JPH03213323A - Pressure controlling method in injection molding machine - Google Patents

Pressure controlling method in injection molding machine

Info

Publication number
JPH03213323A
JPH03213323A JP2010251A JP1025190A JPH03213323A JP H03213323 A JPH03213323 A JP H03213323A JP 2010251 A JP2010251 A JP 2010251A JP 1025190 A JP1025190 A JP 1025190A JP H03213323 A JPH03213323 A JP H03213323A
Authority
JP
Japan
Prior art keywords
pressure
injection
molding machine
injection molding
conversion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010251A
Other languages
Japanese (ja)
Other versions
JPH0544897B2 (en
Inventor
Masaaki Miyahara
正昭 宮原
Nobuyuki Nakamura
伸之 中村
Takeshi Arai
健 荒井
Takahiro Kobayashi
孝浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2010251A priority Critical patent/JPH03213323A/en
Priority to US07/549,691 priority patent/USD328721S/en
Publication of JPH03213323A publication Critical patent/JPH03213323A/en
Publication of JPH0544897B2 publication Critical patent/JPH0544897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5032Drive means therefor using means for detecting injection or back pressures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • B29C2045/773Zero point correction

Abstract

PURPOSE:To accurately perform zero correction for a drift and to enable precise molding by previously calculating the conversion coefficient in the ideal conditions and correcting the controlling amount related to the injection pressure on the basis of the conversion efficient and the correction amount calculated from the measured value before starting injection at a time for starting injection. CONSTITUTION:The intrinsic pressure Po corresponding to the injection pressure in the ideal conditions is previously calculated from the controlling element Co in a servomotor 2a. Further the conversion coefficient k=Po/Co is calculated from the controlling element Co and this intrinsic pressure Po. The obtained conversion coefficient (k) is stored in a CPU 22. On the other hand, in the injection stages of the respective molding cycles, the positioning control for a screw 3 is performed before starting injection and the screw 3 is set at the orientation. At this time, actually generated torque T and the detection pressure Pn corresponding to the injection pressure obtained from a load cell 13 are fetched into the CPU 22 and correction amount S=Pn -k.T is calculated. Correction is performed for the controlling amount related to the injection pressure by this correction amount S at a time for starting injection. Thereby the quality of the molding in the respective molding cycles is made uniform and stabilization in long-run molding can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は射出圧力を圧力センサにより検出してクローズ
ドループ制御を行うための射出成形機の圧力制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure control method for an injection molding machine for detecting injection pressure with a pressure sensor and performing closed loop control.

〔従来の技術〕[Conventional technology]

従来、射出成形機の圧力制御、特に、射出圧力を制御す
るに際しては、例えばスクリュとアクチエータ(駆動装
置)間に介在させた圧力センサ(ロードセル等)により
射出圧力を検出し、検出した圧力に基づいて射出圧力に
対するクローズドループ制御(フィードバック制御)を
行っていた。
Conventionally, when controlling the pressure of an injection molding machine, especially when controlling the injection pressure, the injection pressure is detected by a pressure sensor (load cell, etc.) interposed between the screw and the actuator (drive device), and based on the detected pressure. Closed-loop control (feedback control) of injection pressure was performed.

クローズドループ制御は管理の困難な温度等の外乱が存
在しても、成形条件の変動を防止し、正確な動作を実現
できる利点があり、精密成形に広く用いられている。
Closed-loop control has the advantage of preventing fluctuations in molding conditions and achieving accurate operation even in the presence of disturbances such as temperature that are difficult to control, and is widely used in precision molding.

ところで、このようなりローズドループ制御を行う場合
、圧力センサの検出値をそのまま用いても、当該検出値
には正規の射出圧力以外の他の諸要因に基づく誤差成分
を含むため、正確な圧力制御は困難となる。したがって
、従来は射出開始前における圧力センサの検出値(初期
検出値)を誤差成分(ドリフト成分)とみなし、この初
期検出値に基づいてドリフトに対するゼロ補正を行って
いた。
By the way, when performing rose-drop loop control like this, even if the detected value of the pressure sensor is used as is, the detected value contains error components based on various factors other than the normal injection pressure, so accurate pressure control cannot be achieved. becomes difficult. Therefore, conventionally, the detected value of the pressure sensor (initial detected value) before the start of injection has been regarded as an error component (drift component), and zero correction for drift has been performed based on this initial detected value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した初期検a値における実際の誤差成分は
、第11図に示すような温度Thの変化に伴う圧力セン
サ自身に起因する圧力検出信号(圧力P)のドリフト成
分、第12図に示すように、圧力センサ(ロードセル)
91を外枠92に対して機械的に組付けた場合における
外枠92の膨張(収縮)或は圧力センサ91の膨張(収
縮)による組付力変化に基づく第13図に示すような圧
力検出信号(圧力P)のドリフト成分、さらに、計重工
程の終了後に、スクリュの圧縮ゾーン或は供給ゾーンに
残留した圧力による樹脂のスクリュ前方への移動又は圧
抜き不足に起因する残圧成分、伝達機構における摩擦力
に基づく機械的誤差成分等を含んでいる。
However, the actual error component in the above-mentioned initial detection a value is the drift component of the pressure detection signal (pressure P) caused by the pressure sensor itself due to the change in temperature Th as shown in FIG. 11, and the drift component of the pressure detection signal (pressure P) as shown in FIG. Like, pressure sensor (load cell)
Pressure detection as shown in FIG. 13 is based on the assembly force change due to the expansion (contraction) of the outer frame 92 or the expansion (contraction) of the pressure sensor 91 when the outer frame 91 is mechanically assembled to the outer frame 92. Drift component of the signal (pressure P), and residual pressure component caused by the movement of the resin toward the front of the screw due to residual pressure in the compression zone or supply zone of the screw after the end of the weighing process, or insufficient pressure relief, and transmission. Contains mechanical error components based on frictional forces in the mechanism.

