JPH0524880A - Infrared ray transmitting lens and human body detecting sensor using the same lens - Google Patents

Infrared ray transmitting lens and human body detecting sensor using the same lens

Info

Publication number
JPH0524880A
JPH0524880A JP18446291A JP18446291A JPH0524880A JP H0524880 A JPH0524880 A JP H0524880A JP 18446291 A JP18446291 A JP 18446291A JP 18446291 A JP18446291 A JP 18446291A JP H0524880 A JPH0524880 A JP H0524880A
Authority
JP
Japan
Prior art keywords
lens
human body
glass
infrared
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18446291A
Other languages
Japanese (ja)
Inventor
Yasuo Mizuno
康男 水野
Masakatsu Sugai
正克 菅井
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18446291A priority Critical patent/JPH0524880A/en
Priority to US07/882,906 priority patent/US5315434A/en
Priority to EP92108550A priority patent/EP0514882A1/en
Publication of JPH0524880A publication Critical patent/JPH0524880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To prepare lenses by using an infrared ray transmitting material passing infrared rays having 8-12mum emitted from human body, having no toxicity, slightly crystallizing and readily being press molded to form lenses. CONSTITUTION:An infrared ray transmitting lens is produced by using glass consisting essentially of germanium and selenium and a human body detecting sensor device is constituted from the lens and a pyroelectric infrared sensor. Glass having excellent transmittance of infrared rays and no toxicity and slightly being crystallized is obtained by the constitution and the glass is thermally pressed to manufacture a lens. The lens is combined with a pyroelectric infrared detecting sensor to give a scanning human body detecting sensor. Use of the scanning human body sensor device simultaneously detects plural human bodies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカルコゲナイド系ガラス
から形成した赤外線透過性レンズと、このレンズと焦電
型赤外センサを備えた人体検知センサ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared ray transmissive lens made of chalcogenide glass and a human body detecting sensor device equipped with this lens and a pyroelectric infrared sensor.

【0002】[0002]

【従来の技術】焦電型赤外センサを用いた人体検知セン
サ装置は家電製品分野や産業機器分野において広く利用
されている。例えばドアーの開閉、便器の給水栓、エア
コンの作動などのセンサとして用いられている。一般
に、赤外線センサの前には人体から出る8〜12μmの赤外
線を効率よく集めるため、赤外光のみを透過するフィル
タが設けられている。このフィルタ材料としては従来シ
リコン、ゲルマニウムや金属ハロゲン化物などが使用さ
れていた。
2. Description of the Related Art A human body detection sensor device using a pyroelectric infrared sensor is widely used in the fields of home electric appliances and industrial equipment. For example, it is used as a sensor for opening and closing a door, a faucet of a toilet bowl, an operation of an air conditioner, and the like. In general, a filter that transmits only infrared light is provided in front of the infrared sensor in order to efficiently collect infrared rays of 8 to 12 μm emitted from the human body. Conventionally, silicon, germanium, metal halides, etc. have been used as the filter material.

【0003】図1に従来の人体検知センサ装置の構成の
一例を示す。図に示すように、横にならべられた複数の
焦電型赤外センサ1(ここでは簡単のため1個のセンサ
で代表させている)の前方にはレンズ2が設けられ、レ
ンズ2を左右に動かして焦電型赤外センサに像を送る。
レンズ移動のためのレンズドライバはレンズと垂直の方
向にあるため図示していない。焦電型赤外センサ1の両
側には発生した電圧を取り出すための電極3があり、赤
外センサ1の前方には赤外線を強度変調するためのチョ
ッパ4が設けられ、チョッパ4はチョッパ用ドライバ5
により一定速度で回転している。また赤外センサ1は支
持棒6により支持され、出力はリ−ド線7により外に引
き出される。
FIG. 1 shows an example of the configuration of a conventional human body detection sensor device. As shown in the figure, a lens 2 is provided in front of a plurality of pyroelectric infrared sensors 1 (horizontally represented by one sensor here for simplification) arranged side by side. To send an image to the pyroelectric infrared sensor.
The lens driver for moving the lens is not shown because it is in the direction perpendicular to the lens. Electrodes 3 for taking out the generated voltage are provided on both sides of the pyroelectric infrared sensor 1, and a chopper 4 for intensity-modulating infrared rays is provided in front of the infrared sensor 1. The chopper 4 is a chopper driver. 5
Is rotating at a constant speed. The infrared sensor 1 is supported by a support rod 6, and its output is led out by a lead wire 7.

【0004】[0004]

【発明が解決しようとする課題】しかしシリコンやゲル
マニウムでは波長8〜12μmの赤外線の透過率が低いこと
やコストが高いという問題があった。例えば2mm厚のシ
リコンの波長10μmにおける透過率は45%であり、金属ハ
ロゲン化物の一つである塩化銀の透過率75%よりかなり
低くセンサの誤作動の一因であった。またゲルマニウム
のコストは高純度シリコンの約3倍(キロあたり約25万
円)であり広範な応用展開には支障があった。さらにゲ
ルマニウムは水蒸気により容易に酸化され、赤外線透過
率が低下するという問題があった。
However, silicon and germanium have problems that the transmittance of infrared rays having a wavelength of 8 to 12 μm is low and the cost is high. For example, the transmittance of 2 mm thick silicon at a wavelength of 10 μm is 45%, which is considerably lower than the transmittance of 75% of silver chloride which is one of metal halides, which is one of the causes of malfunction of the sensor. Moreover, the cost of germanium is about three times as high as that of high-purity silicon (about 250,000 yen per kilometer), which hinders widespread application development. Further, there is a problem that germanium is easily oxidized by water vapor and the infrared transmittance is lowered.

【0005】一方、金属ハロゲン化物は赤外線透過率が
高いものの、耐光性や毒性に問題がある。例えば塩化銀
は透明領域が0.4〜28μmとほぼ可視光から赤外光全域を
透過するが、0.4μm以下の紫外光に感光し、メタリック
銀が析出して速やかに黒化し、赤外線の透過率も低下す
る。これを防止するためには硫化アンチモンなどの遮蔽
膜を表面に設けねばならず、高価なものになった。ま
た、よく知られているKRS−5(臭化タリウムとヨウ
化タリウムの混合物)は透明領域が0.5〜40μmとほぼ可
視光から赤外光全域を透過するが、タリウムがきわめて
毒性が強いという問題があった。
On the other hand, although metal halides have high infrared transmittance, they have problems in light resistance and toxicity. For example, silver chloride has a transparent region of 0.4 to 28 μm, which transmits almost all visible light to infrared light, but is exposed to ultraviolet light of 0.4 μm or less, metallic silver is deposited and blackened quickly, and infrared transmittance is also descend. In order to prevent this, a shielding film such as antimony sulfide must be provided on the surface, which is expensive. In addition, the well-known KRS-5 (a mixture of thallium bromide and thallium iodide) has a transparent region of 0.5 to 40 μm and transmits almost all visible light to infrared light, but thallium is extremely toxic. was there.

【0006】さらに近年は、焦電型赤外センサの前に赤
外光のみを透過する材料でレンズを作り、人体の有無だ
けでなく人数や体温までも測ろうとすることが試みられ
ているが、上記のガラス材料ではレンズ化が困難であっ
た。
Further, in recent years, it has been attempted to form a lens in front of a pyroelectric infrared sensor by using a material that transmits only infrared light and measure not only the presence or absence of a human body but also the number of people and body temperature. It was difficult to form a lens with the above glass materials.

【0007】そのため、レンズ化が容易な赤外透過性ガ
ラスとしてカルコゲナイドガラスが注目されている。カ
ルコゲナイドガラスはカルコゲン元素(イオウ、セレ
ン、テルル)を主成分とするガラスであり、実用的に
は、ヒ素−イオウ、ゲルマニウム−ヒ素−セレン、ゲル
マニウム−セレン−テルル、ゲルマニウム−セレン−ア
ンチモンなどがおもに研究開発されている(例えば第31
回ガラス討論会講演要旨集、p.71-74(1990))。しかし
前2者のガラスはヒ素を含有しており、毒性に問題があ
った。また後2者は再加熱時に結晶化しやすいので、プ
レス成形によるレンズの製作が困難であった。
Therefore, chalcogenide glass is drawing attention as an infrared-transparent glass that can be easily formed into a lens. Chalcogenide glass is a glass whose main component is a chalcogen element (sulfur, selenium, tellurium), and practically, arsenic-sulfur, germanium-arsenic-selenium, germanium-selenium-tellurium, germanium-selenium-antimony and the like are mainly used. Research and development (eg 31st
Proceedings of the annual glass discussion meeting, p.71-74 (1990)). However, the former two glasses contained arsenic and had a problem of toxicity. Further, since the latter two are likely to be crystallized at the time of reheating, it was difficult to manufacture a lens by press molding.

【0008】本発明はこのような課題を解決するもの
で、レンズの製作が容易な赤外透過性材料で、人体から
出る8〜12μmの赤外線を透過し、毒性がなく、結晶化し
にくくプレス成形によるレンズの製作が容易であり、化
学耐久性が良いガラスを用いて赤外線透過性レンズを形
成し、このレンズと焦電形センサを用いた人体検出セン
サ装置を提供することを目的とするものである。
The present invention solves such a problem. It is an infrared-transparent material in which lenses can be easily manufactured. It transmits infrared rays of 8 to 12 μm emitted from the human body, is not toxic, is hard to crystallize, and is press-molded. It is an object of the present invention to provide a human body detection sensor device using a glass and a pyroelectric sensor, in which an infrared transmissive lens is formed by using glass having good chemical durability, which is easy to manufacture a lens by is there.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、出発物質が非酸化物で、ゲルマニウムとセ
レンを主体とする非酸化物ガラスから赤外線透過性レン
ズを形成したものである。
In order to solve this problem, the present invention is to form an infrared transmissive lens from a non-oxide glass whose starting material is non-oxide and which is mainly composed of germanium and selenium. .

【0010】また、ゲルマニウム5〜22.5原子%とセレ
ン77.5〜95原子%を主体とするガラスから赤外線透過性
レンズを形成したものである。
Further, the infrared transmissive lens is formed from glass mainly containing 5 to 22.5 atomic% germanium and 77.5 to 95 atomic% selenium.

【0011】また、ゲルマニウム5〜22.5原子%、セレ
ン35〜95原子%、ヨウ素0〜45原子%を主体とするガラ
スからレンズを形成したものである。
Further, the lens is formed from glass mainly containing 5 to 22.5 atomic% germanium, 35 to 95 atomic% selenium, and 0 to 45 atomic% iodine.

【0012】また上記の赤外線透過性レンズと、焦電型
赤外センサを用いて人体検知センサ装置を構成したもの
である。
A human body detection sensor device is constructed by using the infrared transmissive lens and the pyroelectric infrared sensor.

【0013】[0013]

【作用】カルコゲナイドガラスの主要元素はイオウ、セ
レン、テルル、ゲルマニウム、ヒ素、アンチモンであ
る。このうち毒物に指定されているのはヒ素、セレンで
あるが、特に毒性の強いのはヒ素である。セレンはトマ
トジュースに多く含まれ、また家畜の必須栄養素である
ことからそれ自体の毒性は弱い。ヒ素を除いた元素で構
成し、さらに8〜12μmの赤外線を透過し得ることを条件
に入れると、ゲルマニウム、セレンが主成分となる。ゲ
ルマニウム、イオウを主成分とした場合は11μmまでし
か透過しないので望ましくない。
[Function] The main elements of chalcogenide glass are sulfur, selenium, tellurium, germanium, arsenic and antimony. Of these, arsenic and selenium are designated as poisons, but arsenic is particularly toxic. Since selenium is abundant in tomato juice and is an essential nutrient for livestock, it has little toxicity. If it is composed of elements excluding arsenic and that infrared rays of 8 to 12 μm can be transmitted, germanium and selenium will be the main components. When germanium or sulfur is the main component, it is not desirable because it penetrates only up to 11 μm.

【0014】また、ゲルマニウムとセレンを主体とする
ガラスから形成したレンズを使用した焦電型赤外センサ
を用いて人体検知センサ装置を構成した。
Further, a human body detection sensor device is constructed by using a pyroelectric infrared sensor which uses a lens formed of glass mainly containing germanium and selenium.

【0015】またガラスにはゲルマニウム、セレンに加
えて、ガラスとしての安定性の向上のためヨウ素を含有
させてもよい。さらに赤外透過域の拡大にアンチモン、
テルル、セレンなど、熱膨張係数の適正化のため少量の
リチウム、ナトリウム、銅、銀、ホウ素、ガリウム、イ
ンジウム、シリコン、スズ、鉛、ビスマス、リン、臭素
を含有させてもよい。
In addition to germanium and selenium, the glass may contain iodine in order to improve the stability of the glass. Furthermore, antimony is used to expand the infrared transmission range.
A small amount of lithium, sodium, copper, silver, boron, gallium, indium, silicon, tin, lead, bismuth, phosphorus, or bromine, such as tellurium or selenium, may be contained in order to optimize the thermal expansion coefficient.

【0016】組成を限定した理由は以下の通りである。
ゲルマニウム−セレン系(Ge-Se系、以下系を元素記号
で示す)ではゲルマニウムが5〜22.5%以外、セレンが7
7.5〜95%以外ではガラス化しない。Ge-Se-I系ではゲル
マニウム5〜22.5%、セレン35〜95%、ヨウ素0〜45%以
外ではガラス化しない。ヨウ素が45%を越えると12μm
まで透過しない。
The reason for limiting the composition is as follows.
In the germanium-selenium system (Ge-Se system, the following system is represented by the element symbol), germanium is 5 to 22.5%, and selenium is 7%.
It does not vitrify except 7.5-95%. Ge-Se-I system does not vitrify except germanium 5 to 22.5%, selenium 35 to 95%, and iodine 0 to 45%. 12 μm when iodine exceeds 45%
Does not penetrate.

【0017】このガラスは8〜12μmの赤外線を透過し、
毒性が無く、結晶化しにくいのでプレス成形によるレン
ズ化が容易となる。
This glass transmits infrared rays of 8 to 12 μm,
Since it has no toxicity and is hard to crystallize, it can be easily formed into a lens by press molding.

【0018】[0018]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0019】(実施例1)(表1)に示す組成で、原子
%でゲルマニウムが5〜22.5%、セレンが77.5〜95%の
比でゲルマニウムとセレンを秤量混合し、石英アンプル
に入れ真空封止した。これを電気炉中で900℃で12時間
溶融してガラスを得た。得られたガラスは肉眼では灰色
で、2mm厚の場合(以下同じ)12.5μmまでの光に対し50
%以上の透過率を有していた。またゲルマニウムが5%
より少ないか、22.5%より多いとガラス化しなかった。
(Example 1) With the composition shown in (Table 1), germanium and selenium were weighed and mixed at a ratio of 5 to 22.5% germanium and 77.5 to 95% selenium in atomic%, put in a quartz ampoule, and vacuum sealed. I stopped. This was melted in an electric furnace at 900 ° C. for 12 hours to obtain glass. The glass obtained is gray to the naked eye and 50 mm for light up to 12.5 μm when it is 2 mm thick (the same applies below).
It had a transmittance of at least%. 5% germanium
Less than or more than 22.5% did not vitrify.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)Ge-Se-I系ガラスの一例とし
て、(表2)に示すように原子%でGe:Se:I=20:35〜7
5:5〜45の比でゲルマニウムとイオウとヨウ素を秤量混
合し、石英アンプルに入れ真空封止した。これを電気炉
中で900℃で12時間溶融してガラスを得た。得られたガ
ラスは灰色で、12μmまでの光に対し50%以上の透過率
を有していた。
(Example 2) As an example of a Ge-Se-I system glass, as shown in (Table 2), Ge: Se: I = 20: 35 to 7 in atomic%.
Germanium, sulfur and iodine were weighed and mixed in a ratio of 5: 5 to 45, put in a quartz ampoule and vacuum-sealed. This was melted in an electric furnace at 900 ° C. for 12 hours to obtain glass. The obtained glass was gray and had a transmittance of 50% or more for light of up to 12 μm.

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例3)(表1)の試料1〜5のガラ
スを70℃の湯に1時間浸漬した結果、表面の変質は全く
見られず、化学耐久性に優れていることが確認できた。
(Example 3) As a result of immersing the glass of Samples 1 to 5 in (Table 1) in hot water at 70 ° C for 1 hour, no deterioration of the surface was observed and it was confirmed that the glass had excellent chemical durability. did it.

【0024】(実施例4)(表1)の試料6のガラスを
255℃でレンズにプレス成形した。レンズの厚みは約2mm
でFナンバーは1.0、焦点距離は8mmとした。レンズの
両面にはフッ化鉛を1.4μm蒸着して反射防止膜とし
た。このレンズを、横に10個並べた焦電型赤外センサア
レイの前に設置し、図1に示す人体検知センサ装置を構
成した。レンズは水平方向左右120゜に可動するように
した。センサの正面に男性2人を50cm離れて立たせて、
レンズを動かしながら、センサ出力電圧を調べたとこ
ろ、人体を検知したところで焦電型赤外センサの電圧が
約350mV発生し、センサとしての性能を確認できた。
(Example 4) The glass of Sample 6 in Table 1 was used.
The lens was press molded at 255 ° C. Lens thickness is about 2 mm
The F number was 1.0 and the focal length was 8 mm. Lead fluoride was vapor-deposited on both surfaces of the lens by 1.4 μm to form an antireflection film. This lens was installed in front of a pyroelectric infrared sensor array in which 10 lenses were arranged side by side to form the human body detection sensor device shown in FIG. The lens is movable horizontally 120 °. Stand two men 50 cm apart in front of the sensor,
When the sensor output voltage was examined while moving the lens, a voltage of the pyroelectric infrared sensor of about 350 mV was generated when the human body was detected, confirming the performance as a sensor.

【0025】また(表1)の試料2〜7および(表2)
のガラスでも同様にレンズを成形してセンサの性能試験
を行ったが、同様な結果が得られた。
Samples 2 to 7 of (Table 1) and (Table 2)
A lens was molded in the same manner with the above glass, and the performance test of the sensor was performed, and similar results were obtained.

【0026】なお、本発明のガラスにはゲルマニウム、
セレンに加えて、ガラスとしての安定性を向上させるた
めヨウ素を含有させてもよい。さらに赤外透過域を拡大
するためにアンチモン、テルル、セレンなどを、熱膨張
係数の適正化のため少量のリチウム、ナトリウム、銅、
銀、ホウ素、ガリウム、インジウム、シリコン、スズ、
鉛、ビスマス、リン、臭素を含有させてもよい。
The glass of the present invention contains germanium,
In addition to selenium, iodine may be contained in order to improve stability as glass. In addition, antimony, tellurium, selenium, etc. are used to expand the infrared transmission range, and a small amount of lithium, sodium, copper, and
Silver, boron, gallium, indium, silicon, tin,
It may contain lead, bismuth, phosphorus and bromine.

【0027】[0027]

【発明の効果】本発明の人体検知センサ装置は、人体か
ら出る8〜12μmの赤外線を透過し、毒性のないカルコゲ
ナイドガラスを使用しているので、容易にレンズをプレ
ス成形で作製でき、しかも民生器具、産業機器に安心し
て組み込むことができる。
Since the human body detection sensor device of the present invention uses the non-toxic chalcogenide glass, which transmits infrared rays of 8 to 12 μm emitted from the human body, the lens can be easily manufactured by press molding, and it is commercially available. Can be safely incorporated into equipment and industrial equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の人体検知センサ装置の構成図FIG. 1 is a configuration diagram of a conventional human body detection sensor device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Yoshida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 出発物質が非酸化物で、ゲルマニウムと
セレンを主体とする非酸化物ガラスから形成した赤外線
透過性レンズ。
1. An infrared transmissive lens whose starting material is a non-oxide and which is formed from a non-oxide glass mainly containing germanium and selenium.
【請求項2】 ゲルマニウム5〜22.5原子%とセレン77.
5〜95原子%を主体とするガラスから形成した請求項1
記載の赤外線透過性レンズ。
2. Germanium 5 to 22.5 atomic% and selenium 77.
A glass formed mainly of 5 to 95 atomic%.
The infrared transmissive lens described.
【請求項3】 ゲルマニウム5〜22.5原子%、セレン35
〜95原子%、ヨウ素0〜45原子%を主体とするガラスか
ら形成した請求項1記載の赤外線透過性レンズ。
3. Germanium 5 to 22.5 atomic%, selenium 35
The infrared-transmissive lens according to claim 1, which is formed of a glass mainly containing ˜95 atomic% and 0-45 atomic% iodine.
【請求項4】 請求項1〜3記載の赤外線透過性レンズ
と、焦電型赤外センサを備えた人体検知センサ装置。
4. A human body detection sensor device comprising the infrared transmissive lens according to claim 1 and a pyroelectric infrared sensor.
JP18446291A 1991-05-21 1991-07-24 Infrared ray transmitting lens and human body detecting sensor using the same lens Pending JPH0524880A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18446291A JPH0524880A (en) 1991-07-24 1991-07-24 Infrared ray transmitting lens and human body detecting sensor using the same lens
US07/882,906 US5315434A (en) 1991-05-21 1992-05-14 Infrared-transmissive lens and human body detecting sensor using the same
EP92108550A EP0514882A1 (en) 1991-05-21 1992-05-20 Infrared-transmissive lens and human body detecting sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18446291A JPH0524880A (en) 1991-07-24 1991-07-24 Infrared ray transmitting lens and human body detecting sensor using the same lens

Publications (1)

Publication Number Publication Date
JPH0524880A true JPH0524880A (en) 1993-02-02

Family

ID=16153580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18446291A Pending JPH0524880A (en) 1991-05-21 1991-07-24 Infrared ray transmitting lens and human body detecting sensor using the same lens

Country Status (1)

Country Link
JP (1) JPH0524880A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792026A (en) * 1993-09-22 1995-04-07 Matsushita Electric Ind Co Ltd Pyroelectric infrared sensor
US6202424B1 (en) 1999-10-29 2001-03-20 Mayekawa Mfg. Co., Ltd. System for compressing contaminated gas
JP2004077461A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2015129072A (en) * 2014-01-09 2015-07-16 日本電気硝子株式会社 Infrared transmitting glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792026A (en) * 1993-09-22 1995-04-07 Matsushita Electric Ind Co Ltd Pyroelectric infrared sensor
US6202424B1 (en) 1999-10-29 2001-03-20 Mayekawa Mfg. Co., Ltd. System for compressing contaminated gas
JP2004077461A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2015129072A (en) * 2014-01-09 2015-07-16 日本電気硝子株式会社 Infrared transmitting glass

Similar Documents

Publication Publication Date Title
US5315434A (en) Infrared-transmissive lens and human body detecting sensor using the same
JP6804030B2 (en) Infrared transmissive glass
US3348045A (en) Ge-se-te glass and infrared detection system
JP6806078B2 (en) Optical glass
Conseil et al. Te-based chalcohalide glasses for far-infrared optical fiber
EP3093275B1 (en) Infrared transmission glass
JP2019048752A (en) Chalcogenide glass material
JP6709499B2 (en) Infrared transparent glass
JP2024074945A (en) Infrared transmission glass
JPH0524880A (en) Infrared ray transmitting lens and human body detecting sensor using the same lens
WO2020175403A1 (en) Infrared-transmitting glass
JP6819920B2 (en) Calcogenide glass
JP7058825B2 (en) Infrared transmissive glass
US3440068A (en) Amorphous glass compositions
JP6788816B2 (en) Infrared transmissive glass
EP0510321A1 (en) Alkali bismuth gallate glasses
JPH04342438A (en) Infrared ray transmitting glass and infrared ray detecting sensor using the same
US3511993A (en) Ge-se-te glass in an infrared detection system
JPH06183779A (en) Production of infrared-transmissible glass
JP7026892B2 (en) Infrared transmissive glass
JPH0543268A (en) Visible light and ir transparent material
JPH0585769A (en) Material for transmission of infrared ray
US3371211A (en) Ge-s-te glass compositions and infrared detection system
US3371210A (en) Inorganic glass composition
JPH0692652A (en) Production of ir light-transmitting lens