JPH0544407A - Exhaust heat recovery method of pressurized fluidized bed combined generating system - Google Patents

Exhaust heat recovery method of pressurized fluidized bed combined generating system

Info

Publication number
JPH0544407A
JPH0544407A JP3225324A JP22532491A JPH0544407A JP H0544407 A JPH0544407 A JP H0544407A JP 3225324 A JP3225324 A JP 3225324A JP 22532491 A JP22532491 A JP 22532491A JP H0544407 A JPH0544407 A JP H0544407A
Authority
JP
Japan
Prior art keywords
deaerator
feed water
exhaust gas
flash
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3225324A
Other languages
Japanese (ja)
Other versions
JP2994109B2 (en
Inventor
Tetsuya Kunitaka
哲也 国高
Kikuo Hori
喜久男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIHATSU DENKI KK
Electric Power Development Co Ltd
Original Assignee
KAIHATSU DENKI KK
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIHATSU DENKI KK, Electric Power Development Co Ltd filed Critical KAIHATSU DENKI KK
Priority to JP3225324A priority Critical patent/JP2994109B2/en
Publication of JPH0544407A publication Critical patent/JPH0544407A/en
Application granted granted Critical
Publication of JP2994109B2 publication Critical patent/JP2994109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To enhance thermal efficiency of the whole plant by providing a feed water circulation adjusting valve, a flash tank, and a drain adjusting valve in the course of a feed water circulation return system pipe line from the feed water outlet of a gas turbine exhaust gas cooler positioned in a boiler high pressure feed water system to a deaerator. CONSTITUTION:A pressurized fluidized bed combined generating system is composed of a pressurized fluidized bed boiler 2, a gas turbine generator 1, and a steam turbine generator 3. A feed water circulation return system from the feed water outlet of a gas turbine exhaust gas cooler 8 to a deaerator positioned in a boiler high pressure feed water system is provided, and a feed water circulation adjusting valve 13, a flash tank 14, and a drain adjusting valve 15 are provided in the course of it. Since the flash tank 14 has comparatively low pressure inside, flash steam is recovered to the deaerator 6, and flash drain is likewise to the deaerator 6 through the drain adjusting valve 15. Thus, at the partial load time of a plant, exhaust gas of high temperature is not shed to a smokestack, and this surplus emission heat quantity is recovered to prevent lowering of plant thermal efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧流動床燃焼ボイラ、
ガスタービン、蒸気タービンからなる加圧流動床複合発
電システムにおいて、ガスタービン排ガスの排熱回収方
式に関する。
This invention relates to a pressurized fluidized bed combustion boiler,
In a pressurized fluidized bed combined cycle power generation system including a gas turbine and a steam turbine, the present invention relates to an exhaust heat recovery method for gas turbine exhaust gas.

【0002】[0002]

【従来の技術】加圧流動床ボイラにおいては燃焼排ガス
によってガスタービンを駆動し、発生水蒸気によって蒸
気タービンを駆動する複合発電システムが採用されてい
る。この場合、ガスタービンを出た燃焼排ガスは高温を
保持しているので、この熱エネルギーを回収すると共
に、煙突への熱負荷を低減させるため、ガスタービン排
ガスクーラでボイラ給水と熱交換させて、温度を下げて
煙突へ排出させている。
2. Description of the Related Art In a pressurized fluidized bed boiler, a combined power generation system is used in which a gas turbine is driven by combustion exhaust gas and a steam turbine is driven by generated steam. In this case, since the combustion exhaust gas that has exited the gas turbine maintains a high temperature, in order to recover this thermal energy and reduce the heat load on the chimney, heat is exchanged with the boiler feed water by the gas turbine exhaust gas cooler, The temperature is lowered and discharged to the chimney.

【0003】この従来の複合発電システムのフローダイ
アグラムを図3に示す。図3において、1はガスタービ
ン発電機、2は加圧流動床ボイラ、3は蒸気タービン発
電機、4は復水器、5は低圧給水加熱器、6は脱気器、
7は高圧給水加熱器、8はガスタービン排ガスクーラ、
9はガスバイパスダンパ、10は煙突、11は給水ポン
プ、12は給水調整弁である。
A flow diagram of this conventional combined cycle power generation system is shown in FIG. In FIG. 3, 1 is a gas turbine generator, 2 is a pressurized fluidized bed boiler, 3 is a steam turbine generator, 4 is a condenser, 5 is a low-pressure feed water heater, 6 is a deaerator,
7 is a high pressure feed water heater, 8 is a gas turbine exhaust gas cooler,
Reference numeral 9 is a gas bypass damper, 10 is a chimney, 11 is a water supply pump, and 12 is a water supply adjusting valve.