このように、実際の初期検出値には誤差成分として残圧
成分を含むため、真のドリフト成分は検出されない。結
局、従来方法ではドリフトに対する正確なゼロ補正を行
うことは困難であり、精密成形にも限界があった。
In this way, since the actual initial detection value includes the residual pressure component as an error component, the true drift component is not detected. After all, with the conventional method, it is difficult to perform accurate zero correction for drift, and there are limits to precision molding.

本発明はこのような従来の技術に存在する課題を解決し
た射出成形機の圧力制御方法の提供を目的とするもので
ある。
An object of the present invention is to provide a pressure control method for an injection molding machine that solves the problems existing in the conventional technology.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る射出成形機の圧力制御方法は、アクチュエ
ータ2により加圧されるスクリュ3によって発生する射
出圧力を圧力センサ4により検出し、検出した圧力に基
づいて射出圧力に対するクローズドループ制御を行うに
際して、予め、アクチュエータ2に係わる制御要素CO
から理想的条件下における射出圧力に対応した真性圧力
P。
In the pressure control method for an injection molding machine according to the present invention, the injection pressure generated by the screw 3 pressurized by the actuator 2 is detected by the pressure sensor 4, and the injection pressure is controlled in a closed loop based on the detected pressure. , in advance, the control element CO related to the actuator 2
, the true pressure P corresponding to the injection pressure under ideal conditions.

を求め、かつ制御要素Coと真性圧力POから、変換係
数k = P o / Coを求めるとともに、射出開
始前に、実際の制御要素Cnと圧力センサ4から検出さ
れる射出圧力に対応した検出圧力Pnから、補正量5=
Pn−k・Cnを求め、射出開始時に、前記補正量Sに
より射出圧力に係わる制御量を補正するようにしたこと
を特徴とする。この場合、理想的条件下における変換係
数には計算により求めてもよいし、或はスクリュ3を固
定し、かつアクチュエータ2を作動させた状態から得る
実測値から求めてもよい。なお、アクチュエータ2とし
てサーボモータ2aを使用した場合には、制御要素Co
 (Cn)としてサーボモータ2aのトルクT又はサー
ボモータ2aの電流値Imを利用できる。また、アクチ
ュエータ2として油圧シリンダ2bを使用した場合には
、制御要素Go(Cn)として油圧シリンダ2bに接続
したサーボバルブ5の電流値Isを利用できる。
Then, from the control element Co and the true pressure PO, find the conversion coefficient k = P o / Co, and before the start of injection, calculate the detected pressure corresponding to the actual control element Cn and the injection pressure detected from the pressure sensor 4. From Pn, correction amount 5=
The present invention is characterized in that Pn-k·Cn is determined, and the control amount related to the injection pressure is corrected using the correction amount S at the start of injection. In this case, the conversion coefficient under ideal conditions may be determined by calculation, or may be determined from actual values obtained with the screw 3 fixed and the actuator 2 operated. Note that when the servo motor 2a is used as the actuator 2, the control element Co
As (Cn), the torque T of the servo motor 2a or the current value Im of the servo motor 2a can be used. Furthermore, when the hydraulic cylinder 2b is used as the actuator 2, the current value Is of the servo valve 5 connected to the hydraulic cylinder 2b can be used as the control element Go (Cn).

〔作  用〕[For production]

本発明に係る射出成形機の圧力制御方法によれば、まず
、アクチュエータ2に係わる制御要素COと、この制御
要素Coのときの射出圧力に対応した真性圧力Poから
、変換係数k = P o / Coが求められる。変
換係数には伝達経路等の機械的諸条件から予め計算によ
って算出できるとともに、スクリュ3を固定し、かつア
クチュエータ2を作動させた状態においてサンプリング
し、実測値から算出することもでき、制御系における誤
差成分(ドリフト成分)を含まない係数となる。
According to the pressure control method for an injection molding machine according to the present invention, first, from the control element CO related to the actuator 2 and the true pressure Po corresponding to the injection pressure at this control element Co, a conversion coefficient k = P o / Co is required. The conversion coefficient can be calculated in advance from mechanical conditions such as the transmission path, or it can be calculated from actual values sampled while the screw 3 is fixed and the actuator 2 is operated. This is a coefficient that does not include an error component (drift component).

