JPH0544642A - Cryopump equipped with low temperature trap - Google Patents

Cryopump equipped with low temperature trap

Info

Publication number
JPH0544642A
JPH0544642A JP20290391A JP20290391A JPH0544642A JP H0544642 A JPH0544642 A JP H0544642A JP 20290391 A JP20290391 A JP 20290391A JP 20290391 A JP20290391 A JP 20290391A JP H0544642 A JPH0544642 A JP H0544642A
Authority
JP
Japan
Prior art keywords
refrigerator
shield
stage
low temperature
cryopanel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20290391A
Other languages
Japanese (ja)
Other versions
JP3062706B2 (en
Inventor
Hidetoshi Morimoto
秀敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP3202903A priority Critical patent/JP3062706B2/en
Publication of JPH0544642A publication Critical patent/JPH0544642A/en
Application granted granted Critical
Publication of JP3062706B2 publication Critical patent/JP3062706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To increase the evacuation capacity by dividing each of a pump case and a shield into two parts in the longitudinal direction, installing a buffle on the front shield, installing the second refrigerator separately from a two-stage type helium refrigerator, and constituting a low temperature trap. CONSTITUTION:Each of a pump case 1 and a shield 6 is divided into two parts in the longitudinal direction, and a buffle 8 is installed on the front shield 6a, oppositely to an opened port part 2, and the low temperature part 10 of the second refrigerator 9 which is different from a two-stage type helium refrigerator 3 is installed, and a low temperature trap 11 is constituted. Accordingly, since the shield 6a of the low temperature trap 11 and the buffle 8 are cooled by the second refrigerator 9 different from the two-stage type helium refrigerator 3 for coolding a cryopanel 7, almost all the parts of the thermal load such as the radiation heat supplied from a vacuum device and the conduction heat of gas can be absorbed without applying load onto the two-stage type helium refrigerator 3. Accordingly, the evacuation capacity for the gas particle having high vapor pressure can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温トラップ付のクラ
イオポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryopump with a cryogenic trap.

【0002】[0002]

【従来の技術】従来、クライオポンプは、図1に示すよ
うに、前方に開口部aを備えたポンプケースbの内部
に、2段式ヘリウム冷凍機cの1段ステージdと2段ス
テージeとを導入し、該1段ステージdには円筒状のシ
ールドfを取付けし、該2段ステージeにクライオパネ
ルgを取付け、シールドfに該開口部aと対面したバッ
フルhを取付けた構成を備えるを一般とする。iはクラ
イオパネルgの内面に設けた吸着剤である。
2. Description of the Related Art Conventionally, as shown in FIG. 1, a cryopump has a first stage d and a second stage e of a two-stage helium refrigerator c inside a pump case b having an opening a in the front. , A cylindrical shield f is attached to the first stage d, a cryopanel g is attached to the second stage e, and a baffle h facing the opening a is attached to the shield f. Generally prepared. i is an adsorbent provided on the inner surface of the cryopanel g.

【0003】該開口部aには、例えば真空室に連なる排
気管が接続され、2段式ヘリウム冷凍機cを運転すると
1段ステージdが約80Kに冷却されると共に2段ステ
ージeが約15Kに冷却され、各ステージd,eからの
熱伝導でバッフルhが約80Kに冷却されると共にクラ
イオパネルgが約15Kに冷却される。開口部aからポ
ンプケースb内に飛来する水蒸気や油蒸気のような蒸気
圧の低い分子はバッフルhに凝縮し、蒸気圧の高い例え
ば窒素やアルゴンガス分子はクライオパネルgに凝縮さ
れ、非凝縮性の水素ガス分子等は吸着剤iに吸着するこ
とにより、該開口部aに連なる真空室内が高真空に排気
される。該バッフルhとシールドfは、真空室からの輻
射熱や気体の熱伝導による熱負荷を吸収し、熱容量の小
さいクライオパネルgに熱負荷が加わらないようにクラ
イオポンプの主要な熱負荷を負担する。
An exhaust pipe connected to, for example, a vacuum chamber is connected to the opening a, and when the two-stage helium refrigerator c is operated, the first stage d is cooled to about 80K and the second stage e is about 15K. The baffle h is cooled to about 80K and the cryopanel g is cooled to about 15K by heat conduction from the stages d and e. Molecules with a low vapor pressure such as water vapor and oil vapor flying from the opening a into the pump case b are condensed in the baffle h, and, for example, nitrogen or argon gas molecules with a high vapor pressure are condensed in the cryopanel g and are not condensed. By adsorbing the adsorbent i with the hydrogen gas molecules having the property, the vacuum chamber connected to the opening a is evacuated to a high vacuum. The baffle h and the shield f absorb the radiant heat from the vacuum chamber and the heat load due to the heat conduction of gas, and bear the main heat load of the cryopump so that the heat load is not applied to the cryopanel g having a small heat capacity.

【0004】クライオパネルgで窒素、アルゴン等を凝
縮できる気体の排気容量(クライオポンプにため込める
最大量)は、通常、クライオパネルgとバッフルhとの
距離と、クライオパネルgの外径寸法で決まる。その理
由は、クライオパネルgの外面に凝縮した窒素、アルゴ
ン等の層の厚さが増すと、シールドfやバッフルhに接
触するようになり、その接触箇所で凝縮した窒素等が再
蒸発して排気が進行しなくなるからである。また、窒素
等の凝縮層の厚さが厚くなると、その層内に温度勾配が
でき、そのために表面温度が高くなり、排気効率が低下
するからである。クライオパネルgが排気容量の限界に
達すると、クライオポンプを常温に戻して凝縮した窒素
等を蒸発させる再生が行なわれる。
The exhaust capacity of the gas capable of condensing nitrogen, argon, etc. in the cryopanel g (the maximum amount that can be stored in the cryopump) is usually determined by the distance between the cryopanel g and the baffle h and the outer diameter of the cryopanel g. Decided. The reason is that when the thickness of the layer of nitrogen, argon, etc. condensed on the outer surface of the cryopanel g increases, the layers come into contact with the shield f and the baffle h, and the nitrogen etc. condensed at the contact point re-evaporates. This is because the exhaust will not proceed. Further, if the thickness of the condensed layer of nitrogen or the like is increased, a temperature gradient is formed in the layer, which increases the surface temperature and reduces the exhaust efficiency. When the cryopanel g reaches the exhaust capacity limit, the cryopump is returned to room temperature and the condensed nitrogen or the like is evaporated to perform regeneration.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
クライオポンプは1台のヘリウム冷凍機で作動している
ため冷凍能力には限界があり、外部からの熱負荷が大き
くなるとポンプ作用を行なえなくなる不都合があった。
クライオポンプに熱負荷が加わらないようにするため
に、クライオポンプの開口部aの前方に低温トラップを
設けることも考えられるが、低温トラップとバッフルが
排気通路に2重に設けられることになるので、クライオ
パネルgへのコンダクタンスが小さくなり、有効排気速
度が低下して真空装置の排気時間が掛かるようになる不
都合がある。
As described above, since the conventional cryopump is operated by one helium refrigerator, its refrigerating capacity is limited, and when the heat load from the outside becomes large, the pump action is caused. There was an inconvenience that I could not do it.
It is conceivable to provide a low temperature trap in front of the opening a of the cryopump in order to prevent heat load from being applied to the cryopump, but since the low temperature trap and the baffle are provided twice in the exhaust passage. However, there is a disadvantage that the conductance to the cryopanel g is reduced, the effective exhaust speed is reduced, and the exhaust time of the vacuum device is increased.

【0006】また、排気容量を大きくするためにクライ
オパネルgとバッフルhとの距離を大きく取ると、これ
に伴なってシールドfの長さが増大してその分受熱面積
が大きくなり、シールドfに入る輻射熱が多くなるの
で、その距離を大きくするには限界がある。更に、冷凍
能力に限界があるために、スパッタ装置のように大流量
のアルゴンを使用する装置では、装置のアルゴン使用量
は冷凍機の冷凍能力によって制限されてしまう不都合が
ある。
Further, if the distance between the cryopanel g and the baffle h is increased to increase the exhaust capacity, the length of the shield f is increased accordingly and the heat receiving area is increased accordingly, and the shield f is increased accordingly. There is a limit to increasing the distance because the amount of radiant heat entering the device increases. Further, since the refrigerating capacity is limited, in an apparatus that uses a large flow rate of argon such as a sputtering apparatus, the amount of argon used in the apparatus is limited by the refrigerating capacity of the refrigerator.

【0007】本発明は、排気速度を減少させずに排気容
量を増加できるクライオポンプを提供することを目的と
するものである。
An object of the present invention is to provide a cryopump capable of increasing the exhaust capacity without reducing the exhaust speed.

【0008】[0008]

【課題を解決するための手段】本発明では、ポンプケー
スの内部に、2段式ヘリウム冷凍機の1段ステージに取
付けた円筒状のシールドと、該2段式ヘリウム冷凍機の
2段ステージに取付けたクライオパネルとを設け、該シ
ールドにポンプケースの開口部と対面したバッフルを取
付けたクライオポンプに於いて、該ポンプケース及びシ
ールドを前後の2個に分割し、分割された前方のシール
ドに前記バッフルを取付けると共に前記2段式ヘリウム
冷凍機とは別個の第2冷凍機の低温部を取付けて低温ト
ラップに構成することにより、上記の目的を達成するよ
うにした。
According to the present invention, a cylindrical shield attached to a first stage of a two-stage helium refrigerator and a two-stage stage of the two-stage helium refrigerator are provided inside a pump case. In a cryopump provided with a cryopanel attached and a baffle facing the opening of the pump case attached to the shield, the pump case and the shield are divided into two parts, a front shield and a front shield. The above object is achieved by attaching the baffle and attaching a low temperature section of the second refrigerator separate from the two-stage helium refrigerator to form a low temperature trap.

【0009】[0009]

【作用】本発明のクライオポンプにより真空装置の真空
排気を行なう場合、真空装置からの輻射熱や気体の伝導
熱等の熱負荷の大部分は、クライオポンプの前方に設け
られたクライオポンプの冷凍機とは別個の冷凍機で冷却
される低温トラップに於いて吸収されるため、クライオ
パネルに熱負荷が加わらなくなってその温度が下がり、
より厚く窒素やアルゴンを凝縮させることができ、しか
も、低温トラップとクライオパネルの間の距離を大きく
取ってアルゴン等の凝縮層の厚さを増大させるようにし
てもシールドの受熱面積が増大せず、熱負荷の吸収性能
を損なうことなく排気容量の増大がはかれる。更に、バ
ッフルは低温トラップに設けられるので、クライオポン
プの後方のシールドを冷却する1段ステージの熱容量が
小さくなり、その分、室温から冷却するに要する時間が
短縮される。
When the vacuum pump is evacuated by the cryopump of the present invention, most of the heat load such as the radiant heat from the vacuum device and the conductive heat of gas is provided in front of the cryopump. Since it is absorbed in a low temperature trap that is cooled by a refrigerator separate from, the cryopanel no longer receives a heat load and its temperature drops,
Nitrogen and argon can be condensed more thickly, and the heat-receiving area of the shield does not increase even if the distance between the low temperature trap and the cryopanel is increased to increase the thickness of the condensed layer such as argon. The exhaust capacity can be increased without impairing the heat load absorption performance. Further, since the baffle is provided in the low temperature trap, the heat capacity of the one-stage stage for cooling the shield behind the cryopump becomes small, and the time required to cool from room temperature is correspondingly shortened.

【0010】[0010]

【実施例】本発明の実施例を図2に基づき説明すると、
同図に於いて符号1は前方に開口部2を有する円筒形の
クライオポンプのポンプケースを示し、該ポンプケース
1の後方には2段式小型ヘリウム冷凍機3が取付けら
れ、該2段式小型ヘリウム冷凍機3の1段ステージ4と
2段ステージ5はポンプケース1の内部へと延ばされ
る。該ポンプケース1の内部に於いて、該1段ステージ
4には銅製の円筒状のシールド6が取付けられ、該2段
ステージ5には内面に活性炭等の吸着剤7aを設けた銅
製のクライオパネル7が取付けられる。
EXAMPLE An example of the present invention will be described with reference to FIG.
In the figure, reference numeral 1 indicates a pump case of a cylindrical cryopump having an opening 2 at the front, and a two-stage type small helium refrigerator 3 is attached to the rear of the pump case 1, and the two-stage type The first stage 4 and the second stage 5 of the small helium refrigerator 3 are extended into the pump case 1. Inside the pump case 1, a copper cylindrical shield 6 is attached to the first stage 4, and a copper cryopanel having an adsorbent 7a such as activated carbon provided on the inner surface of the second stage 5. 7 is attached.

【0011】こうした構成は、従来のクライオポンプの
場合と同様であるが、本発明の場合、ポンプケース1及
びシールド6を前後の2個、即ち、前方の開口部2側の
ポンプケース1a及びシールド6aと、後方の2段式小
型ヘリウム冷凍機3側のポンプケース1b及びシールド
6bとに分割し、前方のシールド6aに、例えば銅等の
熱良導性材料で形成したバッフル8を開口部2に対面さ
せて取付けると共に前記2段式ヘリウム冷凍機3とは別
個の第2冷凍機9の低温部10を取付けて低温トラップ
11に構成し、クライオポンプの熱負荷を低減、排気容
量の増加及びコンダクタンスを変えずに排気速度を一定
となし得るようにした。該第2冷凍機9としては、1段
式ヘリウム冷凍機或いは−120〜−130℃程度まで
冷却できるフレオン冷凍機或いは液体窒素貯留型の冷凍
機を使用することができる。該開口部2は例えばスパッ
タ装置等の真空装置に仕切バルブを備えた排気管12を
介して接続される。
Although such a construction is similar to that of the conventional cryopump, in the case of the present invention, two pump cases 1 and two shields 6 are provided at the front and rear, that is, the pump case 1a and the shield at the front opening 2 side. 6a and a pump case 1b and a shield 6b on the rear two-stage small helium refrigerator 3 side, and a baffle 8 formed of a heat conductive material such as copper on the front shield 6a. And the low temperature section 10 of the second refrigerator 9 separate from the two-stage helium refrigerator 3 is attached to form the low temperature trap 11, which reduces the heat load of the cryopump and increases the exhaust capacity. The pumping speed can be kept constant without changing the conductance. As the second refrigerator 9, a one-stage helium refrigerator, a Freon refrigerator capable of cooling to about -120 to -130 ° C, or a liquid nitrogen storage refrigerator can be used. The opening 2 is connected to a vacuum device such as a sputtering device through an exhaust pipe 12 equipped with a partition valve.

【0012】該真空装置内を真空に排気する場合、予め
適当な真空度に真空装置の内部を排気したのちクライオ
ポンプの2段式ヘリウム冷凍機3と第2冷凍機9を駆動
し、シールド6a,6b及びバッフル8を80K程度が
冷却されると共にクライオパネル7が15K程度に冷却
されると排気管12の仕切バルブを開き、クライオポン
プにより真空室内が高真空に排気される。この場合、排
気管からポンプケース1に流れ込む真空装置からの気体
は、まづ、低温トラップ11のシールド6aとバッフル
8で冷却され、水蒸気等の蒸気圧の低い気体分子はこれ
らシールド6aとバッフル8に凝縮し、凝縮しなかった
残りの気体分子のうち、蒸気圧の低い分子は後方のシー
ルド6bに凝縮し、例えば窒素のような蒸気圧の高いガ
ス分子はクライオパネル7に凝縮する。更に、非凝縮性
の水素ガス分子やネオンガス分子はクライオパネル7の
内面の吸着剤7aに吸着される。
When the inside of the vacuum apparatus is evacuated to a vacuum, the inside of the vacuum apparatus is evacuated to an appropriate degree of vacuum in advance and then the two-stage helium refrigerator 3 and the second refrigerator 9 of the cryopump are driven to shield the shield 6a. , 6b and the baffle 8 are cooled to about 80K and the cryopanel 7 is cooled to about 15K, the partition valve of the exhaust pipe 12 is opened, and the cryopump evacuates the vacuum chamber to a high vacuum. In this case, the gas from the vacuum device flowing into the pump case 1 from the exhaust pipe is first cooled by the shield 6a and the baffle 8 of the low temperature trap 11, and gas molecules having a low vapor pressure such as water vapor are shielded by the shield 6a and the baffle 8. Of the remaining gas molecules that have condensed and have not condensed, those with a low vapor pressure are condensed on the rear shield 6b, and gas molecules with a high vapor pressure such as nitrogen are condensed on the cryopanel 7. Further, non-condensable hydrogen gas molecules and neon gas molecules are adsorbed by the adsorbent 7a on the inner surface of the cryopanel 7.

【0013】該低温トラップ11のシールド6aとバッ
フル8は、クライオパネル7を冷却する2段式ヘリウム
冷凍機3とは別個の第2冷凍機9で冷却されるので、真
空装置からの輻射熱や気体の伝導熱等の熱負荷の大部分
を2段式ヘリウム冷凍機3に負担を掛けずに吸収するこ
とができ、その分2段式ヘリウム冷凍機3の負担能力に
余裕が生じて気体の排気能力が増え、例えばスパッタ装
置でアルゴンガスの使用量を増やして膜質を向上させる
ことが可能になり、また該クライオパネル7に凝縮した
窒素等のガス分子が再蒸発してポンプ作用を行なえなく
なる不都合を解消できる。また、クライオパネル7とバ
ッフル8の距離を大きくしても2段式ヘリウム冷凍機3
が冷却するシールド6bの受熱面積は変わることがな
く、真空装置からの輻射熱が増えて該2段式ヘリウム冷
凍機3の熱負荷が増えることを防止でき、クライオパネ
ル7に窒素ガス分子等の蒸気圧の高いガス分子を厚く凝
縮させ得て排気容量を増大させることができる。
Since the shield 6a and the baffle 8 of the low temperature trap 11 are cooled by the second refrigerator 9 which is separate from the two-stage helium refrigerator 3 which cools the cryopanel 7, radiant heat from the vacuum device and gas. Most of the heat load such as the conduction heat of the two-stage helium refrigerator 3 can be absorbed without burdening the two-stage helium refrigerator 3, so that the burden capacity of the two-stage helium refrigerator 3 is increased and gas is exhausted. The capacity is increased, and it is possible to improve the film quality by increasing the amount of argon gas used, for example, in a sputtering device, and the gas molecules such as nitrogen condensed in the cryopanel 7 are re-evaporated and cannot function as a pump. Can be eliminated. Even if the distance between the cryopanel 7 and the baffle 8 is increased, the two-stage helium refrigerator 3
The heat receiving area of the shield 6b for cooling does not change, and the radiant heat from the vacuum device can be prevented from increasing to increase the heat load of the two-stage helium refrigerator 3. High pressure gas molecules can be thickly condensed to increase the exhaust capacity.

【0014】[0014]

【発明の効果】以上のように本発明によるときは、クラ
イオポンプのポンプケース及びシールドを前後の2個に
分割し、分割された前方のシールドに前記バッフルを取
付けると共に前記2段式ヘリウム冷凍機とは別個の第2
冷凍機の低温部を取付けて低温トラップに構成したの
で、クライオパネルとバッフルとの距離を2段式ヘリウ
ム冷凍機の熱負荷を増大させることなく大きく取ること
ができ、クライオポンプに加わる熱負荷を第2冷凍機が
分担するので2段式ヘリウム冷凍機の負担が軽くなり、
蒸気圧の高いガス分子の排気容量を大きくできる効果が
あり、排気速度も減少することがない等の効果がある。
As described above, according to the present invention, the pump case and the shield of the cryopump are divided into two parts, the front and rear parts, and the baffle is attached to the divided front shield and the two-stage helium refrigerator. Second separate from
Since the low temperature part of the refrigerator is attached and configured as a low temperature trap, the distance between the cryopanel and the baffle can be made large without increasing the heat load of the two-stage helium refrigerator, and the heat load applied to the cryopump can be increased. Since the second refrigerator shares the burden, the burden on the two-stage helium refrigerator is reduced,
There is an effect that the exhaust capacity of gas molecules having a high vapor pressure can be increased, and an exhaust speed is not reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来例の截断側面図FIG. 1 is a cutaway side view of a conventional example.

【図2】 本発明の実施例の截断側面図FIG. 2 is a cutaway side view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1a、1b ポンプケース 2 開口部 3 2段式ヘリウム冷凍機 4 1段ステー
ジ 5 2段ステージ 6、6a、6b
シールド 7 クライオパネル 8 バッフル 9 第2冷凍機 10 低温部 11 低温トラップ
1, 1a, 1b Pump case 2 Opening part 3 Two-stage helium refrigerator 4 One-stage stage 5 Two-stage stage 6, 6a, 6b
Shield 7 Cryopanel 8 Baffle 9 Second refrigerator 10 Low temperature section 11 Low temperature trap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポンプケースの内部に、2段式ヘリウム
冷凍機の1段ステージに取付けた円筒状のシールドと、
該2段式ヘリウム冷凍機の2段ステージに取付けたクラ
イオパネルとを設け、該シールドにポンプケースの開口
部と対面したバッフルを取付けたクライオポンプに於い
て、該ポンプケース及びシールドを前後の2個に分割
し、分割された前方のシールドに前記バッフルを取付け
ると共に前記2段式ヘリウム冷凍機とは別個の第2冷凍
機の低温部を取付けて低温トラップに構成したことを特
徴とする低温トラップ付クライオポンプ。
1. A cylindrical shield attached to the first stage of a two-stage helium refrigerator inside a pump case,
In a cryopump in which a cryopanel attached to a two-stage stage of the two-stage helium refrigerator is provided, and a baffle facing the opening of the pump case is attached to the shield, the pump case and the shield are attached to front and rear sides. A low-temperature trap characterized by being divided into individual pieces, the baffle being attached to the divided front shield, and a low-temperature portion of a second refrigerator different from the two-stage helium refrigerator being attached to form a low-temperature trap. Cryo pump with.
【請求項2】 上記第2冷凍機は1段式ヘリウム冷凍機
或いはフレオン冷凍機を使用したことを特徴とする請求
項1に記載の低温トラップ付クライオポンプ。
2. The cryopump with a low temperature trap according to claim 1, wherein the second refrigerator is a one-stage helium refrigerator or a Freon refrigerator.
JP3202903A 1991-08-13 1991-08-13 Cryopump with low temperature trap Expired - Lifetime JP3062706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3202903A JP3062706B2 (en) 1991-08-13 1991-08-13 Cryopump with low temperature trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202903A JP3062706B2 (en) 1991-08-13 1991-08-13 Cryopump with low temperature trap

Publications (2)

Publication Number Publication Date
JPH0544642A true JPH0544642A (en) 1993-02-23
JP3062706B2 JP3062706B2 (en) 2000-07-12

Family

ID=16465104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202903A Expired - Lifetime JP3062706B2 (en) 1991-08-13 1991-08-13 Cryopump with low temperature trap

Country Status (1)

Country Link
JP (1) JP3062706B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742673A (en) * 1993-07-29 1995-02-10 Applied Materials Inc Cooling structure of vacuum device
US6832807B2 (en) 2003-02-21 2004-12-21 Honda Motor Co., Ltd. Vehicle open roof apparatus
CN103994049A (en) * 2013-02-18 2014-08-20 住友重机械工业株式会社 Cryopump and cryopump mounting structure
CN106352663A (en) * 2015-07-13 2017-01-25 爱发科低温泵株式会社 Cryo trap
CN107524579A (en) * 2017-09-26 2017-12-29 安徽万瑞冷电科技有限公司 A kind of cryogenic pump
US9926919B2 (en) 2011-02-09 2018-03-27 Brooks Automation, Inc. Cryopump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107725320A (en) * 2017-11-24 2018-02-23 兰州真空设备有限责任公司 A kind of full refrigeration mode cryogenic pump of heavy caliber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742673A (en) * 1993-07-29 1995-02-10 Applied Materials Inc Cooling structure of vacuum device
US6832807B2 (en) 2003-02-21 2004-12-21 Honda Motor Co., Ltd. Vehicle open roof apparatus
US9926919B2 (en) 2011-02-09 2018-03-27 Brooks Automation, Inc. Cryopump
CN103994049A (en) * 2013-02-18 2014-08-20 住友重机械工业株式会社 Cryopump and cryopump mounting structure
CN103994049B (en) * 2013-02-18 2016-08-17 住友重机械工业株式会社 Cryopump and cryopump mounting structure
CN106352663A (en) * 2015-07-13 2017-01-25 爱发科低温泵株式会社 Cryo trap
CN107524579A (en) * 2017-09-26 2017-12-29 安徽万瑞冷电科技有限公司 A kind of cryogenic pump

Also Published As

Publication number Publication date
JP3062706B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US4150549A (en) Cryopumping method and apparatus
EP0079960B1 (en) Improved cryopump
JP5552693B2 (en) Cryopump louver extension
JP4084418B2 (en) Throttle cycle cryopump system for the first group gas
US7037083B2 (en) Radiation shielding coating
US3364654A (en) Ultrahigh vacuum pumping process and apparatus
JPH0544642A (en) Cryopump equipped with low temperature trap
JPH0192591A (en) Cryopump
US4454722A (en) Cryopump
JPH0214554B2 (en)
US4219588A (en) Method for coating cryopumping apparatus
JPH10184541A (en) Vacuum exhaust device
JPS6157473B2 (en)
JPS58131381A (en) Cryogenic pump and refrigerator for said pump
JPS62162779A (en) Improvement of cryopump
JP4301532B2 (en) Cryopump regeneration method
JPS59218372A (en) Low-temperature pump
JP3604228B2 (en) Vacuum exhaust device
JPS603491A (en) Cryopump
JPH045480A (en) Getter pump unit
JP3052096B2 (en) Cryopump
JP2721601B2 (en) Hydrogen evacuation method and apparatus using cryopump
JPS61185690A (en) Cryopump
JP2568364B2 (en) Turbo pump with trap panel
JPS6248974A (en) Cryopump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120512