【0004】加圧流動床ボイラ2へは、燃料及びガスタ
ービン発電機1からの圧縮空気が供給されて燃焼し、発
生蒸気は蒸気タービン発電機3を駆動する。一方、加圧
流動床ボイラ2の排ガスはガスタービン発電機1を駆動
する。蒸気タービン3の排気は復水器4において復水し
た後、低圧給水加熱器5、脱気器6、給水ポンプ11、
高圧給水加熱器7、給水調整弁12を経て、加圧流動床
ボイラ2に至り、蒸気側サイクルを形成する。
Fuel and compressed air from the gas turbine generator 1 are supplied to the pressurized fluidized bed boiler 2 and burned, and the generated steam drives the steam turbine generator 3. On the other hand, the exhaust gas of the pressurized fluidized bed boiler 2 drives the gas turbine generator 1. Exhaust gas from the steam turbine 3 is condensed in a condenser 4, and then, a low-pressure feed water heater 5, a deaerator 6, a feed water pump 11,
After passing through the high-pressure feed water heater 7 and the feed water adjusting valve 12, the pressure fluidized bed boiler 2 is reached and a steam side cycle is formed.

【0005】ガスタービン排ガスは、ガスタービン排ガ
スクーラ8によって排熱をボイラ給水側に熱回収した
後、煙突10を経て大気中に放出される。低圧給水加熱
器5、脱気器6、高圧給水加熱器7の加熱用蒸気は何れ
も蒸気タービン3の抽気が充当される。高圧給水加熱器
7と、ガスタービン排ガスクーラ8とはボイラ給水を分
岐する系統となるが、熱バランス上の理由から、高圧給
水加熱器7は使用せず、ガスタービン排ガスクーラ8の
みに依存する方式が一般的である。
The gas turbine exhaust gas is exhausted to the boiler feed water side by the gas turbine exhaust gas cooler 8 and then discharged to the atmosphere through the chimney 10. The extraction steam of the steam turbine 3 is applied to the heating steam of the low-pressure feed water heater 5, the deaerator 6, and the high-pressure feed water heater 7. The high-pressure feed water heater 7 and the gas turbine exhaust gas cooler 8 serve as a system for branching the boiler feed water, but for heat balance reasons, the high-pressure feed water heater 7 is not used and depends only on the gas turbine exhaust gas cooler 8. The method is general.

【0006】ガスタービン排ガスクーラ8は、定格負荷
時には、ガス側からみれば排ガス保有熱量の回収を目的
として、又ボイラ給水側からみれば、高圧給水加熱器と
して機能する。しかし、プラント出力が低下する部分負
荷時には、ガス側と給水側との熱交換の平衡状態が定格
負荷時とは異なった状態を示す。即ち、一般的には、ガ
ス側から給水側への伝熱量が給水加熱器としての能力を
上廻る結果として、排ガスクーラ8の出口給水の一部が
蒸気発生を伴なうこととなる。この排ガスクーラ8に本
来付与されていない機能である蒸気発生はウォータハン
マなどの重大な運転上の障害となり、プラントの運転の
継続が不可能となる問題点が発生する。
The gas turbine exhaust gas cooler 8 functions at the time of rated load for the purpose of recovering the heat quantity of exhaust gas possessed when viewed from the gas side, and as a high pressure feed water heater when viewed from the boiler feed water side. However, at the partial load when the plant output decreases, the equilibrium state of heat exchange between the gas side and the water supply side shows a state different from that at the rated load. That is, generally, as a result that the amount of heat transferred from the gas side to the water supply side exceeds the capacity of the water supply heater, a part of the outlet water supply of the exhaust gas cooler 8 is accompanied by steam generation. The steam generation, which is a function originally not provided to the exhaust gas cooler 8, causes a serious operational obstacle such as a water hammer, which causes a problem that the operation of the plant cannot be continued.

【0007】ガスタービン排ガスクーラ8には、ガス側
のバイパス系統が設けられ、ガスバイパスダンパ9が設
けられている。従来方式における前記の問題点を回避す
る手段として、このガス側のバイパス回路が設けられて
おり、ガスバイパスダンパ9を部分負荷時に開くことに
よって排ガスクーラ8へのガス流量を減少し、それによ
り排ガスクーラの熱負荷を減じ、部分負荷時の蒸気発生
を防止する手段が採られている。
The gas turbine exhaust gas cooler 8 is provided with a gas side bypass system and a gas bypass damper 9. As a means for avoiding the above-mentioned problems in the conventional method, this gas side bypass circuit is provided, and the gas flow rate to the exhaust gas cooler 8 is reduced by opening the gas bypass damper 9 during partial load, whereby the exhaust gas is reduced. Measures are taken to reduce the heat load on the cooler and prevent steam generation at partial load.