一方、射出開始前には、実際の制御要素Cnと、圧力セ
ンサ4から得る射出圧力に対応した検出圧力Pnから、
補正量5=Pn−k・Cnが求められる。この場合、r
PnJは実際の全誤差成分を含む圧力分であり、「k−
Cn」はドリフト成分を含まないが、残圧等の圧力成分
を含む圧力分となる。
On the other hand, before starting injection, from the actual control element Cn and the detected pressure Pn corresponding to the injection pressure obtained from the pressure sensor 4,
Correction amount 5=Pn-k·Cn is determined. In this case, r
PnJ is the pressure component that includes all actual error components, and “k-
Cn'' does not include a drift component, but is a pressure component that includes pressure components such as residual pressure.

この結果、補正量Sは圧力成分の影響が排除された真の
ドリフト成分のみとなり、正確な補正量Sが得られる。
As a result, the correction amount S becomes only the true drift component from which the influence of the pressure component is removed, and an accurate correction amount S can be obtained.

〔実 施 例〕〔Example〕

以下には、本発明に係る好適な実施例を挙げ、図面に基
づき詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.

まず、本発明に係る圧力制御方法を実施できる射出成形
機の概略構成について第1図を参照して説明する。
First, a schematic configuration of an injection molding machine that can implement the pressure control method according to the present invention will be described with reference to FIG.

同図は射出工程に係わる制御系のみを抽出して示す。図
中、10は射出成形機における射出装置の加熱筒であり
、前端に射出ノズル11、後部に材料供給用ホッパー1
2を備えるとともに、内部にスクリュ3を回動自在及び
進退自在に備える。
The figure shows only the control system related to the injection process. In the figure, 10 is a heating cylinder of an injection device in an injection molding machine, with an injection nozzle 11 at the front end and a material supply hopper 1 at the rear.
2, and a screw 3 inside thereof so as to be rotatable and movable forward and backward.

スクリュ3の後端はロードセル13(−船釣には圧力セ
ンサ4)を介在させてポールネジ機構14のナツト部1
4a側に結合する。また、同機構14のネジ部14b側
にはサーボモータ2aの回転シャフト15を結合する。
The rear end of the screw 3 is connected to the nut portion 1 of the pole screw mechanism 14 via a load cell 13 (-pressure sensor 4 for boat fishing).
Connect to the 4a side. Further, the rotating shaft 15 of the servo motor 2a is coupled to the screw portion 14b side of the mechanism 14.

なお、サーボモータ23には回転数を検出するパルスゼ
ネレータ16を備えている。
Note that the servo motor 23 is equipped with a pulse generator 16 that detects the number of rotations.

一方、制御系にはサーボモータ2aを駆動制御するドラ
イバ21、各種処理を実行するCPU (中央処理部)
22を備える。
On the other hand, the control system includes a driver 21 that drives and controls the servo motor 2a, and a CPU (central processing unit) that executes various processes.
22.

そして、ロードセル13はA/Dコンバータ(アナログ
−ディジタル変換器)23を介してCPU22に接続す
るとともに、コンパレータ24の反転入力部に接続し、
ロードセル13の検出圧力Pn(Pi)をCPU22及
びコンパレータ24に付与する。また、サーボモータ2
a及びパルスゼネレータ16はドライバ2■に接続する
。一方、ドライバ21はA/Dコンバータ25を介して
CPU22に接続し、サーボモータ21における制御要
素CnをCPU22に付与する。また、CPU22はD
/Aコンバータ(ディジタル−アナログ変換器)26.
27を介して前記コンパレータ24の非反転入力部及び
コンパレータ28の非反転入力部にそれぞれ接続し、補
正量Sをコンパレータ24に付与するとともに、圧力指
令値Psをコンパレータ28に付与する。コンパレータ
28の反転入力部にはコンパレータ24の出力部を接続
し、さらにコンパレータ28の出力部はPID補償回路
29を介してドライバ21に接続する。
The load cell 13 is connected to the CPU 22 via an A/D converter (analog-digital converter) 23, and is also connected to the inverting input section of the comparator 24.
The detected pressure Pn (Pi) of the load cell 13 is applied to the CPU 22 and the comparator 24. Also, servo motor 2
a and the pulse generator 16 are connected to the driver 2■. On the other hand, the driver 21 is connected to the CPU 22 via the A/D converter 25, and provides the CPU 22 with control elements Cn for the servo motor 21. Moreover, the CPU 22 is D
/A converter (digital-to-analog converter) 26.
27 to the non-inverting input portion of the comparator 24 and the non-inverting input portion of the comparator 28, respectively, and applies the correction amount S to the comparator 24 and the pressure command value Ps to the comparator 28. The output part of the comparator 24 is connected to the inverting input part of the comparator 28 , and the output part of the comparator 28 is further connected to the driver 21 via a PID compensation circuit 29 .

以上により補正系を含む射出圧力のクローズドループ制
御系を構成する。
The above constitutes a closed loop control system for injection pressure including a correction system.

次に、本発明に係る圧力制御方法について説明する。Next, a pressure control method according to the present invention will be explained.

まず、予め、サーボモータ2aにおける制御要素COか
ら理想的条件下における射出圧力に対応した真性圧力P
Oを求める。
First, in advance, from the control element CO in the servo motor 2a, the true pressure P corresponding to the injection pressure under ideal conditions is determined.
Find O.

また、制御要素COと、得られた真性圧力P。Also, the control element CO and the resulting intrinsic pressure P.

から、次式により変換係数kを求める。From the equation below, find the conversion coefficient k.

変換係数k = P o / G 。Conversion coefficient k = P o / G.

次に、変換係数にの具体的算出方法について、第1図に
示すサーボモータ2aとボールネジ機構14によって構
成される駆動系の場合を例示する。
Next, regarding a specific method of calculating the conversion coefficient, a case of a drive system constituted by the servo motor 2a and the ball screw mechanism 14 shown in FIG. 1 will be exemplified.

なお、サーボモータ21の制御要素coとしてはサーボ
モータ2aのトルクT1電流値1m等の各種要素か存在
するが、本実施例ではトルクTを用いた場合を述べる。
The control element co of the servo motor 21 includes various elements such as the torque T1 of the servo motor 2a and a current value of 1 m, but in this embodiment, a case where the torque T is used will be described.

まず、トルクTは次式から得られる。First, torque T can be obtained from the following equation.

ただし、 2πηN)I D =スクリュ直径 PO:射出圧力に対応した真 性圧力(射出樹脂圧) μ :摩擦係数 W コ可動部(スクリュ等) の重量 ■L :スクリュ移動速度 η 1機械効率 N、:モータ回転数 この式からPOを求めると、 PO=に−T+b ただし k=2ηNM/(D/2)”VLb−−μw/
(D/2)”π となる。
However, 2πηN) ID = Screw diameter PO: True pressure corresponding to injection pressure (injection resin pressure) μ: Friction coefficient W Weight of moving parts (screw, etc.) ■L: Screw movement speed η 1 Mechanical efficiency N,: Motor rotation speed When calculating PO from this formula, PO=-T+b where k=2ηNM/(D/2)"VLb--μw/
(D/2)”π.

ここで、移動速度が零の時のスクリュ移動速度■、とモ
ータ回転数N、1の関係は、 VL= (LB/Z) NM ただし LB ・ポールネンリード Z :ギア比 となる。この結果、変換係数は、 k=2ηZ/ (D/2 ) ’L。
Here, the relationship between the screw moving speed (■) when the moving speed is zero and the motor rotation speed N, 1 is as follows: VL=(LB/Z) NM where LB・Pornenried Z: Gear ratio. As a result, the conversion coefficient is k=2ηZ/(D/2)'L.

となる。becomes.

「μW」が「(D/2)’πPoJよりも十分に小さい
とすると、 Po=kT となる。
Assuming that "μW" is sufficiently smaller than "(D/2)'πPoJ", Po=kT.

よって、変換係数には次式から求めることかできる。Therefore, the conversion coefficient can be obtained from the following equation.

k=Po/T 2ηz/(D/2)”LB このような変換係数には、その他スクリュ3を固定した
状態でサーボモータ2aを作動させ、このときのトルク
Tと、ロードセル13から得る射出圧力に対応した真性
圧力POから算出してもよい。また、前記電流値1mを
用いても同様に算出可能である。
k=Po/T 2ηz/(D/2)''LB Such a conversion coefficient is determined by operating the servo motor 2a with the screw 3 fixed, the torque T at this time, and the injection pressure obtained from the load cell 13. It may be calculated from the true pressure PO corresponding to .Furthermore, it is also possible to calculate in the same way using the current value of 1 m.

そして、得られた変換係数にはCPU22に記憶する。The obtained conversion coefficients are then stored in the CPU 22.

一方、各成形サイクルにおける射出工程では、射出開始
前にスクリュ3に対する位置決め制御を行い、スクリュ
3を定位置にセットする。この時、実際に発生したトル
クTとロードセル13から得る射出圧力に対応した検出
圧力PnをCPU22に取り込み、CPU22は次式に
より補正量Sを演算する。
On the other hand, in the injection process in each molding cycle, positioning control for the screw 3 is performed before injection starts to set the screw 3 at a fixed position. At this time, the actually generated torque T and the detected pressure Pn corresponding to the injection pressure obtained from the load cell 13 are taken into the CPU 22, and the CPU 22 calculates the correction amount S using the following equation.

補正量5=Pn−に−T そして、射出開始時に、補正量Sにより射出圧力に係わ
る制御量に対して補正を行う。即ち、補正量Sとロード
セル13から得る射出圧力に対応した検出圧力Piをコ
ンパレータ24に付与することにより、コンパレータ2
4の出力部から補正された検出圧力Pf=Pi−Sを得
る。
Correction amount 5 = -T to Pn- Then, at the start of injection, the control amount related to the injection pressure is corrected by the correction amount S. That is, by applying the detection pressure Pi corresponding to the correction amount S and the injection pressure obtained from the load cell 13 to the comparator 24, the comparator 2
The corrected detected pressure Pf=Pi−S is obtained from the output section of No. 4.

また、この検出圧力Pfはコンパレータ28に付与され
、圧力指令値Psに対する偏差値を得る。
Further, this detected pressure Pf is applied to a comparator 28 to obtain a deviation value from the pressure command value Ps.

よって、偏差値はドライバ21に供給され、射出圧力に
対する通常のフィードバック制御が行われる。
Therefore, the deviation value is supplied to the driver 21, and normal feedback control of the injection pressure is performed.

なお、第2図には理想的条件下及び補正前における制御
要素と真性圧力(検出圧力)の関係を示す。同図から明
らかなように、検出圧力Pnは真性圧力Poよりも大き
くなる場合と小さくなる場合があり、補正量Sは正価又
は負債をとり得る。
Note that FIG. 2 shows the relationship between control elements and true pressure (detected pressure) under ideal conditions and before correction. As is clear from the figure, the detected pressure Pn may be larger or smaller than the true pressure Po, and the correction amount S can be a net value or a liability.

第3図にはサーボモータ2aに基づく射出成形機の成形
条件であるトルク、射出速度、射出圧力の実際の特性曲
線を示す。同特性曲線において、Eで示す区間は位置決
め制御区間を示し、この区間で前記位置決め制御を行い
、検出圧力PnとトルクTをサンプリングする。D点は
射出開始時を示し、ドリフトに対するゼロ補正を行う。
FIG. 3 shows actual characteristic curves of torque, injection speed, and injection pressure, which are the molding conditions of the injection molding machine based on the servo motor 2a. In the characteristic curve, the section indicated by E indicates the positioning control section, in which the positioning control is performed and the detected pressure Pn and torque T are sampled. Point D indicates the start of injection, and zero correction for drift is performed.

一方、第4図には時間経過に伴うゼロ点のドリフト成分
と補正Itsによるゼロ補正後の特性及び圧力指令値P
sの関係を示す。
On the other hand, Fig. 4 shows the drift component of the zero point over time, the characteristics after zero correction by the correction Its, and the pressure command value P.
This shows the relationship between s.

次に、他の変更例について説明する。Next, another modification example will be explained.

第1図は補正量Sに基づいて検出圧力Piを補正した場
合を示したが、圧力指令値Psを補正してもよい。第5
図は圧力指令値Psを補正tsにより補正する場合を示
す。この場合、コンパレータ30により圧力指令値Ps
と補正Itsを加算し、補正された圧力指令値Pmを得
るとともに、コンパレータ28では当該圧力指令値Pm
と検出圧力Pfの偏差値を得る。なお、第5図において
、第1図と同一部分については同一符号を付し、その詳
細な説明は省略する。
Although FIG. 1 shows the case where the detected pressure Pi is corrected based on the correction amount S, the pressure command value Ps may also be corrected. Fifth
The figure shows a case where the pressure command value Ps is corrected by the correction ts. In this case, the pressure command value Ps is determined by the comparator 30.
and the correction Its to obtain the corrected pressure command value Pm, and the comparator 28 adds the corrected pressure command value Pm
and the deviation value of the detected pressure Pf is obtained. In FIG. 5, the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

また、第1図及び第5図はいずれもアナログ信号により
ハードウェア的に補正を施したが、第6図及び第7図の
ようにソフトウェアによって補正処理してもよい。この
場合、検出圧力Piに対する補正は、第6図に示すよう
にrpi−SJをCPU22において演算処理し、CP
U22から出力する補正後の検出圧力Pf (=Pi−
8)を、D/Aコンバータ31を介してコンパレータ2
8に付与する。一方、圧力指令値Psに対する補正は、
第7図に示すようにrPs+sJをCPU22において
演算処理し、CPU22から出力する補正後の圧力指令
値Pm(−Ps+S)を、D/Aコンバータ32を介し
てコンパレータ28に付与する。なお、第8図に示すよ
うに、サーボ機能をCPU22を用いたソフトウェアで
実行するソフトウェアサーボによって補正することもで
き、CPIJ22からは制御信号SVかD/Aコンバー
タ33を介してドライバ21に供給される。なお、第6
図、第7図及び第8図におし)で、他の省略部分は第1
図と同様に構成され、また、同様に機能する。
Further, in both FIGS. 1 and 5, correction is performed using hardware using an analog signal, but correction processing may also be performed using software as shown in FIGS. 6 and 7. In this case, correction to the detected pressure Pi is performed by calculating rpi-SJ in the CPU 22 as shown in FIG.
Detected pressure Pf after correction output from U22 (=Pi-
8) to the comparator 2 via the D/A converter 31.
Granted to 8. On the other hand, the correction to the pressure command value Ps is
As shown in FIG. 7, rPs+sJ is arithmetic processed in the CPU 22, and the corrected pressure command value Pm (-Ps+S) output from the CPU 22 is applied to the comparator 28 via the D/A converter 32. As shown in FIG. 8, the servo function can also be corrected by software servo executed by software using the CPU 22, and the control signal SV is supplied from the CPIJ 22 to the driver 21 via the D/A converter 33. Ru. In addition, the 6th
Figures 7 and 8), other omitted parts are shown in Figure 1.
It is constructed and functions similarly to the figure.

さらにまた、サーボモータ2aの使用例を挙げたか、第
9図に示すように、アクチュエータ2として油圧シリン
ダ2bを用いた場合であっても同様に実施できる。この
場合、制御要素Co (Cn)として油圧シリンダ2b
に接続したサーボバルブ5の電流値Isを用いることが
できる。なお、第9図において、13は油圧シリンダ2
bの油圧を検出可能に接続したロードセルを示す。この
場合、油圧を直接検出するため、検出値は所定の換算式
を経て射出圧力に変換される。52はスクリュ位置検出
センサを示す。その他、第1図と同一部分には同一符号
を付した。
Furthermore, although the servo motor 2a is used as an example, the same implementation is possible even when a hydraulic cylinder 2b is used as the actuator 2, as shown in FIG. In this case, the hydraulic cylinder 2b is used as the control element Co (Cn).
The current value Is of the servo valve 5 connected to can be used. In addition, in FIG. 9, 13 is the hydraulic cylinder 2.
A load cell connected to detect the oil pressure in b is shown. In this case, since the oil pressure is directly detected, the detected value is converted into injection pressure through a predetermined conversion formula. 52 indicates a screw position detection sensor. Other parts that are the same as those in FIG. 1 are given the same reference numerals.

一方、油圧シリンダ2bを用いた場合の変換係数には次
式によって算出できる。
On the other hand, the conversion coefficient when using the hydraulic cylinder 2b can be calculated by the following equation.

まず、サーボバルブ5の出力(圧力)に対する弁開度は
第1O図に示す圧力ゲイン特性として個々のサーボバル
ブにおいて既知である。
First, the valve opening degree relative to the output (pressure) of the servo valve 5 is known for each servo valve as a pressure gain characteristic shown in FIG. 1O.

よって、理想的条件下における射出圧力に対応した真性
圧力POは、 Po=に−Is として算出できるため、変換係数には、k = P o
 / Co P o / !  s となる。
Therefore, since the true pressure PO corresponding to the injection pressure under ideal conditions can be calculated as Po = -Is, the conversion coefficient is k = Po
/CoPo/! It becomes s.

以上、各種実施例を挙げて説明したが、本発明はこのよ
うな実施例に限定されることなく、細部の構成、手法等
において、本発明の要旨を逸脱しない範囲で任意に変更
できる。
Although the present invention has been described above with reference to various embodiments, the present invention is not limited to these embodiments, and the detailed structure, method, etc. can be arbitrarily changed without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る射出成形機の圧力制御方法は
、アクチュエータにより加圧されるスクリュによって発
生する射出圧力を圧力センサによって検出し、検出した
圧力に基づいて射出圧力に対するクローズドループ制御
を行うに際し、予め、理想的条件下における変換係数k
を得、射出開始前に、変換係数にと実測値から補正Is
を求めるとともに、射出開始時に、この補正jlSに基
づいて補正するようにしたため、残圧等に影響されない
真のドリフト成分に基づく補正量によって、ドリフトに
対する正確なゼロ補正を行うことができ、以て、各成形
サイクルにおける成形品質の均一化、さらには成形不良
の防止、ロングラン成形の安定化を達成できる。
As described above, the method for controlling the pressure of an injection molding machine according to the present invention uses a pressure sensor to detect the injection pressure generated by the screw pressurized by the actuator, and performs closed-loop control of the injection pressure based on the detected pressure. In this case, the conversion coefficient k under ideal conditions is determined in advance.
and corrected Is from the actual measurement value to the conversion coefficient before starting injection.
In addition, since the correction is made based on this correction jlS at the start of injection, it is possible to perform accurate zero correction for drift with the correction amount based on the true drift component that is not affected by residual pressure, etc. , uniform molding quality in each molding cycle, prevention of molding defects, and stabilization of long-run molding can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二本発明に係る圧力制御方法を実施できる射出成
形機のブロック系統図、 第2図二制御要素と真性圧力(検出圧力)の関係図、 第3図二同射出成形機における成形条件の特性図、 第4図・時間経過に伴う補正量と設定値を示す特性図、 第5図二本発明の変更例に係る同射出成形機のブロック
系統図、 第6図、第7図、第8図:本発明の他の変更例に係る同
射出成形機の制御系の一部を 示すブロック系統図、 第9図・本発明の他の変更例に係る射出成形機の制御系
の一部を示すブロック図、 第1O図:同射出成形機におけるサーボバルブの弁開度
と圧力の関係を示す特性図、 第11図、第12図、第13図:圧力センサに対するド
リフトの影響を示す前景説明 図。 尚図面中、 2 : アクチュエータ :サーボモータ 2b:油圧シリンダ : スクリュ: :サーボバルブ
Fig. 1.2 A block system diagram of an injection molding machine that can implement the pressure control method according to the present invention. Fig. 2. Diagram of the relationship between control elements and true pressure (detected pressure). Fig. 3. Molding conditions in the injection molding machine. Figure 4: Characteristic diagram showing correction amounts and set values over time; Figure 5: Block system diagram of the same injection molding machine according to a modified example of the present invention; Figures 6 and 7; Figure 8: A block system diagram showing a part of the control system of the injection molding machine according to another modification of the present invention. Figure 9: A part of the control system of the injection molding machine according to another modification of the present invention. Fig. 1O: Characteristic diagram showing the relationship between the valve opening degree and pressure of the servo valve in the same injection molding machine, Fig. 11, Fig. 12, Fig. 13: Showing the influence of drift on the pressure sensor. Foreground explanatory diagram. In the drawing, 2: Actuator: Servo motor 2b: Hydraulic cylinder: Screw: : Servo valve

Claims (1)

【特許請求の範囲】 〔1〕アクチュエータにより加圧されるスクリュによっ
て発生する射出圧力を圧力センサにより検出し、検出し
た圧力に基づいて射出圧力に対するクローズドループ制
御を行う射出成形機の圧力制御方法において、予め、ア
クチュエータに係わる制御要素Coから理想的条件下に
おける射出圧力に対応した真性圧力Poを求め、かつ制
御要素Coと真性圧力Poから、 変換係数k=Po/Co を求めるとともに、射出開始前に、実際の制御要素Cn
と圧力センサから検出される射出圧力に対応した検出圧
力Pnから、 補正量S=Pn−k・Cn を求め、射出開始時に前記補正量Sにより射出圧力に係
わる制御量を補正することを特徴とする射出成形機の圧
力制御方法。 〔2〕変換係数kは計算により求めることを特徴とする
請求項1記載の射出成形機の圧力制御方法。 〔3〕変換係数kはスクリュを固定し、かつアクチュエ
ータを作動させた状態から得る実測値から求めることを
特徴とする請求項1記載の射出成形機の圧力制御方法。 〔4〕アクチュエータはサーボモータを使用するととも
に、制御要素としてサーボモータのトルクを用いること
を特徴とする請求項1記載の射出成形機の圧力制御方法
。 〔5〕アクチュエータはサーボモータを使用するととも
に、制御要素としてサーボモータの電流値を用いること
を特徴とする請求項1記載の射出成形機の圧力制御方法
。 〔6〕アクチュエータは油圧シリンダを使用するととも
に、制御要素として油圧シリンダに接続したサーボバル
ブの電流値を用いることを特徴とする請求項1記載の射
出成形機の圧力制御方法。
[Scope of Claims] [1] In a pressure control method for an injection molding machine, the injection pressure generated by a screw pressurized by an actuator is detected by a pressure sensor, and the injection pressure is controlled in a closed loop based on the detected pressure. , in advance, calculate the true pressure Po corresponding to the injection pressure under ideal conditions from the control element Co related to the actuator, and from the control element Co and the true pressure Po, calculate the conversion coefficient k=Po/Co, and before the start of injection. , the actual control element Cn
and the detected pressure Pn corresponding to the injection pressure detected by the pressure sensor, a correction amount S=Pn-k・Cn is obtained, and the control amount related to the injection pressure is corrected by the correction amount S at the start of injection. Pressure control method for injection molding machine. [2] The pressure control method for an injection molding machine according to claim 1, wherein the conversion coefficient k is determined by calculation. [3] The method for controlling pressure in an injection molding machine according to claim 1, wherein the conversion coefficient k is determined from an actual value obtained with the screw fixed and the actuator operated. [4] The method for controlling pressure in an injection molding machine according to claim 1, wherein the actuator uses a servo motor, and the torque of the servo motor is used as the control element. [5] The method for controlling pressure in an injection molding machine according to claim 1, wherein the actuator uses a servo motor, and a current value of the servo motor is used as the control element. [6] The method for controlling pressure in an injection molding machine according to claim 1, wherein a hydraulic cylinder is used as the actuator, and a current value of a servo valve connected to the hydraulic cylinder is used as the control element.
JP2010251A 1990-01-18 1990-01-18 Pressure controlling method in injection molding machine Granted JPH03213323A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010251A JPH03213323A (en) 1990-01-18 1990-01-18 Pressure controlling method in injection molding machine
US07/549,691 USD328721S (en) 1990-01-18 1990-07-09 Watch dial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251A JPH03213323A (en) 1990-01-18 1990-01-18 Pressure controlling method in injection molding machine

Publications (2)

Publication Number Publication Date
JPH03213323A true JPH03213323A (en) 1991-09-18
JPH0544897B2 JPH0544897B2 (en) 1993-07-07

Family

ID=11745095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251A Granted JPH03213323A (en) 1990-01-18 1990-01-18 Pressure controlling method in injection molding machine

Country Status (2)

Country Link
US (1) USD328721S (en)
JP (1) JPH03213323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884159A1 (en) * 1997-06-06 1998-12-16 Sumitomo Heavy Industries, Ltd. Control system for controlling motor-driven injection molding machine with high response
JP2002331561A (en) * 2001-05-11 2002-11-19 Yaskawa Electric Corp Method and apparatus for controlling pressure of injection axis of electromotive injection molding machine
JP2007144782A (en) * 2005-11-28 2007-06-14 Nissei Plastics Ind Co Method and device for controlling injection of injection molding machine
CH698516B1 (en) * 2006-12-20 2009-08-31 Kistler Holding Ag Coupling for a Kunststoffspritzgiessanlage.
AT522270A1 (en) * 2019-03-21 2020-10-15 Engel Austria Gmbh Injection unit and molding machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD697073S1 (en) * 2012-05-02 2014-01-07 Siemens Aktiengesellschaft Operator panel for medical apparatus with graphical user interface comprising a set of images
USD746598S1 (en) * 2014-01-27 2016-01-05 Roger Alexander Herz Record album frame
USD815971S1 (en) * 2016-05-09 2018-04-24 Avraham Goldstein Watch face
USD923655S1 (en) * 2018-11-02 2021-06-29 Honor Device Co., Ltd. Display screen or portion thereof with aminated graphical user interface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884159A1 (en) * 1997-06-06 1998-12-16 Sumitomo Heavy Industries, Ltd. Control system for controlling motor-driven injection molding machine with high response
US5869108A (en) * 1997-06-06 1999-02-09 Sumitomo Heavy Industries, Ltd. Control system for controlling a motor-driven injection molding machine
JP2002331561A (en) * 2001-05-11 2002-11-19 Yaskawa Electric Corp Method and apparatus for controlling pressure of injection axis of electromotive injection molding machine
JP4677682B2 (en) * 2001-05-11 2011-04-27 株式会社安川電機 Pressure control method and apparatus for injection shaft of electric injection molding machine
JP2007144782A (en) * 2005-11-28 2007-06-14 Nissei Plastics Ind Co Method and device for controlling injection of injection molding machine
CH698516B1 (en) * 2006-12-20 2009-08-31 Kistler Holding Ag Coupling for a Kunststoffspritzgiessanlage.
AT522270A1 (en) * 2019-03-21 2020-10-15 Engel Austria Gmbh Injection unit and molding machine
AT522270B1 (en) * 2019-03-21 2021-07-15 Engel Austria Gmbh Injection unit and molding machine

Also Published As

Publication number Publication date
USD328721S (en) 1992-08-18
JPH0544897B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
KR930004046B1 (en) Method for controlling back-pressure in electrically operated injection apparatus
US7150619B2 (en) Controller of injection molding machine
JP3694684B2 (en) Injection molding machine
EP0913749A1 (en) Shift command correction method and servo control system in which shift command is corrected
JP3318427B2 (en) Zero point correction method of pressure detection device in injection molding machine
JP4043514B2 (en) Adjustment or control method of injection molding machine
JP3742448B2 (en) Method and apparatus for adjusting zero point of pressure detector in injection molding machine
KR970008246B1 (en) Method of making positioning correction on electric injection molding machine
JPH03213323A (en) Pressure controlling method in injection molding machine
US5380181A (en) Control device for an electric injection molding machine
US5800750A (en) Method for mold protection of crank-type clamping unit
JPH0486210A (en) Automatically setting method for mold clamping force in toggle type mold clamping device
JPH06285939A (en) Method and apparatus for controlling speed of injection molding machine
JPH03221428A (en) Pressure controlling method in injection molding machine
JPS61283518A (en) Mold-clamping force correcting device of injection molder
JP3466772B2 (en) Injection pressure control method for injection molding machine
JP4540597B2 (en) Injection control method and apparatus for injection molding machine
JPH0671705A (en) Sack-back controller for injection molding machine
JPH09300410A (en) Method for controlling back pressure in motor-driven injection molding machine
JP2746473B2 (en) Injection speed control method for electric injection molding machine
JPH10244571A (en) Pressure control method of injection molding machine and pressure control apparatus therefor
JP3601871B2 (en) Back pressure control method and apparatus for electric injection molding machine
JPH072334B2 (en) Automatic clamping force setting method for toggle type clamping device
JP3277490B2 (en) Control method of injection molding machine
JPH0242338B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees