JPS603491A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS603491A
JPS603491A JP11005183A JP11005183A JPS603491A JP S603491 A JPS603491 A JP S603491A JP 11005183 A JP11005183 A JP 11005183A JP 11005183 A JP11005183 A JP 11005183A JP S603491 A JPS603491 A JP S603491A
Authority
JP
Japan
Prior art keywords
pump
stage
heat
temperature
cryopump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11005183A
Other languages
Japanese (ja)
Other versions
JPH0235873B2 (en
Inventor
Hidetoshi Morimoto
秀敏 森本
Katsumi Morizumi
守住 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUBATSUKU KURAIO KK
Ulvac Cryogenics Inc
Original Assignee
ARUBATSUKU KURAIO KK
Ulvac Cryogenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUBATSUKU KURAIO KK, Ulvac Cryogenics Inc filed Critical ARUBATSUKU KURAIO KK
Priority to JP11005183A priority Critical patent/JPH0235873B2/en
Publication of JPS603491A publication Critical patent/JPS603491A/en
Publication of JPH0235873B2 publication Critical patent/JPH0235873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To prevent the lowering of a pump performance due to an increase in thermal load and as well to shorten the time for starting of operation to aim at enhancing the efficiency of operation is aimed at being enhanced, by connecting a heat pipe between a section which is heated to a high temperature by the thermal load of a cryopump, and a low temperature section. CONSTITUTION:When the thermal load of a pump increases, the section which are heated to a relatively high temperature by the thermal load of the pump, such as, for example, a baffle 9, are connected to low temperature sections such as, for example, a refrigerator first stage 3. With this arrangement, the heat from the baffle 9, etc. is transmitted to the first stage 3 through a heat pipe 11 which operates at a low temperature and which utilizes nitrogen gas as working liquid, and therefore, the temperature gradient therebetween may be limited to a minimum so that a cryopump is driven, without lowering the degree of vacuum, even if the pump load increases. Further, the starting of pump operation may be made in a short time due to the provision of the heat pump, thereby the efficiency of operation may be enhanced.

Description

【発明の詳細な説明】 本発明は真空排気に使用されるクライオポンプに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cryopump used for evacuation.

一般にクライオポンプは、ポンプケース内に。Cryopumps are generally housed inside the pump case.

冷凍機第1段ステージに取付けられ且つ開口部にバッフ
ルを有するシールドと、該シールド内の冷凍機筒2段ス
テージに取付けられたクライオポンプ内とを備え% 7
0°に以下に冷却された−ぐツフルとシールドで水蒸気
を排気すると共に窒素、水素等は20°にのクライオノ
ぞネルで排気するが、ポンプへの輻射、熱とガス負荷即
ち熱負何が犬きくなるとシールドやバッフルへの熱負荷
も犬きぐなjlllk これに伴なってこれらシールド
等VC温度勾配を生じ、排気能力が低下する不都合があ
る。
A shield that is attached to the first stage of the refrigerator and has a baffle at the opening, and a cryopump that is attached to the second stage of the refrigerator cylinder inside the shield% 7
Water vapor cooled to 0° or less is exhausted using a vacuum cleaner and a shield, and nitrogen, hydrogen, etc. are exhausted using a cryo-channel at 20°. As the heat load increases, the heat load on the shields and baffles also increases.As a result, a temperature gradient occurs in the VC of these shields, etc., resulting in a reduction in exhaust performance.