【0008】しかし、前記のガスバイパスダンパ方式
は、部分負荷時に煙突から放出される排ガス温度の上昇
をもたらし、排ガスダクト及び煙突の耐熱上の対応構造
を必要とする問題点に加えて、最終排ガス熱損失の増大
即ちプラント熱効率の低下をもたらすという重大な問題
点となる。
However, the above gas bypass damper system causes a rise in the temperature of the exhaust gas discharged from the chimney at the time of partial load, and in addition to the problem of requiring a heat-resistant structure for the exhaust gas duct and the chimney, the final exhaust gas This is a serious problem in that it causes an increase in heat loss, that is, a decrease in plant thermal efficiency.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、加圧
流動床複合発電システムのプラント出力が低下する部分
負荷時において、ガス側から給水側への伝熱量が給水加
熱器としての能力を上廻る場合にも、煙突へ高温の排ガ
スを流すことなく、この余剰排出熱量を回収してプラン
ト熱効率の低下を防止する手段を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the capacity as a feed water heater by the amount of heat transfer from the gas side to the feed water side during partial load when the plant output of the pressurized fluidized bed combined cycle power generation system decreases. Even when the temperature exceeds the limit, it is an object to provide a means for preventing the reduction of the thermal efficiency of the plant by collecting the surplus discharged heat amount without flowing the high-temperature exhaust gas to the chimney.

【0010】[0010]

【課題を解決するための手段】本発明者らは前記の課題
を解決するため鋭意研究を行った結果、ガスタービン排
ガスクーラを通る給水量を循環回路を設けることによっ
て増加させて排ガスの余剰熱量を吸収し、循環回路中に
おいてフラッシュさせることにより蒸気として、蒸気タ
ービンから脱気器への抽気蒸気の減少或いは、蒸気ター
ビンの低温再熱蒸気系への供給によってプラント全体の
熱効率の向上へ寄与し得ることを知見し本発明を完成し
た。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have increased the amount of water supplied through the gas turbine exhaust gas cooler by providing a circulation circuit to increase the excess heat of exhaust gas. Is absorbed and flashed in the circulation circuit to contribute to the improvement of the thermal efficiency of the entire plant by reducing the extraction steam from the steam turbine to the deaerator or supplying it to the low temperature reheat steam system of the steam turbine. The present invention has been completed by finding that it can be obtained.

【0011】すなわち本発明は (1) 加圧流動床燃焼系ボイラ、ガスタービン、蒸気
タービンからなる加圧流動床複合発電システムにおい
て、ボイラ高圧給水系統に位置するガスタービン排ガス
クーラの給水出口部から脱気器への給水循環戻り系統配
管を設け、該配管の途中に給水循環調整弁、フラッシュ
タンク、ドレン調整弁を設置し、フラッシュタンクを低
圧力とし、フラッシュ蒸気を脱気器へ、フラッシュドレ
インを脱気器へ回収して循環させることを特徴とする加
圧流動床複合発電システムの排熱回収方式であり、
That is, the present invention is as follows: (1) In a pressurized fluidized bed combined cycle power generation system comprising a pressurized fluidized bed combustion system boiler, a gas turbine and a steam turbine, from a feed water outlet of a gas turbine exhaust gas cooler located in a boiler high pressure feed water system. Install a water supply circulation return system pipe to the deaerator, install a water supply circulation adjustment valve, a flash tank, and a drain adjustment valve in the middle of the pipe, set the flash tank to a low pressure, and flush flash steam to the deaerator and flush drain. Is an exhaust heat recovery system for a pressurized fluidized bed combined cycle power generation system characterized by recovering and circulating the

【0012】(2) 加圧流動床燃焼系ボイラ、ガスタ
ービン、蒸気タービンからなる加圧流動床複合発電シス
テムにおいて、ボイラ高圧給水系統に位置するガスター
ビン排ガスクーラの給水出口部から脱気器への給水循環
戻り系統配管を設け、該配管の途中に給水循環調整弁、
フラッシュタンク、ドレン調整弁を設置し、フラッシュ
タンクを中圧力とし、フラッシュ蒸気を低温再熱蒸気系
へ、フラッシュドレンを脱気器へ回収して循環させるこ
とを特徴とする加圧流動床複合発電システムの排熱回収
方式である。
(2) In a pressurized fluidized bed combined cycle power generation system consisting of a pressurized fluidized bed combustion system boiler, a gas turbine, and a steam turbine, from the water supply outlet of the gas turbine exhaust gas cooler located in the boiler high pressure water supply system to the deaerator. A water supply circulation return system pipe is provided, and a water supply circulation adjusting valve is provided in the middle of the pipe.
A pressurized fluidized bed combined cycle power generation characterized by installing a flash tank and a drain adjustment valve, setting the flash tank to an intermediate pressure, collecting the flash steam to a low temperature reheat steam system and collecting the flash drain to a deaerator and circulating it. This is the system exhaust heat recovery method.

