JPH0544898B2 - - Google Patents

Info

Publication number
JPH0544898B2
JPH0544898B2 JP1757290A JP1757290A JPH0544898B2 JP H0544898 B2 JPH0544898 B2 JP H0544898B2 JP 1757290 A JP1757290 A JP 1757290A JP 1757290 A JP1757290 A JP 1757290A JP H0544898 B2 JPH0544898 B2 JP H0544898B2
Authority
JP
Japan
Prior art keywords
pressure
screw
value
injection
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1757290A
Other languages
Japanese (ja)
Other versions
JPH03221428A (en
Inventor
Masaaki Myahara
Nobuyuki Nakamura
Takeshi Arai
Takahiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP1757290A priority Critical patent/JPH03221428A/en
Publication of JPH03221428A publication Critical patent/JPH03221428A/en
Publication of JPH0544898B2 publication Critical patent/JPH0544898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • B29C2045/773Zero point correction

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力を圧力センサにより検出してフイ
ードバツク制御を行うための射出成形機の圧力制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure control method for an injection molding machine for detecting pressure with a pressure sensor and performing feedback control.

〔従来の技術〕[Conventional technology]

従来、射出成形機の圧力制御、例えば射出圧力
を制御するに際しては、スクリユとアクチユータ
(駆動装置)間に介在させた圧力センサ(ロード
セル等)により射出圧力を検出し、検出した圧力
に基づいて射出圧力に対するフイードバツク制御
を行つていた。フイードバツク制御は管理の困難
な温度等の外乱が存在しても、成形条件の変動を
防止し、正確な動作を実現できる利点があり、精
密成形に広く用いられている。
Conventionally, when controlling the pressure of an injection molding machine, for example, controlling the injection pressure, the injection pressure is detected by a pressure sensor (load cell, etc.) interposed between the screw and the actuator (drive device), and injection is performed based on the detected pressure. Feedback control of pressure was performed. Feedback control has the advantage of preventing fluctuations in molding conditions and achieving accurate operation even in the presence of disturbances such as temperature that are difficult to control, and is widely used in precision molding.

ところで、このようなフイードバツク制御を行
う場合、圧力センサの検出値をそのまま用いて
も、当該検出値には正規の圧力以外の他の諸要因
に基づく誤差成分を含むため、正確な圧力制御は
困難となる。したがつて、従来は射出(計量)開
始直前における圧力センサの検出値(初期検出
値)を誤差成分(ドリフト成分)とみなし、この
初期検出値に基づいてドリフトに対するゼロ補正
を行つていた。
By the way, when performing such feedback control, even if the detected value of the pressure sensor is used as is, accurate pressure control is difficult because the detected value contains error components based on various factors other than the normal pressure. becomes. Therefore, conventionally, the detected value (initial detected value) of the pressure sensor immediately before the start of injection (metering) was regarded as an error component (drift component), and zero correction for drift was performed based on this initial detected value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した初期検出値における実際の誤
差成分は、第8図に示すような温度Thの変化に
伴う圧力センサ自身に起因する圧力検出信号(圧
力P)のドリフト成分、圧力センサ(ロードセ
ル)を機械的に組付けた場合における組付部位の
膨張(収縮)或は圧力センサの膨張(収縮)によ
る組付力変化に基づく第9図に示すような圧力検
出信号(圧力P)のドリフト成分、さらに、計量
工程の終了後に、スクリユの圧縮ゾーン或は供給
ゾーンに残留した圧力による樹脂のスクリユ前方
への移動又は圧抜き不足に起因する残圧成分、伝
達機構における摩擦力に基づく機械的誤差成分等
を含んでいる。
However, the actual error component in the above-mentioned initial detection value is the drift component of the pressure detection signal (pressure P) caused by the pressure sensor itself due to the change in temperature Th, as shown in FIG. A drift component of the pressure detection signal (pressure P) as shown in FIG. 9 based on a change in assembly force due to expansion (contraction) of the assembly part or expansion (contraction) of the pressure sensor in the case of mechanical assembly; Furthermore, after the end of the metering process, there are residual pressure components caused by the movement of the resin toward the front of the screw due to residual pressure in the compression zone or supply zone of the screw, or insufficient pressure relief, and mechanical error components caused by frictional force in the transmission mechanism. etc.

このように、実際の初期検出値には誤差成分と
して残圧等の圧力成分を含むため、真のドリフト
成分は検出されない。結局、従来の制御方法では
ドリフトに対する正確なゼロ補正を行うことは困
難であり、精密成形にも限界があつた。
In this way, since the actual initial detection value includes a pressure component such as residual pressure as an error component, a true drift component is not detected. In the end, with conventional control methods, it is difficult to perform accurate zero correction for drift, and there are limits to precision molding.

本発明はこのような従来の技術の存在する課題
を解決した射出成形機の圧力制御方法の提供を目
的とするものである。
An object of the present invention is to provide a pressure control method for an injection molding machine that solves the problems of the conventional techniques.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る射出成形機の圧力制御方法は、ス
クリユ2に作用する圧力を、圧力センサ3により
検出して圧力に対するフイードバツク制御を行う
に際し、計量工程又は射出工程の終了後における
デコンプレツシヨン工程において、或は計量工程
又は射出工程の終了後に強制的にスクリユ2を後
退させることによつて、予め設定した零付近(零
を含む。他も同じ)の圧力設定値Psに達するま
で減圧するとともに、圧力が前記圧力設定値Ps
に達した時点からスクリユ2を設定した距離設定
値Lsだけ後退させる。そして、スクリユ2が距
離設定値Lsだけ後退した後に圧力を検出し、こ
の検出した圧値Pcに基づいて圧力制御に係わる
制御量を補正するようにしたことを特徴とする。
The pressure control method for an injection molding machine according to the present invention detects the pressure acting on the screw 2 with the pressure sensor 3 and performs feedback control on the pressure, and in the decompression process after the end of the metering process or the injection process. , or by forcibly retracting the screw 2 after the end of the metering process or the injection process, the pressure is reduced until it reaches a preset pressure setting value Ps near zero (including zero, and the same applies to others), and The pressure is the pressure set value Ps
From the point when the distance is reached, the screw 2 is moved back by the set distance Ls. The pressure is detected after the screw 2 moves back by a set distance Ls, and the control amount related to pressure control is corrected based on the detected pressure value Pc.

〔作用〕[Effect]

本発明に係る射出成形機の圧力制御方法によれ
ば、計量工程又は射出工程の終了後におけるスク
リユ2の後退により、最初に、予め設定した零付
近の圧力設定値Psに達するまで減圧が行われる。
通常、圧力が零まで低下するスクリユ2の後退距
離は背圧設定値、計量する樹脂量や樹脂の弾性率
等により異なるため、最初からスクリユ2の後退
距離に基づく圧力の零設定は現実上不可能であ
る。また、完全な圧力零点は捉えにくいので、圧
力設定値Psとしては零付近を設定し、この点を
零点とみなして差し支えない。
According to the pressure control method for an injection molding machine according to the present invention, by retracting the screw 2 after the end of the metering process or the injection process, the pressure is first reduced until it reaches a preset pressure setting value Ps near zero. .
Normally, the retraction distance of the screw 2 at which the pressure decreases to zero varies depending on the back pressure setting, the amount of resin to be measured, the elastic modulus of the resin, etc., so it is practically impossible to set the pressure to zero based on the retraction distance of the screw 2 from the beginning. It is possible. Furthermore, since it is difficult to find a complete pressure zero point, the pressure setting value Ps can be set near zero and this point can be regarded as the zero point.

一方、圧力が前記圧力設定値Psに達した時点
からは、予め設定した距離設定値Lsだけスクリ
ユ2の後退移動が行われる。この結果、圧力セン
サ3に対するスクリユ2の加圧作用が解除され、
圧力センサ3は背圧やスクリユ2の回転の影響を
受けなくなる。なお、距離設定値Lsは完全に圧
抜きされる最小距離であり、予め計算又は実験等
により求めることができる。
On the other hand, from the time when the pressure reaches the pressure set value Ps, the screw 2 is moved backward by a preset distance Ls. As a result, the pressurizing action of the screw 2 on the pressure sensor 3 is released,
The pressure sensor 3 is no longer affected by back pressure or rotation of the screw 2. Note that the distance setting value Ls is the minimum distance at which the pressure is completely relieved, and can be determined in advance by calculation or experiment.

スクリユ2が距離設定値Lsに達した後は圧力
センサ3に作用する圧力成分は排除されるため、
以後に圧力検出を行えば検出される圧力値Pcは
残圧等の圧力成分を含まない誤差成分(ドリフト
成分)のみとなる。よつて、この圧力値Pcに基
づいて圧力制御に係わる制御量を補正すれば、正
確な補正を行うことができる。
After the screw 2 reaches the distance setting value Ls, the pressure component acting on the pressure sensor 3 is eliminated, so
If pressure detection is performed thereafter, the detected pressure value Pc will be only an error component (drift component) that does not include pressure components such as residual pressure. Therefore, if the control amount related to pressure control is corrected based on this pressure value Pc, accurate correction can be performed.

〔実施例〕〔Example〕

以下には、本発明に係る好適な実施例を挙げ、
図面に基づき詳細に説明する。
Below, preferred embodiments according to the present invention are listed,
This will be explained in detail based on the drawings.

まず、本発明に係る圧力制御方法を実施できる
射出成形機の概略構成について第3図を参照して
説明する。なお、第3図は射出圧力に対して補正
する系のみを示す。
First, a schematic configuration of an injection molding machine capable of implementing the pressure control method according to the present invention will be described with reference to FIG. Note that FIG. 3 shows only a system for correcting injection pressure.

10は射出成形機における射出装置であり、前
部には加熱筒11を備える。加熱筒11はその前
端に射出ノズル12、後部に材料供給用ホツパー
13をそれぞれ備えるとともに、内部にスクリユ
2を回動自在及び進退自在に備える。そして、こ
のスクリユ2は射出装置10の後部に備えるスク
リユ駆動機構14によつて回転制御及び進退制御
せしめられる。
Reference numeral 10 denotes an injection device in an injection molding machine, and a heating cylinder 11 is provided at the front part. The heating cylinder 11 has an injection nozzle 12 at its front end, a material supply hopper 13 at its rear, and a screw 2 inside thereof so as to be rotatable and movable forward and backward. The screw 2 is controlled to rotate and advance and retreat by a screw drive mechanism 14 provided at the rear of the injection device 10.

スクリユ駆動機構14はスクリユ2の後端を回
動自在に保持する射出台15を備え、スクリユ2
は射出台15に固定した計量モータ(サーボモー
タ)16及び歯車伝達機構17によつて回転す
る。また、射出台15は機体18に設けたガイド
レール19によつて水平方向へスライド自在に支
持され、かつ後端に設けたボールネジ機構20及
び射出モータ(サーボモータ)21によつて進退
移動する。なお、計量モータ16と射出モータ2
1にはそれぞれパルスゼネレータ16aと21a
を備える。また、中央コントローラ22に接続し
た計量モータドライバ25と射出モータドライバ
26を備え、計量モータ16、射出モータ21は
各ドライバ25,26によつてそれぞれ駆動制御
される。
The screw drive mechanism 14 includes an injection table 15 that rotatably holds the rear end of the screw 2.
is rotated by a metering motor (servo motor) 16 fixed to the injection table 15 and a gear transmission mechanism 17. Further, the injection table 15 is supported so as to be slidable in the horizontal direction by a guide rail 19 provided on the machine body 18, and is moved forward and backward by a ball screw mechanism 20 and an injection motor (servo motor) 21 provided at the rear end. In addition, the metering motor 16 and the injection motor 2
1 have pulse generators 16a and 21a, respectively.
Equipped with. It also includes a metering motor driver 25 and an injection motor driver 26 connected to the central controller 22, and the metering motor 16 and the injection motor 21 are driven and controlled by the respective drivers 25 and 26, respectively.

一方、射出台15にはロードセル31(一般的
には圧力センサ3)を内蔵し、スクリユ2に作用
する圧力を検出する。また、30は処理部であ
り、通常、中央コントローラ22に内蔵される。
処理部30には各種処理を実行するCPU(中央処
理ユニツト)32を備えており、ロードセル31
はA/Dコンバータ(アナログーデイジタル変換
器)33を介して当該CPU32に接続するとと
もに、コンパレータ34の非反転入力部に接続
し、ロードセル31の検出圧力をCPU32及び
コンパレータ34に付与する。また、CPU32
はコンパレータ34の反転入力部及びコンパレー
タ35の非反転入力部と接続し、補正量Sをコン
パレータ34に、圧力指令値Poをコンパレータ
35にそれぞれ付与する。さらに、コンパレータ
35の反転入力部にはコンパレータ34の出力部
を接続するとともに、コンパレータ35の出力部
はPID補償回路36を介して射出モータドライバ
26に接続する。以上により補正系を含むフイー
ドバツク制御を構成する。
On the other hand, the injection table 15 has a built-in load cell 31 (generally a pressure sensor 3) to detect the pressure acting on the screw 2. Further, 30 is a processing section, which is usually built in the central controller 22.
The processing section 30 includes a CPU (central processing unit) 32 that executes various processes, and a load cell 31.
is connected to the CPU 32 via an A/D converter (analog-to-digital converter) 33 and also to a non-inverting input part of a comparator 34, and applies the detected pressure of the load cell 31 to the CPU 32 and the comparator 34. Also, CPU32
is connected to the inverting input part of the comparator 34 and the non-inverting input part of the comparator 35, and gives the correction amount S to the comparator 34 and the pressure command value Po to the comparator 35, respectively. Furthermore, the output part of the comparator 34 is connected to the inverting input part of the comparator 35, and the output part of the comparator 35 is connected to the injection motor driver 26 via the PID compensation circuit 36. The above constitutes a feedback control including a correction system.

次に、本発明に係る圧力制御方法について第1
図に示す特性図、第2図に示すフローチヤート及
び第3図に従つて説明する。
Next, the first part about the pressure control method according to the present invention will be explained.
The explanation will be made according to the characteristic diagram shown in the figure, the flowchart shown in FIG. 2, and FIG. 3.

本例は計量工程の終了後に補正を行う場合を示
し、また、成形サイクル中にデコンプレツシヨン
工程を含む場合を示す。
This example shows a case where correction is performed after the end of the metering process, and also shows a case where a decompression process is included during the molding cycle.

なお、中央コントローラ22には圧力設定値
Psと距離設定値Lsが予め設定されている(前記
〔作用〕参照)。
Note that the central controller 22 has a pressure setting value.
Ps and distance setting value Ls are set in advance (see [Operation] above).

まず、計量工程の終了により、射出モータ26
が逆回転制御され、スクリユ2が後退して圧抜き
(減圧操作)が行われる(区間A:ステツプ50,
51,52)。一方、中央コントローラ22はロード
セル31からの圧力検出値をモニタし、圧力検出
値が圧力設定値Psに達したなら、この時点から
スクリユ2の後退距離をモニタする(区間B:ス
テツプ53,54)。この後退距離はパルスゼネレー
タ21aによつてモニタ可能である。そして、距
離設定値Lsだけ後退したなら圧力値Pcのサンプ
リングを行う(区間C:ステツプ55,56)。なお、
圧力値Pcはロードセル31から検出される圧力
値を所定時間おきにCPU32に取り込み、複数
の圧力値を平均して求める(ステツプ57,58)。
スクリユ2が距離設定値Lsだけ後退した後にお
けるロードセル31に作用する加圧力は本来零で
あるため、もし、このときの圧力値Pcが零以外
の数値であれば、この圧力値Pcはドリフト分と
みなすことができ、この圧力値Pcに基づく補正
量SをCPU32からコンパレータ34に付与す
る(ステツプ59,60,61)。なお、デコンプレツ
シヨン工程におけるスクリユ2の後退距離が残つ
ているときは終了まで、スクリユ2を後退させ、
デコンプレツシヨン工程を終了させる(区間D:
ステツプ62,63)。以上のプロセスにより、圧力
影響の最も少ないデコンプレツシヨン工程におい
て補正量Sが求められる。
First, upon completion of the metering process, the injection motor 26
is controlled to rotate in the opposite direction, and the screw 2 is retreated to perform pressure relief (decompression operation) (section A: step 50,
51, 52). On the other hand, the central controller 22 monitors the pressure detection value from the load cell 31, and when the pressure detection value reaches the pressure set value Ps, monitors the retraction distance of the screw 2 from this point on (section B: steps 53, 54). . This retraction distance can be monitored by the pulse generator 21a. Then, when the distance has retreated by the set distance Ls, the pressure value Pc is sampled (section C: steps 55 and 56). In addition,
The pressure value Pc is obtained by importing the pressure value detected from the load cell 31 into the CPU 32 at predetermined time intervals and averaging a plurality of pressure values (steps 57, 58).
Since the pressurizing force acting on the load cell 31 after the screw 2 moves back by the distance setting value Ls is originally zero, if the pressure value Pc at this time is a value other than zero, this pressure value Pc will be equal to the drift. A correction amount S based on this pressure value Pc is applied from the CPU 32 to the comparator 34 (steps 59, 60, 61). In addition, when the retraction distance of the screw 2 in the decompression process remains, the screw 2 is retracted until the end.
Finish the decompression process (section D:
Steps 62, 63). Through the above process, the correction amount S can be determined in the decompression step where the influence of pressure is the least.

他方、補正量Sとロードセル31から得る圧力
値Piはコンパレータ34において比較処理され、
コンパレータ34の出力部からは補正された圧力
値Pf=Pi−Sを得る。
On the other hand, the correction amount S and the pressure value Pi obtained from the load cell 31 are compared in a comparator 34,
A corrected pressure value Pf=Pi-S is obtained from the output of the comparator 34.

また、圧力値Pfはコンパレータ35に付与さ
れ、圧力指令値Poに対する偏差値を得る。
Further, the pressure value Pf is applied to a comparator 35 to obtain a deviation value from the pressure command value Po.

よつて、偏差値はPID補償回路36を介して射
出モータドライバ26に供給され、補正された圧
力値によつて圧力に対する通常のフイードバツク
制御が行われる。
Therefore, the deviation value is supplied to the injection motor driver 26 via the PID compensation circuit 36, and normal feedback control of the pressure is performed using the corrected pressure value.

次に、他の変更例について説明する。 Next, another modification example will be explained.

第3図は補正量Sに基づいてロードセル31か
ら検出した圧力値Piを補正した場合を示したが、
圧力指令値Poを補正してもよい。第4図は圧力
指令値Poを補正量Sにより補正する場合を示す。
この場合、加算器37により圧力指令値Poと補
正量Sを加算し、補正された圧力指令値Pmを得
るとともに、コンパレータ35では当該圧力指令
値Pmと検出圧力Piの偏差値を得る。なお、第4
図において、他の省略部分は第3図と同様に構成
され、また、同様に機能する。
FIG. 3 shows a case where the pressure value Pi detected from the load cell 31 is corrected based on the correction amount S.
The pressure command value Po may be corrected. FIG. 4 shows a case where the pressure command value Po is corrected by the correction amount S.
In this case, the adder 37 adds the pressure command value Po and the correction amount S to obtain the corrected pressure command value Pm, and the comparator 35 obtains the deviation value between the pressure command value Pm and the detected pressure Pi. In addition, the fourth
In the figure, other omitted parts are constructed and function similarly to those in FIG. 3.

また、第1図と第2図は成形サイクルに含むデ
コンプレツシヨン工程を利用した場合を示した
が、第5図に示すように成形サイクル中にデコン
プレツシヨン工程を含まない場合には計量工程の
終了後に強制的にスクリユ2を後退させ、予め設
定した零付近の圧力設定値Psまで減圧させると
ともに、圧力設定値Ssに達した時点から予め設
定した距離設定値Lsだけスクリユ2を後退させ、
この後圧力値Pcを検出すればよい。
In addition, although Figures 1 and 2 show the case where the decompression process included in the molding cycle is used, as shown in Figure 5, when the decompression process is not included in the molding cycle, the weighing process After the completion of , the screw 2 is forcibly retreated to reduce the pressure to a preset pressure setting value Ps near zero, and from the time when the pressure setting value Ss is reached, the screw 2 is retreated by a preset distance Ls,
After this, the pressure value Pc may be detected.

この場合にも、基本的には第1図及び第2図に
示した方法と同じである。
In this case as well, the method is basically the same as shown in FIGS. 1 and 2.

さらにまた、第6図及び第7図には射出工程終
了後に補正する場合を示す。第6図は成形サイク
ル中に射出工程終了後のデコンプレツシヨン工程
を含む場合であり、第1図に示した計量工程に対
応する。この場合、圧力制御方法自体は第2図に
示したフローチヤートに従つて計量工程終了後の
場合と同様に行われる。また、第7図はデコンプ
レツシヨン工程を含まない場合であり、第5図に
示した計量工程に対応している。この場合にも、
圧力制御方法自体は同図に示した計量工程終了後
の場合と同様に行うことができる。
Furthermore, FIGS. 6 and 7 show the case where the correction is made after the injection process is completed. FIG. 6 shows a case where the molding cycle includes a decompression step after the injection step, which corresponds to the metering step shown in FIG. In this case, the pressure control method itself is carried out in accordance with the flowchart shown in FIG. 2 in the same manner as after the metering process is completed. Furthermore, FIG. 7 shows the case without the decompression step, and corresponds to the measuring step shown in FIG. 5. Also in this case,
The pressure control method itself can be carried out in the same manner as after the measuring process shown in the figure.

以上、各種実施例を挙げて説明したが、本発明
はこのような実施例に限定されるものではない。
例えば圧力センサに対する加圧力が零になるまで
スクリユを後退させる際の制御方法及び検出方法
は他の方法を排除するものではない。また、油圧
により駆動する射出成形機にも同様に適用でき
る。さらにまた、圧力センサとしてはロードセル
以外の任意センサを含む。その他、細部の構成、
手法等において、本発明の要旨を逸脱しない範囲
で任意に変更できる。
Although various embodiments have been described above, the present invention is not limited to these embodiments.
For example, the control method and detection method for retracting the screw until the pressure applied to the pressure sensor becomes zero does not exclude other methods. Further, the present invention can be similarly applied to an injection molding machine driven by hydraulic pressure. Furthermore, the pressure sensor includes any sensor other than a load cell. Other details,
The method and the like can be arbitrarily changed without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る射出成形機の圧力制
御方法は、スクリユに作用する圧力を、圧力セン
サにより検出して圧力に対するフイードバツク制
御を行うに際し、計量工程又は射出工程の終了後
に、圧力センサに対するスクリユの加圧力が零に
なる位置までスクリユを後退させた後に圧力を検
出し、この検出した圧力値に基づいて圧力制御に
係わる制御量を補正するようにしたため、残圧等
に影響されない真のドリフト成分に基づく補正量
によつて、ドリフトに対する正確なゼロ補正を行
うことができ、以て、各成形サイクルにおける成
形品質の均一化、さらには成形不良の防止、ロン
グラン成形の安定化を達成できる。
As described above, in the pressure control method for an injection molding machine according to the present invention, when the pressure acting on the screw is detected by the pressure sensor and feedback control is performed on the pressure, the The pressure is detected after the screw is moved back to the position where the pressing force of the screw becomes zero, and the control amount related to pressure control is corrected based on the detected pressure value, so the true Accurate zero correction for drift can be performed using the correction amount based on the drift component, thereby achieving uniform molding quality in each molding cycle, prevention of molding defects, and stabilization of long-run molding. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明に係る圧力制御方法による時間
に対するスクリユ圧力、スクリユ回転数及びスク
リユ速度の特性図、第2図:第1図の特性図に対
応した同圧力制御方法を示すフローチヤート、第
3図:同圧力制御方法を実施できる射出成形機の
ブロツク系統図、第4図:本発明の他の実施例に
係る圧力制御方法を実施できる射出成形機の制御
系の一部を示すブロツク系統図、第5図、第6
図、第7図:本発明の他の実施例に係る圧力制御
方法による時間に対するスクリユ圧力、スクリユ
回転数及びスクリユ速度の特性図、第8図、第9
図:圧力センサに対するドリフトの影響を示す背
景説明図。 尚図面中、2:スクリユ、3:圧力センサ。
Figure 1: Characteristic diagram of screw pressure, screw rotation speed and screw speed with respect to time according to the pressure control method according to the present invention, Figure 2: Flowchart showing the same pressure control method corresponding to the characteristic diagram of Figure 1. Figure 3: Block system diagram of an injection molding machine that can implement the same pressure control method, Figure 4: Block system showing part of the control system of an injection molding machine that can implement the pressure control method according to another embodiment of the present invention. Figure, Figure 5, Figure 6
7: Characteristic diagrams of screw pressure, screw rotation speed, and screw speed with respect to time according to a pressure control method according to another embodiment of the present invention, FIGS. 8 and 9
Figure: Background diagram showing the influence of drift on pressure sensors. In the drawing, 2: screw, 3: pressure sensor.

Claims (1)

【特許請求の範囲】 1 スクリユに作用する圧力を、圧力センサによ
り検出して圧力に対するフイードバツク制御を行
う射出成形機の圧力制御方法において、計量工程
又は射出工程の終了後に、圧力センサに対するス
クリユの加圧力が零になる位置までスクリユを後
退させた後に圧力を検出し、この検出した圧力値
に基づいて圧力制御に係わる制御量を補正するこ
とを特徴とする射出成形機の圧力制御方法。 2 計量工程又は射出工程の終了後におけるデコ
ンプレツシヨン工程で、予め設定した零付近の圧
力設定値に達した時点から、予め設定した距離設
定値だけスクリユが後退した後に圧力を検出する
ことを特徴とする請求項1記載の射出成形機の圧
力制御方法。 3 計量工程又は射出工程の終了後に、スクリユ
を強制的に後退させ、予め設定した零付近の圧力
設定値に達するまで減圧させるとともに、圧力が
前記圧力設定値に達した時点からスクリユを予め
設定した距離設定値だけ後退させた後に圧力を検
出することを特徴とする請求項1記載の射出成形
機の圧力制御方法。
[Scope of Claims] 1. In a pressure control method for an injection molding machine in which the pressure acting on the screw is detected by a pressure sensor and feedback control is performed on the pressure, the pressure applied to the screw relative to the pressure sensor is A pressure control method for an injection molding machine, which comprises detecting pressure after retracting the screw to a position where the pressure becomes zero, and correcting a control amount related to pressure control based on the detected pressure value. 2. In the decompression step after the end of the metering step or the injection step, the pressure is detected after the screw has retreated by a preset distance from the point when the preset pressure near zero is reached. A pressure control method for an injection molding machine according to claim 1. 3. After the metering process or injection process is completed, the screw is forcibly retreated to reduce the pressure until it reaches a preset pressure setting value near zero, and the screw is set in advance from the time when the pressure reaches the pressure setting value. 2. The method for controlling pressure in an injection molding machine according to claim 1, wherein the pressure is detected after retracting by a set distance value.
JP1757290A 1990-01-26 1990-01-26 Pressure controlling method in injection molding machine Granted JPH03221428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1757290A JPH03221428A (en) 1990-01-26 1990-01-26 Pressure controlling method in injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1757290A JPH03221428A (en) 1990-01-26 1990-01-26 Pressure controlling method in injection molding machine

Publications (2)

Publication Number Publication Date
JPH03221428A JPH03221428A (en) 1991-09-30
JPH0544898B2 true JPH0544898B2 (en) 1993-07-07

Family

ID=11947629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1757290A Granted JPH03221428A (en) 1990-01-26 1990-01-26 Pressure controlling method in injection molding machine

Country Status (1)

Country Link
JP (1) JPH03221428A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742448B2 (en) * 1995-10-25 2006-02-01 ファナック株式会社 Method and apparatus for adjusting zero point of pressure detector in injection molding machine
JP3564030B2 (en) * 2000-03-07 2004-09-08 日精樹脂工業株式会社 Correction method of control device for injection molding machine
JP4500252B2 (en) * 2005-11-28 2010-07-14 日精樹脂工業株式会社 Injection control method and apparatus for injection molding machine
JP5871489B2 (en) * 2011-06-07 2016-03-01 東芝機械株式会社 Injection apparatus, injection molding machine, and injection control method
JP7294966B2 (en) * 2019-09-18 2023-06-20 ファナック株式会社 CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE

Also Published As

Publication number Publication date
JPH03221428A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
EP1405709A1 (en) Injection molding machine with clamping force control
JP4445411B2 (en) Method for correcting mold clamping force of mold clamping device
JP3766371B2 (en) Measuring method and control device for injection molding machine
JP3742448B2 (en) Method and apparatus for adjusting zero point of pressure detector in injection molding machine
JPH07205229A (en) Zero point correcting method for pressure detector of injection molding machine
US6555034B2 (en) Method for controlling an injection molding machine capable of reducing variations in weight of molded products
JPH0544898B2 (en)
US7914716B2 (en) Measurement control method of an injection molding machine
JP3971367B2 (en) Clamping force correction method for toggle type mold clamping device
US5232714A (en) In-line screw type injection molding machine
JPH03213323A (en) Pressure controlling method in injection molding machine
JPH0473688B2 (en)
JPH0661806B2 (en) Automatic clamping force setting method for toggle type clamping device
JPS61283518A (en) Mold-clamping force correcting device of injection molder
US6865924B2 (en) Drift detection method for a control apparatus controlling an injection molding machine
JP3280792B2 (en) Reservoir internal pressure adjusting device in injection molding machine
JP2627047B2 (en) Injection molding machine molding condition setting method
JP2649111B2 (en) Injection unit of injection molding machine
JP3601871B2 (en) Back pressure control method and apparatus for electric injection molding machine
JP2585103B2 (en) Injection molding method
JPH0344889B2 (en)
JPH0288209A (en) Resin pressure detector of injection molding machine
JPH0431284B2 (en)
JPH09254206A (en) Method and device for controlling back pressure of motor-driven injection molding machine
JP2632708B2 (en) Screw drive control device for injection molding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees