JPH0543268A - Visible light and ir transparent material - Google Patents

Visible light and ir transparent material

Info

Publication number
JPH0543268A
JPH0543268A JP19940391A JP19940391A JPH0543268A JP H0543268 A JPH0543268 A JP H0543268A JP 19940391 A JP19940391 A JP 19940391A JP 19940391 A JP19940391 A JP 19940391A JP H0543268 A JPH0543268 A JP H0543268A
Authority
JP
Japan
Prior art keywords
visible light
germanium
infrared light
light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19940391A
Other languages
Japanese (ja)
Inventor
Masakatsu Sugai
正克 菅井
Yasuo Mizuno
康男 水野
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19940391A priority Critical patent/JPH0543268A/en
Publication of JPH0543268A publication Critical patent/JPH0543268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide the visible light or IR transmissive filter or lens material which is nontoxic, has environmental reliability and can be easily built into an optical system. CONSTITUTION:This glass material consists essentially of germanium, ion and halogen. The optical filter and lens which allow the transmission of both of the visible light and the IR light, is nontoxic and is safe are formed by this constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視光と赤外光を透過す
るフィルターまたはレンズと、このフィルターまたはレ
ンズと焦電型赤外センサからなる人体検知センサおよび
前記センサを応用した各種装置に用いる可視光および赤
外光透過材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a filter or lens that transmits visible light and infrared light, a human body detection sensor including the filter or lens and a pyroelectric infrared sensor, and various devices to which the sensor is applied. It relates to visible light and infrared light transmissive materials.

【0002】[0002]

【従来の技術】焦電型赤外センサを用いた人体センサは
家電製品、産業機器において広く利用されている。例え
ば、ドアーの開閉、便器の給水栓、エアコンの作動など
のセンサとして広く用いられている。このセンサには、
人体から出る8〜12μmの赤外光を効率よく集めるた
め、センサの前方に赤外光を集光するレンズと赤外光の
みを透過するフィルタが設けられている。従来、このフ
ィルタ材料としてはシリコン、ゲルマニウムまたは金属
ハロゲン化物が使用されていた。
2. Description of the Related Art A human body sensor using a pyroelectric infrared sensor is widely used in home electric appliances and industrial equipment. For example, it is widely used as a sensor for opening and closing a door, a water faucet of a toilet, an operation of an air conditioner, and the like. This sensor has
In order to efficiently collect the infrared light of 8 to 12 μm emitted from the human body, a lens that collects the infrared light and a filter that transmits only the infrared light are provided in front of the sensor. Conventionally, silicon, germanium or metal halides have been used as the filter material.

【0003】[0003]

【発明が解決しょうとする課題】しかし、シリコンやゲ
ルマニウムでは波長8〜12μmの赤外光の透過率が低いこ
とやコストが高いという問題がある。例えば2mm厚のシ
リコンの波長10μmの赤外光の透過率は、金属ハロゲン
化物の一つである塩化銀のおよそ半分と低く、センサが
誤動作を起こす一因であった。またゲルマニウムのコス
トは高純度シリコンの約3倍(約25万円/Kg)であり、
広範な応用展開を行なうには支障があった。さらに、ゲ
ルマニウムは水蒸気により容易に酸化され、赤外光の透
過性を低下させるという信頼性上の問題もあった。
However, there are problems that silicon and germanium have a low transmittance of infrared light having a wavelength of 8 to 12 μm and a high cost. For example, the transmittance of infrared light with a wavelength of 10 μm for 2 mm-thick silicon is as low as about half that of silver chloride, which is one of the metal halides, and this was one of the factors that caused the sensor to malfunction. In addition, the cost of germanium is about three times that of high-purity silicon (about 250,000 yen / Kg),
There were obstacles to the widespread application development. Further, germanium is easily oxidized by water vapor, and there is a reliability problem that the transmittance of infrared light is reduced.

【0004】一方、金属ハロゲン化物は赤外光透過性が
高いものの、耐光性や毒性に問題がある。例えば、塩化
銀は透明領域が0.4〜28μmとほぼ可視光から赤外光全域
の光を透過するが、0.4μm以下の紫外光に暴露されると
光反応を起こし、金属銀が析出して真っ黒に変色し、赤
外光透過率が低下する。これを防止するためには、硫化
アンチモンなどの保護膜を表面に設けねばならず、コス
トが高くなるという問題があった。
On the other hand, although metal halides have high infrared light transmittance, they have problems in light resistance and toxicity. For example, silver chloride has a transparent region of 0.4 to 28 μm, which transmits almost all light from visible light to infrared light, but when exposed to ultraviolet light of 0.4 μm or less, it causes a photoreaction, and metallic silver precipitates and becomes black. Discolors and the infrared light transmittance decreases. In order to prevent this, a protective film such as antimony sulfide must be provided on the surface, which causes a problem of high cost.

【0005】また、よく知られているKRS−5(臭化タリ
ウムとヨウ化タリウムの混合物)は可視光から赤外光ま
で幅広く透過するが、タリウムの毒性が極めて強いとい
う問題があった。
The well-known KRS-5 (a mixture of thallium bromide and thallium iodide) transmits a wide range of light from visible light to infrared light, but there is a problem that thallium is extremely toxic.

【0006】また、上記ゲルマニウムやシリコンは可視
光を透過しないので、光学系に組み込む場合、赤外線を
用いて光軸合わせなどの作業を行なわねばならず、高価
な設備と非常に面倒な作業を必要とし、組み立て、調整
に長時間を要するという問題があった。
Further, since germanium and silicon do not transmit visible light, when they are incorporated in an optical system, it is necessary to carry out operations such as optical axis alignment using infrared rays, which requires expensive equipment and very troublesome work. However, there is a problem that it takes a long time to assemble and adjust.

【0007】本発明はこのような課題を解決するもの
で、可視光と赤外光を高い透過率で透過し、紫外線に暴
露されても光反応を起こさずに安定で、毒性がなくて民
生用にも安全に使用できる可視光および赤外光透過材料
を提供することを目的とするものである。
The present invention solves such a problem. It transmits visible light and infrared light with high transmittance, does not cause a photoreaction even when exposed to ultraviolet rays, is stable, has no toxicity, and is a consumer product. It is an object of the present invention to provide a visible light and infrared light transmissive material that can be safely used for applications.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に本発明は、ゲルマニウム、イオウおよびハロゲンを主
体として赤外光および可視光透過材料を構成したもので
ある。
In order to solve this problem, the present invention comprises an infrared and visible light transmitting material mainly composed of germanium, sulfur and halogen.

【0009】また、原子%で、ゲルマニウム5〜50
%、イオウ5〜95%、ハロゲン0〜70%を超えない
範囲を主体とし構成したものである。
Further, germanium is 5 to 50 in atomic%.
%, Sulfur 5 to 95%, and halogen 0 to 70%.

【0010】また、原子比でゲルマニウム1に対し、イ
オウが1.5〜3.0になるように構成したものであ
る。
The atomic ratio of germanium to sulfur is 1.5 to 3.0.

【0011】[0011]

【作用】この構成によれば、可視光と、8〜12μmの赤外
光を透過し、毒性のないガラスが得られ、このガラスを
用いて可視光と赤外光を透過するフィルタやレンズを作
成することができることとなる。
[Advantage] According to this structure, a glass that transmits visible light and infrared light of 8 to 12 μm and is non-toxic is obtained, and a filter or lens that transmits visible light and infrared light is used using this glass. It will be possible to create.

【0012】[0012]

【実施例】以下に本発明の一実施例を図面を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0013】(実施例1)原子%でゲルマニウム30%、
イオウ60%、およびヨウ素10%の組成になるように各元
素を秤量し、それらを混合して石英アンプルに封入し、
真空封止した。このアンプルを電気炉中で700℃で8時間
溶融した後、前記アンプルを電気炉から取り出し、20℃
の水に漬けて冷却しガラスを得た。このガラスの赤外光
透過特性を図1に、可視光透過特性を図2に示す。
(Example 1) Germanium 30% in atomic%,
Weigh each element so that it has a composition of 60% sulfur and 10% iodine, mix them, and seal them in a quartz ampoule.
Vacuum sealed. After melting this ampoule in an electric furnace at 700 ° C for 8 hours, remove the ampoule from the electric furnace and keep it at 20 ° C.
It was soaked in water and cooled to obtain glass. The infrared light transmission characteristics of this glass are shown in FIG. 1, and the visible light transmission characteristics are shown in FIG.

【0014】(実施例2)原子%でゲルマニウム31.7
%、イオウ63.3%、およびヨウ素5.0%の組成になるよ
うに各元素を秤量し、石英アンプルに封入し、真空封止
した。このアンプルを電気炉中で700℃で8時間溶融した
後、前記アンプルを電気炉から取り出し、20℃の水に漬
けて冷却しガラスを得た。
Example 2 Germanium 31.7 in atomic%
%, Sulfur 63.3%, and iodine 5.0%, each element was weighed, enclosed in a quartz ampoule, and vacuum-sealed. After melting this ampoule in an electric furnace at 700 ° C. for 8 hours, the ampoule was taken out of the electric furnace, immersed in water at 20 ° C. and cooled to obtain glass.

【0015】(比較例1)原子%でゲルマニウム45%、
イオウ45%、およびヨウ素10%の組成になるように各元
素を秤量し、石英アンプルに封入し、真空封止した。こ
れを電気炉中で700℃、で8時間溶融した後、前記アンプ
ルを電気炉から取り出し、20℃の水に漬けて冷却した
が、結晶化してガラスを得ることができなかった。この
ガラスは可視光をまったく透過せず、赤外光もほとんど
透過しなかった。
(Comparative Example 1) 45% germanium in atomic%,
Each element was weighed so as to have a composition of 45% sulfur and 10% iodine, sealed in a quartz ampoule, and vacuum-sealed. This was melted in an electric furnace at 700 ° C. for 8 hours, then the ampoule was taken out of the electric furnace, immersed in water at 20 ° C. and cooled, but it could not be crystallized to obtain glass. This glass did not transmit visible light at all, and hardly transmitted infrared light.

【0016】(比較例2)原子%でゲルマニウム50%、
セレン50%の組成になるように各元素を秤量し、石英ア
ンプルに封入し、真空封止した。これを電気炉中で700
℃で5時間溶融した後、前記アンプルを電気炉から取り
出し、20℃の水に漬けて冷却してガラスを得た。このガ
ラスは可視光をまったく透過しなかった。
(Comparative Example 2) 50% germanium in atomic%,
Each element was weighed so as to have a composition of 50% selenium, sealed in a quartz ampoule, and vacuum-sealed. 700 in an electric furnace
After melting at 0 ° C for 5 hours, the ampoule was taken out of the electric furnace, immersed in water at 20 ° C and cooled to obtain glass. The glass did not transmit any visible light.

【0017】上記の実施例1、2および比較例1、2お
よび従来のヒ素系のカルコゲナイドガラスの諸特性を
(表1)に示す。
Various characteristics of the above-mentioned Examples 1 and 2 and Comparative Examples 1 and 2 and the conventional arsenic-based chalcogenide glass are shown in Table 1.

【0018】表から解るように本実施例の組成のガラス
は可視光と赤外光の両者を効率よく透過する。
As can be seen from the table, the glass having the composition of this embodiment efficiently transmits both visible light and infrared light.

【0019】なお、本実施例ではハロゲンとしてヨウ素
を用いた場合について説明したが、他のハロゲン例えば
臭素を用いても同様の効果が得られる。
Although the case where iodine is used as the halogen has been described in this embodiment, the same effect can be obtained by using other halogen such as bromine.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、8〜12μmの赤外光を効率よく透過す
るので、焦電型人体検知センサの感度が向上する。ま
た、毒性がなく、可視光を透過するので直接手動で光軸
調節ができ、センサーへの組み入れ時の作業が容易にな
る。
As is apparent from the above description of the embodiments, according to the present invention, infrared rays of 8 to 12 μm are efficiently transmitted, so that the sensitivity of the pyroelectric human body detection sensor is improved. In addition, since it is non-toxic and transmits visible light, the optical axis can be adjusted directly by hand, and the work when incorporating it into the sensor becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のガラスの赤外光透過特性図FIG. 1 is an infrared light transmission characteristic diagram of glass of Example 1 of the present invention.

【図2】同可視光透過特性図[Figure 2] Visible light transmission characteristic diagram

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゲルマニウム、イオウおよびハロゲンを
主体としてなる赤外光および可視光透過材料。
1. An infrared and visible light transmitting material mainly composed of germanium, sulfur and halogen.
【請求項2】 原子%で、ゲルマニウム5〜50%、イ
オウ5〜95%、ハロゲン70%を超えない範囲を主体
としてなる請求項1記載の可視光および赤外光透過材
料。
2. The visible light and infrared light transmissive material according to claim 1, which is mainly composed of a range of 5% to 50% germanium, 5% to 95% sulfur, and 70% halogen, in atomic%.
【請求項3】 原子比でゲルマニウム1に対し、イオウ
が1.5〜3.0である請求項2記載の可視光および赤
外光透過材料。
3. The visible light and infrared light transmitting material according to claim 2, wherein sulfur is 1.5 to 3.0 with respect to germanium 1 in atomic ratio.
JP19940391A 1991-08-08 1991-08-08 Visible light and ir transparent material Pending JPH0543268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19940391A JPH0543268A (en) 1991-08-08 1991-08-08 Visible light and ir transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19940391A JPH0543268A (en) 1991-08-08 1991-08-08 Visible light and ir transparent material

Publications (1)

Publication Number Publication Date
JPH0543268A true JPH0543268A (en) 1993-02-23

Family

ID=16407215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19940391A Pending JPH0543268A (en) 1991-08-08 1991-08-08 Visible light and ir transparent material

Country Status (1)

Country Link
JP (1) JPH0543268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225508A (en) * 2006-02-24 2007-09-06 Dainippon Toryo Co Ltd Measuring cell of under-film metal corrosion diagnosis device
US7661933B2 (en) 2002-04-08 2010-02-16 Techno Takatsuki Co., Ltd. Electromagnetic vibrating type diaphragm pump
WO2012081586A1 (en) 2010-12-13 2012-06-21 日本原子力発電株式会社 Infrared transmissive protective cover, manufacturing method for same, and monitoring method using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661933B2 (en) 2002-04-08 2010-02-16 Techno Takatsuki Co., Ltd. Electromagnetic vibrating type diaphragm pump
JP2007225508A (en) * 2006-02-24 2007-09-06 Dainippon Toryo Co Ltd Measuring cell of under-film metal corrosion diagnosis device
WO2012081586A1 (en) 2010-12-13 2012-06-21 日本原子力発電株式会社 Infrared transmissive protective cover, manufacturing method for same, and monitoring method using same

Similar Documents

Publication Publication Date Title
US5315434A (en) Infrared-transmissive lens and human body detecting sensor using the same
KR102267522B1 (en) Glasses for the correction of chromatic and thermal optical aberrations for lenses transmitting in the near, mid, and far-infrared sprectrums
WO2017110500A1 (en) Infrared transmitting glass
US3348045A (en) Ge-se-te glass and infrared detection system
WO2017086227A1 (en) Optical glass
KR950031957A (en) Glass with excellent infrared transmission
US5925468A (en) Solarizaton resistant and UV blocking glass
WO2015104958A1 (en) Infrared transmission glass
JP2023059941A (en) Chalcogenide glass material
JPH0543268A (en) Visible light and ir transparent material
US4001019A (en) Reversible light sensitive glass
JP2017137204A (en) Infrared transmitting glass
JP6819920B2 (en) Calcogenide glass
AU553297B2 (en) Materials with optical transparency
JP6788816B2 (en) Infrared transmissive glass
JP7290022B2 (en) Chalcogenide glass material
WO2020066928A1 (en) Infrared transmission glass
GB1372274A (en) Sheathed electrical resistance heating element
JPH0524880A (en) Infrared ray transmitting lens and human body detecting sensor using the same lens
Gliemeroth et al. Phototropic glass
WO2019167462A1 (en) Infrared transmitting glass
WO2020175402A1 (en) Infrared-transmitting glass
JPH04342438A (en) Infrared ray transmitting glass and infrared ray detecting sensor using the same
US3690908A (en) High index optical glass
JPH0524879A (en) Production of infrared ray transmitting glass