これを更に説明すれば、該シールド及びノ々ツフルは冷
凍機第1段ステージからの熱伝導にょシ冷却されるもの
であるから、大きなポンプ熱負荷が掛ると冷凍機第1段
ステージは充分冷却されているにもかかわらずシールド
及びノ々ツフルに於て伝muffが制限され、シールド
の先端部やバッフルの温度が・易1段ステージよりも大
幅に高くなシ、例えばシールド等が1600に以上なる
と水の蒸気圧’6.10−7Torr台となるため水分
を多く排気するシステムで’d、 10−7Torr台
以下の高真空は得られず、また水蒸気の耐着確率も小さ
くなって排気性能が低下する。
To explain this further, the shield and the nototsufuru are cooled by heat conduction from the first stage of the refrigerator, so if a large pump heat load is applied, the first stage of the refrigerator will not be sufficiently cooled. Despite this, the transmission muff is limited in the shield and the notch, and the temperature of the tip of the shield and the baffle is significantly higher than that of the first stage.For example, when the shield etc. In this case, the vapor pressure of water becomes 6.10-7 Torr, so a system that exhausts a lot of water cannot achieve a high vacuum of less than 10-7 Torr, and the probability of water vapor adhesion decreases, resulting in poor exhaust performance. decreases.

大型のクライオポンプではシールF:′ヤパッフルが犬
きくなシ、受熱面積も大きくなるので熱負荷も大きくな
υ勝らで、ポンプの吸気口径が約50αのものでは概ね
50〜8oWの熱が冷凍機第1段ステージに入シ、この
時該第1段ステージの温度な水分に’t?縮して排気す
るに足りる70乃至100”Kであるが、シールド先輸
やバッフルは120乃至160°Kにも遅し水分を凝縮
して排気することが出来ない。
In large cryopumps, the seal F: 'Yapuffle is hard, and the heat receiving area is also large, so the heat load is also large.If the pump has an inlet diameter of about 50α, approximately 50 to 8oW of heat is frozen. When the machine enters the first stage, is there any temperature or moisture in the first stage? The temperature is 70 to 100"K, which is sufficient to condense and exhaust water, but shields and baffles have a temperature of 120 to 160 degrees K, making it impossible to condense moisture and exhaust it.

シールドやバッフルの熱伝導を良好にしてこうした熱負
荷の増大に伴なう温度勾配を解消するには該シールド等
の板厚を厚くすればよいが、ポンゾ重駄が犬きくな9.
IIIII格も面画でしかも熱容量が増大して起動時間
が長く掛る結呆になって好ましくない。
In order to improve the heat conduction of the shield or baffle and eliminate the temperature gradient caused by the increase in heat load, it is possible to increase the thickness of the shield, etc.
The III rating is also undesirable because it has a small screen and increases heat capacity, resulting in a long start-up time.

本発明はこのような温度勾配を減少させることを目的と
したもので、クライオポンプ内のノ々ツフルその他のポ
ンプ熱負荷の増大に伴ない比較的温度が高まる部分と冷
凍機第1段ステージ等の低温部分とを低温で作動するヒ
ートノぐイブを介して互に接続したことを特徴とする。
The purpose of the present invention is to reduce such temperature gradients, and the purpose of the present invention is to reduce such temperature gradients in the cryopump and other parts of the cryopump where the temperature becomes relatively high due to an increase in pump heat load, as well as the first stage of the refrigerator, etc. The low-temperature parts of the heat pump are connected to each other via a heat nozzle that operates at low temperatures.

本発明の実施列を図面につき説明すると、(1)はクラ
イオポンプ、(2Nj:ポンプケース、 +31(4)
ld夫々ポンプケース(2)内に設けられた冷凍機第1
段ステージ及び冷凍機第2段ステージで、各ステー シ
t3) [4)はポンプケース(2)の外部の運動部(
5)と連結された2段のシリンダ(6) (7)の頂部
に形成される。(8) Viポンプケース(2)の吸気
口(2a)に向う開口部(8a ”j金儲えた@記第1
段ステージ(3)に取付けされる中空筒状のシールド、
(g)は該開口部(8a)に同心状に敗付けたバッフル
、 QOは該シールド(8)の中侶内の前記第2段ステ
ージ(4)に取付けたクライオノぐネルである。該運動
部(5)が作動するとシリンダ(6)(9内で高圧ヘリ
ウムが断熱膨張してその頂部の各ステージ+3) [4
)が冷却され。
To explain the implementation sequence of the present invention with reference to the drawings, (1) is a cryopump, (2Nj: pump case, +31 (4)
The first refrigerator installed in the pump case (2)
In the second stage and the second stage of the refrigerator, each stage t3) [4] is a moving part (
5) are formed at the top of two-stage cylinders (6) and (7) connected to each other. (8) Opening toward the intake port (2a) of the Vi pump case (2) (8a)
A hollow cylindrical shield attached to the stage (3),
(g) is a baffle concentrically fitted in the opening (8a), and QO is a cryonnel attached to the second stage (4) in the middle of the shield (8). When the moving part (5) operates, high-pressure helium expands adiabatically in the cylinder (6) (9 and each stage +3 at the top) [4
) is cooled.

これよりの熱伝導でシールl−″(8)、バッフル(9
)及びクライオノミネルαOが気体分子を凝縮、吸着す
べく冷却される。
Due to heat conduction from this, seal l-'' (8), baffle (9)
) and cryonomynel αO are cooled to condense and adsorb gas molecules.

以上の購成は従来のクライオポンプと略同傭であシ、こ
れによればポンプの熱負荷が増大した場合、シールド1
8)、、 /々ツフル(9)の温度が高19低温の冷凍
機第1段ステージ(3)との間に大きな )温度勾配を
生じて好ましくないが、本発明に於 ”・ではバッフル
(9)等のポンプの熱負荷で比較的温度が高まる部分と
冷凍機付1段ステージ(3)等の低温部分とを低温で作
動するヒートツクイブ(II) Q介して互に接続する
ことにより前記温肛勾配が減少するようにした。該ヒー
トパイプα1)はその作動液として130’に以下の温
度の時の蒸気圧が10 Torr以上で固体化しない気
体1例えば螢素ガスを使用すれば70°に乃至113°
にの温11【領域で作動させ得数十ワットを伝熱するこ
とが出来る。該ヒートノやイブ(11)の取付方法とし
て11ま、例えば山31図示のように該パイプαl)を
クライオパネル囲の開孔021を介して挿通し、各端部
を帝凍機嬉1段ステージ(3)とバッフル(9)に夫々
取付け、或は第2図示のように第1段ステージ(3)に
近いE16分のシールド(8)とシールl” (8)の
先端部とに亘って取付けすることが考&られる。またヒ
ートパイプ01)の祖数本を使用する場合にイψ用条件
によっては作動液がアルゴン等のヒー) p9イブαD
を併用し、ヒートパイゾ詐の作動温度範囲を広くするこ
とが出来る。
The above purchase is almost the same as for conventional cryopumps, and according to this, when the heat load of the pump increases, the shield 1
8),, Although it is undesirable that a large temperature gradient occurs between the temperature of the baffle (9) and the first stage (3) of the refrigerator, which is at a high temperature and a low temperature, the baffle (9) is undesirable. 9), etc., and the low temperature section, such as the 1st stage with refrigerator (3), are connected to each other via the heat tube (II) Q, which operates at low temperatures, to reduce the temperature. The heat pipe α1) has a working fluid of 70° if a gas 1, such as fluorine gas, which does not solidify at temperatures below 10 Torr, is used as the working fluid. to 113°
It can be operated in the temperature range of 11° and can transfer tens of watts of heat. To attach the heat pipe (11), for example, as shown in the figure 31, insert the pipe αl) through the opening 021 surrounding the cryopanel, and attach each end to the Teikoku 1st stage. (3) and the baffle (9), respectively, or as shown in the second diagram, between the E16 shield (8) near the first stage (3) and the tip of the seal l'' (8). Also, when using heat pipes 01), depending on the operating conditions, the working fluid may be argon or other heat source.
can be used in combination to widen the operating temperature range of Heat Pizo.

その作動を説明する。Its operation will be explained.

シールド(8)及びバッフル(9)が約70’l(以下
に冷却されて吸気口(2a)からの水蒸気全排気し、ク
ライオパネルCI(Jが約20°に以下に冷却されて4
累、水素等を吸着排気する正常運転状態にあるとき、ポ
ンプの熱負荷が増大すると、冷凍機第1段ステージ(3
)とシールド(8)の先端部及びバッフル(9)との間
にシールド(萄の熱伝導では補なえない熱址差が生じ大
きな温度勾配発生の原因となるが、ヒートノぐイブαυ
を介してバッフル(9)等の熱を第1段ステージ(3)
に伝えるので両者間の温度勾配を最少限にとどめること
が出来、ポンプ熱負荷が増大しても真空度を低下させる
ことなくクライオポンプの運転が行なわれる。またポン
プの運転開始をする時には、各ステージ(3)(4) 
、シールド(8) 、ノ々ツフル(9) 、クライオノ
ミネルC11等の温度は室温にあシ1次第に温度が低下
してシールド(8)、ノ々ツフル(9)が130°に以
下、クライオノぐネルu1が20°に以下になるとポン
プ作動を行なうが1作動までに要する冷ムIJ時間はヒ
ートパイプαυを設けることでシールド(8)で制限さ
れる伝熱量を超越し得短い時間で作動開始することか出
来、さらにシールド(8)バッフル(9)の板厚を比較
的薄手に形成しても前記冷却時間を短縮し熱負侍の増大
に耐えることが出NJる。
The shield (8) and the baffle (9) are cooled to about 70'l (or less) and all water vapor from the inlet (2a) is exhausted, and the cryopanel CI (J is cooled to about 20° or less and 4
When the heat load on the pump increases during normal operation of adsorbing and exhausting hydrogen, etc., the first stage (3rd stage) of the refrigerator
) and the tip of the shield (8) and the baffle (9), there is a thermal difference that cannot be compensated for by the heat conduction of the shield, causing a large temperature gradient.
Heat is transferred to the first stage (3) through the baffle (9), etc.
Since the temperature gradient between the two can be kept to a minimum, the cryopump can be operated without reducing the degree of vacuum even if the pump heat load increases. Also, when starting pump operation, each stage (3) (4)
, Shield (8), Nonotsufuru (9), Cryonomynel C11, etc. are at room temperature, and the temperature gradually decreases until the temperature of Shield (8), Nonotsufuru (9) reaches 130°, and the temperature of the cryonomynel C11 decreases to 130°. When the channel u1 becomes 20 degrees or less, the pump operates, but by providing a heat pipe αυ, the amount of heat transfer limited by the shield (8) can be overcome and the pump operates in a short time. Furthermore, even if the shield (8) and baffle (9) are made relatively thin, the cooling time can be shortened and the increase in heat load can be withstood.

このように本発明によるときはヒートパイプを介してク
ライオポンプの熱負荷((よシ温度が高まる部分と低温
部分とを接読したので熱負荷の増大によるポンプ性能の
低下を防止出来ると共に運転開始までの耐却時間を短縮
し得て作動効率が高まり、シールド、・くツフルを薄形
化出来てボンゾの軽量化が可能になる等の効果がある。
In this way, according to the present invention, the heat load of the cryopump (() is directly read from the high-temperature part and the low-temperature part through the heat pipe, so it is possible to prevent the pump performance from deteriorating due to an increase in heat load, and to start operation. This has the effect of shortening the shelf life, increasing operating efficiency, and making the shield and shield thinner, making it possible to reduce the weight of Bonzo.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の截断囮面図、第2図はその変
形し1の截断側面図である。 (1)・・・クライオポンプ (3)・・・冷凍機第1
段ステージ(9)・・・バッフル αす・・・ヒートパ
イブ回 豐−− 瀝 −ζζζ−
FIG. 1 is a cutaway side view of an embodiment of the present invention, and FIG. 2 is a cutaway side view of a modified version 1 thereof. (1)... Cryopump (3)... Refrigerator No. 1
Stage (9)...Baffle α...Heat pipe rotation-- 瀝-ζζζ-

Claims (1)

【特許請求の範囲】[Claims] クライオポンプ内のバッフルその他のポンプ熱負荷の増
大に伴ない比較的温度が高まる部分と冷凍機第1段ステ
ージ等の低温部分とを低温で作動するヒートノξイゾを
介して互に接続したことを特徴とするクライオポンプ。
The baffle in the cryopump and other parts whose temperature increases relatively as the pump heat load increases, and the low-temperature parts such as the first stage of the refrigerator are connected to each other via a heat nozzle that operates at low temperatures. Characteristic cryopump.
JP11005183A 1983-06-21 1983-06-21 KURAIOHONPU Expired - Lifetime JPH0235873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11005183A JPH0235873B2 (en) 1983-06-21 1983-06-21 KURAIOHONPU

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11005183A JPH0235873B2 (en) 1983-06-21 1983-06-21 KURAIOHONPU

Publications (2)

Publication Number Publication Date
JPS603491A true JPS603491A (en) 1985-01-09
JPH0235873B2 JPH0235873B2 (en) 1990-08-14

Family

ID=14525850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11005183A Expired - Lifetime JPH0235873B2 (en) 1983-06-21 1983-06-21 KURAIOHONPU

Country Status (1)

Country Link
JP (1) JPH0235873B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297629U (en) * 1985-12-05 1987-06-22
US5921975A (en) * 1994-12-27 1999-07-13 Kao Corporation Absorbent article having antileakage walls
US6551297B2 (en) 1996-06-04 2003-04-22 Kao Corporation Absorbent article
JP2013533454A (en) * 2010-07-30 2013-08-22 ブルックス オートメーション インコーポレイテッド Multi-cooler high-speed cryopump
JP2021503577A (en) * 2017-11-17 2021-02-12 エドワーズ バキューム リミテッド ライアビリティ カンパニー Cryopump with reinforced front array

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297629U (en) * 1985-12-05 1987-06-22
JPH0211066Y2 (en) * 1985-12-05 1990-03-19
US5921975A (en) * 1994-12-27 1999-07-13 Kao Corporation Absorbent article having antileakage walls
US6551297B2 (en) 1996-06-04 2003-04-22 Kao Corporation Absorbent article
JP2013533454A (en) * 2010-07-30 2013-08-22 ブルックス オートメーション インコーポレイテッド Multi-cooler high-speed cryopump
US9687753B2 (en) 2010-07-30 2017-06-27 Brooks Automation, Inc. Multi-refrigerator high speed cryopump
US10632399B2 (en) 2010-07-30 2020-04-28 Edwards Vacuum Llc Multi-refrigerator high speed cryopump
JP2021503577A (en) * 2017-11-17 2021-02-12 エドワーズ バキューム リミテッド ライアビリティ カンパニー Cryopump with reinforced front array

Also Published As

Publication number Publication date
JPH0235873B2 (en) 1990-08-14

Similar Documents

Publication Publication Date Title
JP2574586B2 (en) Method for regenerating a cryopump and a cryopump suitable for performing the method
EP0079960B1 (en) Improved cryopump
NO20005575D0 (en) Method and arrangement for defrosting cold / heat pump systems
JPS6128907B2 (en)
US5156007A (en) Cryopump with improved second stage passageway
JP2001510523A (en) Improved shielded cryopump
JPS603491A (en) Cryopump
US4454722A (en) Cryopump
JP3062706B2 (en) Cryopump with low temperature trap
JPS58131381A (en) Cryogenic pump and refrigerator for said pump
US4240262A (en) Cryopump device
CN101094710A (en) Improved cryopump
JP2763524B2 (en) Secondary pump device
JPS62162779A (en) Improvement of cryopump
JP2721601B2 (en) Hydrogen evacuation method and apparatus using cryopump
US6550256B1 (en) Alternative backing up pump for turbomolecular pumps
JP3604228B2 (en) Vacuum exhaust device
JP2943489B2 (en) Cold trap for evacuation system
CN214148410U (en) Double-temperature double-control water chilling unit
SU1019103A1 (en) Method of evacuating cavity
SU1751400A1 (en) Vacuum cryogenic pump
SU987169A1 (en) Cryogenic forevacuum pump
SU1366690A1 (en) Cryogenic roughing-down condensation-adsorption pump
JPS6248974A (en) Cryopump
JP2994720B2 (en) Cryopump regeneration equipment