【0013】本発明の詳細を図1、図2によって説明す
る。図1は請求項1に対応する第1システムのフローダ
アイアグラムで、低圧フラッシュ方式であり、図2は請
求項2に対応する第2システムのフローダイアグラム
で、中圧フラッシュ方式である。
The details of the present invention will be described with reference to FIGS. FIG. 1 is a flow diagram of a first system according to claim 1, which is a low pressure flash system, and FIG. 2 is a flow diagram of a second system according to claim 2, which is a medium pressure flash system.

【0014】図1について説明する。ガスタービン排ガ
スクーラ8の給水出口部から脱気器へ循環戻り系統を設
け、その途中に給水循環調整弁13、フラッシュタンク
14、ドレン調整弁15を設置する。フラッシュタンク
14は、この第一システムでは、比較的低圧力であり、
フラッシュ蒸気は脱気器6へ、又フラッシュドレンはド
レン調整弁15を経て同じく脱気器6へ回収される。
Referring to FIG. A circulation return system is provided from the water supply outlet of the gas turbine exhaust gas cooler 8 to the deaerator, and a water supply circulation adjusting valve 13, a flash tank 14, and a drain adjusting valve 15 are installed on the way. The flash tank 14 has a relatively low pressure in this first system,
Flash vapor is collected in the deaerator 6, and flash drain is collected in the deaerator 6 via the drain adjusting valve 15.

【0015】ガスタービン排ガスクーラ8のガス側バイ
パス系は設置されない。プラント出力が低下する部分負
荷時には、ガス側から給水側への伝熱量が給水加熱器と
しての能力を上廻るので、ポンプ11によるガスタービ
ン排ガスクーラ8への通水量を加圧流動床ボイラ2の給
水量以上に増大させ、排ガスクーラ8での伝熱量をガス
側とバランスさせて、排ガスクーラでの蒸気発生をおさ
えると共に、余分の通水は脱気器への循環戻り系統へま
わす。通常は排ガスクーラ8の出口の給水温度を検知し
て、給水循環調整弁13を開けるように制御する。
The gas-side bypass system of the gas turbine exhaust gas cooler 8 is not installed. At the time of partial load when the plant output decreases, the amount of heat transfer from the gas side to the water supply side exceeds the capacity as a water supply heater, so the amount of water that is passed by the pump 11 to the gas turbine exhaust gas cooler 8 is controlled by the pressurized fluidized bed boiler 2. By increasing the amount of water supply or more and balancing the amount of heat transfer in the exhaust gas cooler 8 with the gas side, and suppressing steam generation in the exhaust gas cooler, excess water is sent to the circulation return system to the deaerator. Normally, the feed water temperature at the outlet of the exhaust gas cooler 8 is detected, and the feed water circulation adjusting valve 13 is controlled to open.

【0016】この水はフラッシュタンク14で、圧力を
脱気器6程度に落して、フラッシュさせ、蒸発潜熱によ
り冷却される。水の方はフラッシュタンクの液面計によ
りドレン調整弁15を調整して脱気器6へ戻し、蒸気も
脱気器程度の圧力であるので脱気器へ回収する。結局排
ガスクーラ8で、余分に伝熱された熱量はフラッシュタ
ンク14よりの蒸気量となって、脱気器6への蒸気ター
ビン中間よりの抽気蒸気16を節減できることになる。
これは勿論、脱気器での熱平衡関係から自動的にバラン
スするものであり、特別の制御を要するものではない。
This water is flushed in the flash tank 14 by reducing the pressure to about the deaerator 6, and is cooled by the latent heat of vaporization. The water is returned to the deaerator 6 by adjusting the drain adjusting valve 15 with the liquid level gauge of the flash tank, and the vapor is also recovered to the deaerator because the pressure is about the same as that of the deaerator. Eventually, the amount of heat transferred in the exhaust gas cooler 8 becomes an amount of steam from the flash tank 14, and the extracted steam 16 from the middle of the steam turbine to the deaerator 6 can be saved.
This is, of course, automatically balanced from the thermal equilibrium relationship in the deaerator and does not require special control.

【0017】次に図2について説明する。この第2シス
テムの構成は、基本的には第1システムと類似である
が、フラッシュタンク14は本第2システムでは比較的
中圧力であり、フラッシュ蒸気は低温再熱蒸気17へ回
収される点が第1システムと相違する。即ち蒸気タービ
ン3で一度タービンを駆動した蒸気は、ボイラを出た蒸
気よりも低温となっており、この蒸気はボイラ2へ戻さ
れて、再熱され、再び蒸気タービン3を駆動するが、こ
の低温再熱蒸気系17へ、フラッシュタンク14でのフ
ラッシュ蒸気を供給する。
Next, FIG. 2 will be described. The configuration of the second system is basically similar to that of the first system, but the flash tank 14 has a relatively medium pressure in the second system, and the flash steam is recovered to the low temperature reheat steam 17. Is different from the first system. That is, the steam that has once driven the turbine in the steam turbine 3 is at a lower temperature than the steam that has exited the boiler, and this steam is returned to the boiler 2 and reheated to drive the steam turbine 3 again. The flash steam in the flash tank 14 is supplied to the low temperature reheat steam system 17.

【0018】これによって、低温再熱蒸気量を増大させ
て、結局蒸気タービン3への供給蒸気量の増大となっ
て、排ガスクーラでの余分の熱量が回収されることにな
る。フラッシュタンクのドレンを脱気器6へ循環させる
点およびガスタービン排ガスクーラ8のガス側バイパス
系を設置しない点は第1システムと同じである。
As a result, the amount of low-temperature reheated steam is increased, and eventually the amount of steam supplied to the steam turbine 3 is increased, and the extra heat amount in the exhaust gas cooler is recovered. The point that the drain of the flash tank is circulated to the deaerator 6 and the point that the gas side bypass system of the gas turbine exhaust gas cooler 8 is not installed is the same as the first system.

【0019】即ち本発明においては、ガスタービン排ガ
スクーラ8の給水出口から脱気器への循環戻り系統を設
置することにより、全体プラントの部分負荷時において
は、全体プラントの負荷状態に支配されることなく、ガ
スタービン排ガスクーラ8における部分負荷時の蒸気発
生を防止するのに充分な給水量をガスタービン排ガスク
ーラ8に供給確保することが可能になる。
That is, in the present invention, by installing the circulation return system from the feed water outlet of the gas turbine exhaust gas cooler 8 to the deaerator, the load condition of the whole plant is controlled when the whole plant is partially loaded. Without it, it becomes possible to secure a sufficient amount of water supply to the gas turbine exhaust gas cooler 8 to prevent the generation of steam at the time of partial load in the gas turbine exhaust gas cooler 8.

【0020】前記の如く、第1システムでは、フラッシ
ュタンク14におけるフラッシュ蒸気が脱気器加熱蒸気
として脱気器6に回収される結果、脱気器用タービン抽
気16の抽気量は減少することにより蒸気タービンの出
力増大に寄与する。第2システムでは、フラッシュタン
ク14でのフラッシュ蒸気は中圧力で、低温再熱系統1
7に回収されることによって、第1システムよりも高い
水準での熱回収が図れる結果、部分負荷時の熱効率改善
により大きく寄与することになる。
As described above, in the first system, the flash vapor in the flash tank 14 is recovered by the deaerator 6 as the deaerator heating vapor, and as a result, the extraction amount of the deaerator turbine bleed air 16 is reduced, so Contributes to increased turbine output. In the second system, the flash steam in the flash tank 14 has an intermediate pressure and the low temperature reheat system 1
By recovering to No. 7, heat recovery at a higher level than that of the first system can be achieved, and as a result, it contributes greatly to the improvement of thermal efficiency under partial load.

【0021】[0021]

【実施例】以下に実施例によって本発明を更に具体的に
説明するが、本発明はこの実施例によって何等限定され
るものではない。 (実施例1) 図4は、蒸気タービン中間部よりの蒸気の再熱系のない
場合について、本発明の第1システムの1実施例を示し
たもので、分り易くするために各部の流量、温度を記入
した図である。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Embodiment 1) FIG. 4 shows one embodiment of the first system of the present invention in the case where there is no steam reheat system from the steam turbine middle portion, and in order to make it easy to understand, the flow rate of each portion, It is the figure which entered the temperature.

【0022】図5は同じく再熱系のない場合について、
本発明の給水の循環戻り系統がなく、従来のガスタービ
ン排ガスのバイパス9を設けた対応する従来例である。
従来、脱気器から60T/hrの給水量で、部分負荷時に
は、給水系の蒸気発生を防ぐため、ガスタービン排ガス
40T/hr(25%)をバイパスさせていた。このた
め、煙突での排ガス温度は195℃となり、煙道、煙突
での損傷が大きく、これを防ぐためには、高価な特別な
耐熱壁構造を必要とした。
FIG. 5 also shows the case without a reheat system.
It is a corresponding conventional example in which the bypass 9 for the conventional gas turbine exhaust gas is provided without the circulation and return system of the water supply of the present invention.
Conventionally, a gas turbine exhaust gas of 40 T / hr (25%) is bypassed in order to prevent steam generation in the water supply system at a partial load with a water supply amount of 60 T / hr from a deaerator. Therefore, the exhaust gas temperature at the chimney is 195 ° C., and the damage to the flue and the chimney is large, and an expensive special heat-resistant wall structure is required to prevent this.

【0023】図4の発明においては、循環給水20T/
hrを含めて排ガスクーラ8への送水量は80T/hrであ
り、これによって排ガス系にバイパスを設けなくても、
排ガスの全量が排熱回収が可能なので最終排ガス温度は
本来意図した140℃まで低減可能である。
In the invention of FIG. 4, the circulating water supply 20T /
The amount of water to be sent to the exhaust gas cooler 8 including hr is 80 T / hr, which allows the exhaust gas system to be bypassed without
Since the entire amount of exhaust gas can recover exhaust heat, the final exhaust gas temperature can be reduced to the originally intended 140 ° C.

【0024】本発明の骨子である脱気器6への循環戻り
系統でのフラッシュ蒸気(5T/hr)およびフラッシュ
ドレン(15T/hr)は脱気器へ回収される。その結
果、脱気器用抽気は、従来例図5の6T/hrから2T/
hrに減少し、その差額分4T/hrは蒸気タービン3にお
いて追加電力を発生し、15MWの出力は、図示例では
15.5MWに増大し、全体プラントの熱効率が改善さ
れることになる。
The flash vapor (5 T / hr) and flash drain (15 T / hr) in the circulation return system to the deaerator 6, which is the essence of the present invention, are recovered to the deaerator. As a result, the bleed air for the deaerator is reduced from 6T / hr in the conventional example to 2T / hr.
The electric power is reduced to hr, and the difference of 4 T / hr generates additional electric power in the steam turbine 3, the output of 15 MW is increased to 15.5 MW in the illustrated example, and the thermal efficiency of the entire plant is improved.

【0025】(実施例2)図6は、蒸気タービン中間部
よりの蒸気の再熱系のある場合についての本発明の第2
システムの1実施例を示したもので、分かり易くするた
め、各部の流量、温度を記入した図である。
(Embodiment 2) FIG. 6 shows a second embodiment of the present invention in the case where there is a reheat system for steam from the middle part of a steam turbine.
FIG. 3 is a diagram showing an example of the system, and is a diagram in which flow rates and temperatures of respective parts are entered for easy understanding.

【0026】図7は、同じく再熱系のある場合につい
て、本発明の給水の循環戻り系統がなく、従来のガスタ
ービン排ガスのバイパス9を設けた対応する従来例であ
る。この場合も、図5と同じく、排ガスバイパスによっ
て、煙道、煙突での排ガス温度は195℃となり、前記
と同様の問題を発生する。
FIG. 7 is a corresponding conventional example in which the conventional gas turbine exhaust gas bypass 9 is provided without the circulation system of the feed water of the present invention, also in the case of the reheat system. Also in this case, the exhaust gas temperature in the flue and the stack becomes 195 ° C. due to the exhaust gas bypass as in FIG. 5, and the same problem as described above occurs.

【0027】図6の発明においては、排ガスクーラへの
送水量を75T/hrにすることにより、排ガス系にバイ
パスを設けなくても、排ガスの全量が排熱回収が可能な
ので、最終排ガス温度は本来意図した140℃まで低減
可能である。給水循環量20T/hrの内、フラッシュタ
ンク14で2T/hrの蒸気がフラッシュし、これが再熱
蒸気系17へ送り込まれ、ボイラで再熱されて、再び蒸
気タービン駆動に使用される。
In the invention of FIG. 6, by setting the amount of water to be sent to the exhaust gas cooler to 75 T / hr, exhaust heat recovery of the entire exhaust gas is possible without providing a bypass in the exhaust gas system, so the final exhaust gas temperature is It can be reduced to the originally intended 140 ° C. Of the supply water circulation amount of 20 T / hr, 2 T / hr of steam is flashed in the flash tank 14, which is sent to the reheat steam system 17, reheated by the boiler, and used again for driving the steam turbine.

【0028】フラッシュドレン18T/hrは脱気器6へ
循環される。本発明の結果、図6の実施例2では、脱気
器用抽気が従来例の図7の5.5T/hrから、図6の3
T/hrに減少すること、および高温再熱蒸気量が2T/
hr増加することにより、蒸気タービン3における発生電
力量が16MWから17MWに増大し、全体プラントの
熱効率が改善されることになる。
The flash drain 18T / hr is circulated to the deaerator 6. As a result of the present invention, in Example 2 of FIG. 6, the extraction air for the deaerator is changed from 5.5 T / hr in FIG. 7 of the conventional example to 3 in FIG.
T / hr and the amount of high temperature reheated steam is 2T /
By increasing hr, the amount of electric power generated in the steam turbine 3 is increased from 16 MW to 17 MW, and the thermal efficiency of the entire plant is improved.

【0029】[0029]

【発明の効果】従来の複合発電システムで問題となる部
分負荷時におけるガスタービン排ガスクーラでの有害な
蒸気発生又はガスバイパスダンパ方式での排ガス温度過
度上昇による構造的な問題が解決されると共に、最終排
ガス熱損失の増大即ちプラント熱効率の低下が解消さ
れ、全体プラントの熱効率が改善される。
EFFECTS OF THE INVENTION In addition to solving structural problems, which are problems in the conventional combined cycle power generation system, due to harmful steam generation in the gas turbine exhaust gas cooler at partial load or excessive rise in exhaust gas temperature in the gas bypass damper system, The increase in final exhaust gas heat loss, that is, the decrease in plant thermal efficiency is eliminated, and the thermal efficiency of the entire plant is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1システムのフローダイアグラム
で、低圧フラッシュ方式である。
FIG. 1 is a flow diagram of a first system of the present invention, which is a low pressure flash method.

【図2】本発明の第2システムのフローダイアグラム
で、中圧フラッシュ方式である。
FIG. 2 is a flow diagram of the second system of the present invention, which is a medium pressure flash system.

【図3】従来の複合発電システムのフローダイアグラム
である。
FIG. 3 is a flow diagram of a conventional combined cycle power generation system.

【図4】本発明の実施例1に対応する流量、温度を記入
した第1システムのフローダイアグラムである。
FIG. 4 is a flow diagram of a first system in which a flow rate and temperature corresponding to Example 1 of the present invention are entered.

【図5】図4に対応する従来例の流量、温度を記入した
フローダイアグラムである。
5 is a flow diagram in which a flow rate and a temperature of a conventional example corresponding to FIG. 4 are entered.

【図6】本発明の実施例2に対応する流量、温度を記入
した第2システムのフローダイアグラムである。
FIG. 6 is a flow diagram of a second system in which a flow rate and temperature corresponding to Example 2 of the present invention are entered.

【図7】図6に対応する従来例の流量、温度を記入した
フローダイアグラムである。
FIG. 7 is a flow diagram in which the flow rate and temperature of the conventional example corresponding to FIG. 6 are entered.

【符号の説明】[Explanation of symbols]

1 ガスタービン発電機 2 加圧流動床ボイラ 3 蒸気タービン発電機 4 復水器 5 低圧給水加熱器 6 脱気器 7 高圧給水加熱器 8 ガスタービン排ガスクーラ 9 ガスバイパスダンパ 10 煙突 11 給水ポンプ 12 給水調整弁 13 給水循環調整弁 14 フラッシュタンク 15 ドレン調整弁 16 脱気器用タービン抽気 17 低温再熱蒸気 1 Gas Turbine Generator 2 Pressurized Fluidized Bed Boiler 3 Steam Turbine Generator 4 Condenser 5 Low Pressure Water Heater 6 Deaerator 7 High Pressure Water Heater 8 Gas Turbine Exhaust Cooler 9 Gas Bypass Damper 10 Chimney 11 Water Pump 12 Water Supply Regulator valve 13 Water supply circulation regulator valve 14 Flash tank 15 Drain regulator valve 16 Turbine extraction for deaerator 17 Low temperature reheat steam

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F22D 1/40 7715−3L F23J 15/00 6850−3K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F22D 1/40 7715-3L F23J 15/00 6850-3K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加圧流動床燃焼ボイラ、ガスタービン、
蒸気タービンからなる加圧流動床複合発電システムにお
いて、ボイラ高圧給水系統に位置するガスタービン排ガ
スクーラの給水出口部から脱気器への給水循環戻り系統
配管を設け、該配管の途中に給水循環調整弁、フラッシ
ュタンク、ドレン調整弁を設置し、フラッシュタンクを
低圧力とし、フラッシュ蒸気を脱気器へ、フラッシュド
レインを脱気器へ回収して循環させることを特徴とする
加圧流動床複合発電システムの排熱回収方式。
1. A pressurized fluidized bed combustion boiler, a gas turbine,
In a pressurized fluidized bed combined cycle power generation system consisting of a steam turbine, a water supply circulation return system pipe from the water supply outlet of the gas turbine exhaust gas cooler located in the boiler high pressure water supply system to the deaerator is provided, and the water supply circulation adjustment is performed in the middle of the pipe. Valve, flash tank, and drain adjustment valve are installed, the pressure of the flash tank is kept low, and the flash vapor is collected in the deaerator and the flash drain is circulated in the deaerator for circulation. System waste heat recovery method.
【請求項2】 加圧流動床燃焼ボイラ、ガスタービン、
蒸気タービンからなる加圧流動床複合発電システムにお
いて、ボイラ高圧給水系統に位置するガスタービン排ガ
スクーラの給水出口部から脱気器への給水循環戻り系統
配管を設け、該配管の途中に給水循環調整弁、フラッシ
ュタンク、ドレン調整弁を設置し、フラッシュタンクを
中圧力とし、フラッシュ蒸気を低温再熱蒸気系へ、フラ
ッシュドレンを脱気器へ回収して循環させることを特徴
とする加圧流動床複合発電システムの排熱回収方式。
2. A pressurized fluidized bed combustion boiler, a gas turbine,
In a pressurized fluidized bed combined cycle power generation system consisting of a steam turbine, a water supply circulation return system pipe from the water supply outlet of the gas turbine exhaust gas cooler located in the boiler high pressure water supply system to the deaerator is provided, and the water supply circulation adjustment is performed in the middle of the pipe. A pressurized fluidized bed characterized by installing a valve, a flash tank, and a drain adjustment valve, setting the flash tank to an intermediate pressure, collecting the flash steam to the low temperature reheat steam system and collecting the flash drain to the deaerator and circulating it. Exhaust heat recovery method for combined power generation system.
JP3225324A 1991-08-12 1991-08-12 Exhaust heat recovery method of pressurized fluidized bed combined cycle system Expired - Lifetime JP2994109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225324A JP2994109B2 (en) 1991-08-12 1991-08-12 Exhaust heat recovery method of pressurized fluidized bed combined cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225324A JP2994109B2 (en) 1991-08-12 1991-08-12 Exhaust heat recovery method of pressurized fluidized bed combined cycle system

Publications (2)

Publication Number Publication Date
JPH0544407A true JPH0544407A (en) 1993-02-23
JP2994109B2 JP2994109B2 (en) 1999-12-27

Family

ID=16827572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225324A Expired - Lifetime JP2994109B2 (en) 1991-08-12 1991-08-12 Exhaust heat recovery method of pressurized fluidized bed combined cycle system

Country Status (1)

Country Link
JP (1) JP2994109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089276A (en) * 2014-06-24 2014-10-08 首钢京唐钢铁联合有限责任公司 Multi-stage flash treatment system utilizing exhaust gas and circulating cooling water
CN113483316A (en) * 2021-07-12 2021-10-08 西安热工研究院有限公司 Boiler start-stop adjusting system and method for main pipe unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089276A (en) * 2014-06-24 2014-10-08 首钢京唐钢铁联合有限责任公司 Multi-stage flash treatment system utilizing exhaust gas and circulating cooling water
CN113483316A (en) * 2021-07-12 2021-10-08 西安热工研究院有限公司 Boiler start-stop adjusting system and method for main pipe unit

Also Published As

Publication number Publication date
JP2994109B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US5442908A (en) Combined combustion and steam turbine power plant
JPH0339166B2 (en)
JPH0445643B2 (en)
CN111271702A (en) Parallel steam extraction energy level lifting system of steam turbine
JP2994109B2 (en) Exhaust heat recovery method of pressurized fluidized bed combined cycle system
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPH09209715A (en) Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
JPH09303113A (en) Combined cycle generating plant
CN209115164U (en) The system of nuclear energy coupling gas turbine power generation based on depth UTILIZATION OF VESIDUAL HEAT IN
JPH10311206A (en) Combined cycle power generation plant
JP3047194B2 (en) Gas turbine cogeneration system
JP2986426B2 (en) Hydrogen combustion turbine plant
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
JPH10274007A (en) Method for supplying steam to coke dry type fire extinguishing facilities and device therefor
JP3068972B2 (en) Combined cycle power plant
JP2971629B2 (en) Waste heat recovery boiler
RU2100619C1 (en) Combined-cycle plant
JP2716442B2 (en) Waste heat recovery boiler device
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JP2625487B2 (en) Hot start method of boiler
JPH08312905A (en) Combined cycle power generating facility
Tawney et al. Economic and performance evaluation of combined cycle repowering options
JPH02163402A (en) Compound electric power plant and its operation
Miliaras et al. Combined Cycle Retrofit can Also Uprate Steam Plant Capability
JPS60162003A (en) System for recovering waste heat of turbine for driving auxiliary machinery of steam power plant