光束の進行方向Lと偏光方位Aを示して
いる。 Fig. 2 is a functional explanatory diagram of the light splitting plane of this embodiment, and 4 indicates the light splitting plane of Fig. 1, and for ease of explanation, it is shown in place of a normal polarizing beam splitter. ing. Further, two types of arrows L and A in the figure indicate the traveling direction L and the polarization direction A of the light beam.
一般に偏光ビームスプリツターはその光分割面
4で任意の偏光方位を有する光束のP波成分を透
過させ、S波成分を反射させる働きを持つてい
る。従つて、光分割面4の直交偏波面に対し、図
示する如くθの角度を成す偏光面を持つ光束を入
射させると、光分割面4により分割されるP波成
分とS波成分との振幅比ははsinθ:cosθとなる。
従つて、光源から出射する出射光束の偏光方位が
光分割面4の直交偏波面に対し、45゜の角度を成
す様に設置すれば、光分割面4により分割される
P波成分とS波成分、即ち透過光束と反射光束の
振幅比はsin45゜:cos45゜=1:1と成り、結局同
一強度で分割されることになる。 In general, a polarizing beam splitter has the function of transmitting a P wave component of a light beam having an arbitrary polarization direction through its light splitting surface 4 and reflecting an S wave component. Therefore, when a light beam having a polarization plane forming an angle θ as shown in the figure is incident on the orthogonal polarization plane of the light splitting surface 4, the amplitude of the P wave component and the S wave component split by the light splitting surface 4 will be The ratio is sinθ:cosθ.
Therefore, if the light source is installed so that the polarization direction of the light beam emitted from the light source forms an angle of 45 degrees with respect to the orthogonal polarization plane of the light splitting surface 4, the P wave component and the S wave split by the light splitting surface 4 can be separated. The amplitude ratio of the components, that is, the transmitted light beam and the reflected light beam, is sin45°:cos45°=1:1, and they are ultimately divided at the same intensity.
本実施例ではレーザ1として半導体レーザを用
い、半導体レーザの構造で決まる偏波面を光学部
品3の光分割面4に対し所定の角度45゜となる様
にレーザ1をコリメータレンズ2の光軸のまわり
に傾けて(回転させ)設置している。この様な構
成にすることにより他の光学素子を用いることな
く、光分割面4に於て透過光束と反射光束との強
度比を1:1に出来る。従つて、この種の測定装
置に要求される小型化や光学部品数を減らすこと
によるコストの減少、及び組立、光学精度の調整
等に対して大きく寄与する。 In this embodiment, a semiconductor laser is used as the laser 1, and the laser 1 is aligned with the optical axis of the collimator lens 2 so that the plane of polarization determined by the structure of the semiconductor laser is at a predetermined angle of 45 degrees with respect to the light splitting plane 4 of the optical component 3. It is installed tilted (rotated). With such a configuration, the intensity ratio between the transmitted light beam and the reflected light beam can be made 1:1 at the light splitting surface 4 without using any other optical element. Therefore, it greatly contributes to reduction in size and cost reduction by reducing the number of optical components required for this type of measuring device, as well as to adjustment of assembly and optical accuracy.
本実施例において被測定回転物体が放射格子6
の1ピツチ分だけ回転するとm次の回折光の位相
は2mπだけ変化する。同様に放射格子6により再
回折されたn次の回折光の位相は2nπだけ変化す
る。これにより全体として受光手段からは(2m
−2n)個の正弦波形が得られる。本実施例では
このときの正弦波形を検出することにより回転量
を測定している。 In this embodiment, the rotating object to be measured is the radiation grating 6.
When rotated by 1 pitch, the phase of the m-th order diffracted light changes by 2mπ. Similarly, the phase of the n-th order diffracted light re-diffracted by the radiation grating 6 changes by 2nπ. As a result, the distance from the light receiving means as a whole is (2m
−2n) sine waveforms are obtained. In this embodiment, the amount of rotation is measured by detecting the sine waveform at this time.
例えば回折格子のピツチが3.2μm、M1及びM2
から得られる回折光として1次及び−1次を利用
したとすれば回転物体がピツチの3.2μm分だけ回
転したとき受光素子からは4個の正弦波形が得ら
れる。即ち正弦波形1個当りの分解能として回折
格子1ピツチの1/4の3.2/4=0.8μmが得られる。 For example, the pitch of the diffraction grating is 3.2 μm, M 1 and M 2
If the first-order and -1st-order diffracted lights are used as the diffracted light obtained from the light, four sine waveforms will be obtained from the light receiving element when the rotating object rotates by the pitch of 3.2 μm. That is, the resolution per sine waveform is 3.2/4=0.8 μm, which is 1/4 of one pitch of the diffraction grating.
本実施例では光分割器13により光束を2分割
し各々の光束間90度の位相差をつけることにより
回転物体の回転方向も判別出来るようにしてい
る。 In this embodiment, the light beam is divided into two parts by the light splitter 13, and a phase difference of 90 degrees is created between the two light beams, so that the direction of rotation of the rotating object can also be determined.
尚、回転量のみを測定するのであれば光分割面
13、偏光板14,16及び一方の受光手段は不
要である。又、正弦波形周波数を計測することに
より容易に回転物体の回転速度を求めることもで
きる。 Note that if only the amount of rotation is to be measured, the light splitting surface 13, the polarizing plates 14 and 16, and one of the light receiving means are unnecessary. Furthermore, the rotational speed of a rotating object can be easily determined by measuring the sine waveform frequency.
本実施例では回転中心に対して略点対称の2つ
の位置M1,M2からの回折光を利用することによ
り回転物体の回転中心と放射格子の中心0との偏
心にる測定誤差を軽減させている。 In this example, measurement errors due to eccentricity between the rotation center of the rotating object and the center 0 of the radiation grating are reduced by using diffracted light from two positions M 1 and M 2 that are approximately symmetrical about the rotation center. I'm letting you do it.
更に一方の光束の回転軸中心寄りの光束要素と
略点対称な位置に入射させた他方の光束の回転軸
中心寄りの光束要素とを互いに重なり合わせ、同
様に回転中心の外側寄りの光束要素同志を重ね合
わせることにより、ロータリーエンコーダ特有の
放射格子の外側と内側のピツチの違いより生じる
波面収差の影響を除去している。 Furthermore, the luminous flux elements of one luminous flux near the center of the rotation axis and the luminous flux elements of the other luminous flux incident at a substantially point-symmetrical position near the center of the rotation axis are overlapped with each other, and similarly the luminous flux elements near the outside of the rotation center are overlapped with each other. By overlapping these, the influence of wavefront aberration caused by the difference in pitch between the outside and inside of the radiation grating, which is unique to rotary encoders, is removed.
本実施例では光分割面4から反射手段9,11
に至る特定次数の回折光の往復の光路を同一とす
ることにより、光分割面4における2つの回折光
束の重なり具合を容易にし、装置全体の組立精度
を向上させている。 In this embodiment, from the light splitting surface 4 to the reflecting means 9, 11
By making the reciprocating optical path of the diffracted light of a specific order the same, the degree of overlapping of the two diffracted light beams at the light splitting surface 4 is facilitated, and the assembly precision of the entire device is improved.
尚、本実施例において1/4波長板8を光学部品
3と放射格子6との間に配置しても良い。他の1/
4波長板10も同様である。又、本実施例は偏光
ビームスプリツターと内面反射型のプリズムの量
機能を有する光学部品3を用いており、この種の
特定形状の偏光プリズムを用いることにより光学
部品数を少なくし、かつ各光学部品の組立精度の
向上を図ると共に装置全体の小型化を図つてい
る。 In this embodiment, the quarter-wave plate 8 may be placed between the optical component 3 and the radiation grating 6. other 1/
The same applies to the four-wavelength plate 10. In addition, this embodiment uses an optical component 3 having a quantity function of a polarizing beam splitter and an internal reflection type prism, and by using this type of polarizing prism with a specific shape, the number of optical components can be reduced and each The aim is to improve the assembly precision of optical components and to downsize the entire device.
又、本実施例に於いては、異なる次数の回折光
を放射格子6上の位置M1,M2から得る為に、反
射鏡5及び7の位置と反射面の光束に対する傾き
を工夫している。ここではM1及びM2に於いて相
異なる次数の回折光が双方共放射格子から垂直に
出射する様に構成しているが、反射鏡5及び7を
同じ様なある角度で傾けて光分割面4で分割され
た反射光束及び透過光束をM1及びM2の放射格子
に対して垂直に入射させ、夫々の位置から出射す
る所定次数の回折光の出射方向に反射手段を適宜
配置しても良い。 Furthermore, in this embodiment, in order to obtain diffracted lights of different orders from positions M 1 and M 2 on the radiation grating 6, the positions of the reflecting mirrors 5 and 7 and the inclinations of the reflecting surfaces with respect to the light beam are devised. There is. Here, the diffracted lights of different orders in M 1 and M 2 are configured so that they both exit perpendicularly from the radiation grating, but the reflecting mirrors 5 and 7 are tilted at the same angle to split the light. The reflected light beam and the transmitted light beam divided by the surface 4 are incident perpendicularly to the radiation gratings M1 and M2 , and reflecting means are appropriately arranged in the direction of emission of the diffracted light of a predetermined order from each position. Also good.
この種の装置構成や互いに干渉縞を形成すべき
回折光の次数の選択は多種多様であり、本発明の
思想に基づき種々のエンコーダが構成出来ること
は言うまでもない。例えば、本実施例では光学部
材3を用いて部品数を減らしているが、複数のミ
ラーやプリズム、光分割器等を組合せて構成して
も良く、装置の仕様やコスト、製作の容易性等々
を考慮して本エンコーダの構成を決めれば良いの
である。 The configuration of this type of device and the selection of the orders of the diffracted lights that should mutually form interference fringes are diverse, and it goes without saying that various encoders can be configured based on the idea of the present invention. For example, in this embodiment, the number of parts is reduced by using the optical member 3, but it may be configured by combining multiple mirrors, prisms, light splitters, etc., and the specifications, cost, ease of manufacturing, etc. of the device may be improved. The configuration of this encoder can be determined by taking these into consideration.
又、第1図の構成では、所定の光分割面に対し
て、レーザから放射する光束の偏光方位が所定の
所望の角度45゜となる様に半導体レーザの配置を
工夫しているが、これとは逆に光分割面の直交偏
波面を既知の光束の偏光方位を鑑みて決め、即ち
45゜にして光学部品を構成しても良い。 In addition, in the configuration shown in Figure 1, the semiconductor laser is arranged so that the polarization direction of the light beam emitted from the laser is at a predetermined desired angle of 45 degrees with respect to a predetermined light splitting plane. On the contrary, the orthogonal polarization plane of the light splitting plane is determined by considering the known polarization direction of the light beam, i.e.
Optical components may be configured with an angle of 45°.
尚、本発明において使用する反射格子は、透光
部と遮光部から成る所謂振幅型の回折格子、互い
に異なる屈折率を有する部分から成る位相型の回
折格子である。特に位相型の回折格子は、例えば
透明円盤の円周上に凹凸のレリーフパターンを形
成することにより作成出来、エンボス、スタンパ
等のプロセスにより量産が可能である。 Note that the reflection grating used in the present invention is a so-called amplitude type diffraction grating consisting of a light transmitting part and a light shielding part, and a phase type diffraction grating consisting of parts having mutually different refractive indexes. In particular, phase-type diffraction gratings can be created, for example, by forming an uneven relief pattern on the circumference of a transparent disk, and can be mass-produced by processes such as embossing and stamping.
又、以上の説明では主として透過回折光を利用
するエンコーダーを示してるが、本発明に於いて
は反射回折光を利用する方式や反射回折光と透過
回折光の双方を利用する方式のエンコダーが適用
出来る。特に反射回折光を利用する方式は回折格
子又は移動もしくは回転物体の一方の側に全て光
学素子を配置することが出来、エンコーダーの用
途によつては装置構成上のメリツトが生じる。 Furthermore, although the above explanation mainly refers to an encoder that uses transmitted diffraction light, the present invention applies encoders that use reflected diffraction light or both reflected diffraction light and transmitted diffraction light. I can do it. In particular, the method using reflected diffraction light allows all optical elements to be placed on one side of the diffraction grating or the moving or rotating object, which has advantages in terms of device configuration depending on the use of the encoder.
〈発明の効果〉
以上、本発明に係るエンコーダーは、装置の部
品数が少なくて済み、これにより特にコストの減
少に対する寄与が大なる高分解能エンコーダーで
あり、簡便な手法により所望の光分割を成し得る
装置である。<Effects of the Invention> As described above, the encoder according to the present invention is a high-resolution encoder that requires only a small number of device parts, which makes a particularly large contribution to cost reduction, and achieves desired light splitting using a simple method. It is a device that can
第1図は本発明に係るエンコーダーの一実施例
を示す図。第2図は第1図に於る光分割面の機能
説明図。第3図はエンコーダーの従来例を示す模
式図。
1……レーザ、2……コリメータレンズ、3…
…光学部品、4……光分割面、5,7……反射
鏡、6……放射格子、8,10,12……1/4波
長板、9,11……キヤツツアイ光学系、13…
…光分割器、14,16……偏光板、15,17
……受光手段、M1,M2……放射格子上の光束入
射位置。
FIG. 1 is a diagram showing an embodiment of an encoder according to the present invention. FIG. 2 is a functional explanatory diagram of the light splitting plane in FIG. 1. FIG. 3 is a schematic diagram showing a conventional example of an encoder. 1...Laser, 2...Collimator lens, 3...
...Optical component, 4... Light splitting surface, 5, 7... Reflector, 6... Radiation grating, 8, 10, 12... 1/4 wavelength plate, 9, 11... Cat's eye optical system, 13...
...Light splitter, 14, 16...Polarizing plate, 15, 17
... Light receiving means, M 1 , M 2 ... Light beam incidence position on the radiation grating.
Claims (1)
状態を検出するエンコーダーにおいて、波長λの
直線偏光光を放射する半導体レーザーと偏光ビー
ムスプリツターと前記半導体レーザーが放射した
直線偏光光を前記偏光ビームスリツターに向ける
指向手段とを有し、前記半導体レーザー及び前記
指向手段は前記直線偏光光が前記偏光ビームスプ
リツターに入射する際の前記直線偏光光の偏光方
向が前記偏光ビームスプリツターの直交偏波面の
直交軸に対して45度を成すよう配置され、更に、
前記偏光ビームスプリツターにより前記直線偏光
光が分割されて生じた一対の偏光光を前記放射状
回折格子の前記円盤の中心に関してほぼ対称な2
箇所に入射せしめるべく前記一対の偏光光の各偏
光光毎に設けた入射手段と、前記放射状回折格子
の前記2箇所から生じる1次回折光の各々を該1
次回折光が生じた箇所に戻して再回折せしめ、前
記2箇所から生じる1次の再回折光を前記入射手
段を介して前記偏光ビームスプリツターに入射さ
せるよう前記1次回折光毎に設けたキヤツツアイ
光学系とを有し、前記各入射手段又は前記各キヤ
ツツアイ光学系は前記偏光ビームスプリツターか
らの偏光光の偏光方向に対して前記偏光ビームス
プリツターに入射させる1次の再回折光の偏光方
向を直交せしめるλ/4板を備え、更に、前記偏
光ビームスプリツターにより合成された前記各1
次の再回折光同士を互いに干渉せしめることによ
り干渉光を形成し、該干渉光を前記円盤の回転状
態を示す信号に変換する手段を有することを特徴
とするエンコーダー。 2 前記キヤツツアイ光学系は、レンズと該レン
ズのほぼ焦点位置に設けた反射鏡とを備えること
を特徴とする特許請求の範囲第1項記載のエンコ
ーダー。 3 前記キヤツツアイ光学系は、両端が平面より
成る屈折率分布型レンズと該レンズの一方の端面
に設けた反射膜とを備えることを特徴とする特許
請求の範囲第2項記載のエンコーダー。[Scope of Claims] 1. In an encoder that detects the rotational state of a disk on which a radial diffraction grating is formed, a semiconductor laser that emits linearly polarized light with a wavelength λ, a polarization beam splitter, and a straight line emitted by the semiconductor laser directing means for directing the polarized light toward the polarized beam splitter, the semiconductor laser and the directing means are configured so that the polarization direction of the linearly polarized light when the linearly polarized light is incident on the polarized beam splitter is the polarized light. arranged at an angle of 45 degrees to the orthogonal axis of the orthogonal polarization plane of the beam splitter;
A pair of polarized lights generated by splitting the linearly polarized light by the polarizing beam splitter are split into two polarized lights that are substantially symmetrical about the center of the disc of the radial diffraction grating.
An input means provided for each polarized light of the pair of polarized lights to make each of the first-order diffracted lights from the two locations of the radial diffraction grating enter the said one.
A cat's-eye optical system is provided for each of the first-order diffracted lights so that the second-order diffracted lights are returned to the locations where the next-order diffracted lights are generated, and the first-order re-diffracted lights generated from the two locations are incident on the polarizing beam splitter via the input means. each of the input means or each of the cat's eye optical systems determines the polarization direction of the first-order re-diffracted light to be incident on the polarization beam splitter with respect to the polarization direction of the polarized light from the polarization beam splitter. λ/4 plates arranged orthogonally to each other are provided;
An encoder comprising means for forming interference light by causing subsequent re-diffracted lights to interfere with each other and converting the interference light into a signal indicating the rotational state of the disc. 2. The encoder according to claim 1, wherein the cat's eye optical system includes a lens and a reflecting mirror provided approximately at the focal point of the lens. 3. The encoder according to claim 2, wherein the cat's-eye optical system includes a gradient index lens whose both ends are flat, and a reflective film provided on one end surface of the lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250586A JPS62200219A (en) | 1986-02-27 | 1986-02-27 | Encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250586A JPS62200219A (en) | 1986-02-27 | 1986-02-27 | Encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62200219A JPS62200219A (en) | 1987-09-03 |
JPH0545164B2 true JPH0545164B2 (en) | 1993-07-08 |
Family
ID=12637921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4250586A Granted JPS62200219A (en) | 1986-02-27 | 1986-02-27 | Encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62200219A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5104225A (en) * | 1991-01-25 | 1992-04-14 | Mitutoyo Corporation | Position detector and method of measuring position |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56100497A (en) * | 1980-01-11 | 1981-08-12 | Mitsumi Electric Co Ltd | Ceramic circuit board |
JPS57149912A (en) * | 1981-03-13 | 1982-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical position detector |
JPS5810880A (en) * | 1981-06-30 | 1983-01-21 | トムソン・セエスエフ | Asymptotic illumination device for article |
-
1986
- 1986-02-27 JP JP4250586A patent/JPS62200219A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56100497A (en) * | 1980-01-11 | 1981-08-12 | Mitsumi Electric Co Ltd | Ceramic circuit board |
JPS57149912A (en) * | 1981-03-13 | 1982-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical position detector |
JPS5810880A (en) * | 1981-06-30 | 1983-01-21 | トムソン・セエスエフ | Asymptotic illumination device for article |
Also Published As
Publication number | Publication date |
---|---|
JPS62200219A (en) | 1987-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979826A (en) | Displacement measuring apparatus | |
US4868385A (en) | Rotating state detection apparatus using a plurality of light beams | |
US5000542A (en) | Optical type encoder | |
JPH0231111A (en) | Rotary encoder | |
JPS62200225A (en) | Rotary encoder | |
JPH0545164B2 (en) | ||
JPS62204126A (en) | Encoder | |
JPS62200224A (en) | Rotary encoder | |
JPS61212728A (en) | Rotary encoder | |
JPH0462003B2 (en) | ||
JPS62163919A (en) | Rotary encoder | |
JPH07119623B2 (en) | Displacement measuring device | |
JPH0473732B2 (en) | ||
JP3517506B2 (en) | Optical displacement measuring device | |
JPH07119626B2 (en) | Rotary encoder | |
JPH045142B2 (en) | ||
JP2683098B2 (en) | encoder | |
JPS62200223A (en) | Encoder | |
JPS62204125A (en) | Encoder | |
JPS62204124A (en) | Encoder | |
JPH0466293B2 (en) | ||
JPS62163918A (en) | Rotary encoder | |
JPH0466294B2 (en) | ||
JPS62163920A (en) | Rotary encoder | |
JPS62200220A (en) | Rotary encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |