JPH0524879A - Production of infrared ray transmitting glass - Google Patents

Production of infrared ray transmitting glass

Info

Publication number
JPH0524879A
JPH0524879A JP18446191A JP18446191A JPH0524879A JP H0524879 A JPH0524879 A JP H0524879A JP 18446191 A JP18446191 A JP 18446191A JP 18446191 A JP18446191 A JP 18446191A JP H0524879 A JPH0524879 A JP H0524879A
Authority
JP
Japan
Prior art keywords
glass
hours
ges
sulfur
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18446191A
Other languages
Japanese (ja)
Inventor
Yasuo Mizuno
康男 水野
Masakatsu Sugai
正克 菅井
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18446191A priority Critical patent/JPH0524879A/en
Publication of JPH0524879A publication Critical patent/JPH0524879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain infrared ray transmitting glass having a low melt temperature, transmitting infrared rays to visible light rays, having low toxicity, comprising Ges, GeS2, Ge2S3 or GeS3. CONSTITUTION:Ges, GeS2, Ge2S3 or GeS3, a crystallization inhibitor and an optimizing agent of coefficient of thermal expansion are sealed in an quartz ampule in vacuum and heated and melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明はカルコゲナイド系赤外線
透過性ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chalcogenide infrared ray transmitting glass.

【従来の技術】焦電型赤外センサを用いた人体センサは
家電製品、産業機器において広く利用されている。例え
ばドアーの開閉、便器の給水栓、エアコンの作動などの
センサとしてである。一般に、人体から出る8〜12μ
mの赤外線を効率よく集めるため、センサの前には赤外
光のみを透過するフィルタやレンズが設けられている。
このフィルタ材料としてはカルコゲナイドガラスが注目
されている。カルコゲナイドガラスはカルコゲン元素
(イオウ、セレン、テルル)を主成分とするガラスであ
り、実用的には、ヒ素−イオウ、ゲルマニウム−ヒ素−
セレン、ゲルマニウム−セレン−テルル、ゲルマニウム
−セレン−アンチモン系がおもに研究開発されている
(例えば第31回ガラス討論会講演要旨集、p.71-74(19
90))。しかし前2者のガラスはヒ素を含有しており、
毒性に問題があった。また後2者は可視光をほとんど透
過しないため、組み立て時のレンズとセンサとの光軸合
わせを目視により調整を行うことは不可能で、高価な赤
外撮像装置(サーマルイメージャ)が必要であった。そ
こで上記の問題点を解決するため、発明者等は毒性の無
い元素を主成分とするカルコゲナイドガラスを探索し
た。カルコゲナイドガラスの主要元素はイオウ、セレ
ン、テルル、ゲルマニウム、ヒ素、アンチモンである。
このうち毒物に指定されているのはヒ素、セレンである
が、特に毒性の強いのはヒ素とされている。セレンはト
マトジュースに多く含まれ、家畜の必須栄養素であるこ
とからそれ自体の毒性は弱いとされている。ヒ素を除い
た元素から、さらに可視光も透過することを条件に入れ
るとゲルマニウム、イオウが主成分となる。また、この
ガラスにはゲルマニウム、イオウに加えて、赤外透過域
を拡大し、結晶化を抑制するためヨウ素、アンチモン、
テルル、セレンなどを含有させた。さらに熱膨張係数を
適正化するため少量のリチウム、ナトリウム、銅、銀、
ホウ素、ガリウム、インジウム、シリコン、スズ、鉛、
ビスマス、リン、臭素を含ませるようにした。
2. Description of the Related Art A human body sensor using a pyroelectric infrared sensor is widely used in home electric appliances and industrial equipment. For example, it is used as a sensor for opening and closing a door, a water faucet of a toilet, an operation of an air conditioner, and the like. Generally, 8 ~ 12μ from the human body
In order to collect m infrared rays efficiently, a filter or lens that transmits only infrared light is provided in front of the sensor.
Chalcogenide glass is drawing attention as a material for this filter. Chalcogenide glass is a glass containing a chalcogen element (sulfur, selenium, tellurium) as a main component, and practically, arsenic-sulfur, germanium-arsenic-
Selenium, germanium-selenium-tellurium, and germanium-selenium-antimony systems have been mainly researched and developed (for example, 31st Annual Meeting of Glass Conference, p.71-74 (19).
90)). However, the former two glasses contain arsenic,
There was a problem with toxicity. Also, since the latter two hardly transmit visible light, it is impossible to visually adjust the optical axis alignment between the lens and the sensor during assembly, and an expensive infrared imaging device (thermal imager) is required. It was Therefore, in order to solve the above problems, the inventors searched for chalcogenide glass containing a nontoxic element as a main component. The main elements of chalcogenide glass are sulfur, selenium, tellurium, germanium, arsenic and antimony.
Of these, arsenic and selenium are designated as poisons, but arsenic is particularly toxic. Selenium is contained in a large amount in tomato juice and is considered to be weak in toxicity because it is an essential nutrient for livestock. From the elements excluding arsenic, germanium and sulfur will be the main components under the condition that visible light is also transmitted. In addition to germanium and sulfur, this glass has iodine, antimony, in order to expand the infrared transmission range and suppress crystallization,
Tellurium, selenium, etc. were included. Furthermore, in order to optimize the coefficient of thermal expansion, small amounts of lithium, sodium, copper, silver,
Boron, gallium, indium, silicon, tin, lead,
It was made to contain bismuth, phosphorus, and bromine.

【発明が解決しようとする課題】しかし、このような従
来の製造方法では、ゲルマニウムとイオウを主体とする
ガラスを製造する場合、所定の組成になるようにゲルマ
ニウムやイオウなどを混合した原料を石英のアンプルに
減圧封入し、これを電気炉中で溶融する方法が採られて
いた。このとき、イオウの蒸気圧が640℃で10気
圧、720℃で20気圧と、きわめて高いのと、アンプ
ルの強度がそれほど強くなく20気圧までしか耐えない
ため、溶融温度に達するまでゆっくり温度を上げる必要
があった。すなわち温度の上昇を早くしすぎると、内圧
が急激に上昇しアンプルがこれに耐えられなくなって爆
発し、その結果イオウが燃焼し火災を引き起こす危険性
があった。このような危険を回避するため、この種のガ
ラスの製造には長時間を要するという課題があった。本
発明はこのような課題を解決するもので、溶融温度が低
く、安全で、溶融に長時間を要しない赤外線透過性ガラ
スの製造方法を提供することを目的とするものである。
However, in the conventional manufacturing method as described above, when a glass mainly containing germanium and sulfur is manufactured, a raw material obtained by mixing germanium and sulfur so as to have a predetermined composition is made into quartz. A method of encapsulating under reduced pressure in an ampoule and melting this in an electric furnace was adopted. At this time, the vapor pressure of sulfur is extremely high at 10 atm at 640 ° C and 20 atm at 720 ° C, and the ampoule strength is not so strong that it can withstand up to 20 atm, so the temperature is slowly raised until the melting temperature is reached. There was a need. That is, if the temperature rises too fast, the internal pressure rises sharply, and the ampoule cannot withstand this and explodes, resulting in the risk of sulfur burning and causing a fire. In order to avoid such a danger, there is a problem that it takes a long time to manufacture this type of glass. The present invention solves such a problem, and an object of the present invention is to provide a method for producing infrared transparent glass, which has a low melting temperature, is safe, and does not require a long time for melting.

【課題を解決するための手段】このような課題を解決す
るために本発明は、ガラスの製造にあたって、原料成分
としてGeS,GeS2,Ge23またはGeS3のいず
れかを加えることによって製造時間の短縮と危険性の除
去を実現したものである。これらの原料においてはすで
にゲルマニウムとイオウが化合物を形成しているため、
温度の上昇にともなって速やかに融解する。
In order to solve such problems, the present invention is produced by adding any one of GeS, GeS 2 , Ge 2 S 3 and GeS 3 as a raw material component in the production of glass. The result is a reduction in time and elimination of risks. Since germanium and sulfur have already formed compounds in these raw materials,
It melts quickly with increasing temperature.

【作 用】この方法によれば、例えばGeSの融点は5
30℃,GeS2の融点は800℃であるため、ゲルマ
ニウムの溶融温度以下の温度で溶解が完了する。このた
め温度上昇が低くイオウの蒸気圧が上昇することがな
い。これに対してゲルマニウムとイオウを原料にした場
合、ゲルマニウムの融点956℃とイオウの融点120
℃が離れすぎているために容易に化合し難く、そのため
イオウがかなり高い温度まで単体で残留するため蒸気圧
が上昇しやすかった。本発明の方法によれば、赤外〜可
視光を透過し、毒性がなく、結晶化しにくいカルコゲナ
イドガラスの製造を短時間で、かつ安全に行うことがで
きることとなる。
[Operation] According to this method, for example, the melting point of GeS is 5
Since the melting point of GeS 2 is 30 ° C. and the temperature of GeS 2 is 800 ° C., the melting is completed at a temperature below the melting temperature of germanium. Therefore, the temperature rise is low and the vapor pressure of sulfur does not rise. On the other hand, when using germanium and sulfur as the raw materials, the melting point of germanium is 956 ° C and the melting point of sulfur is 120.
It was difficult to combine easily because ℃ was too far away, and so the vapor pressure was easy to rise because sulfur remained as a single substance up to a fairly high temperature. According to the method of the present invention, it is possible to safely manufacture chalcogenide glass that transmits infrared to visible light, has no toxicity, and is difficult to crystallize in a short time.

【実施例】以下に本発明の一実施例を説明する。 (実施例1)原子%でGe:S:I=30:60:10
のガラス10gを製造するため、7.64gのGeS2
2.36gのIを添加し、石英アンプルに真空封止し
た。これを電気炉中で室温から600℃まで2時間、6
00℃から800℃まで4時間、さらに800℃で12
時間溶融してガラスを得た。合計の溶融時間は18時間
で、得られたガラスは茶色で、11μmまでの赤外線を
50%以上透過した。 (実施例2)原子%でGe:S:I=22.5:67.
5:10のガラス10gを製造するため、7.5gのGe
3 と2.5gのIを添加し、石英アンプルに真空封止
した。これを電気炉中で室温から600℃まで2時間、
600℃から800℃まで4時間、さらに800℃で1
2時間溶融してガラスを得た。合計の溶融時間は18時
間で、得られたガラスは茶色で、11μmまでの赤外線
を50%以上透過した。 (実施例3)原子%でGe:S:I=32:48:20
のガラス10gを製造するため、6.03gのGe23
と3.97gのIを添加し、石英アンプルに真空封止し
た。これを電気炉中で室温から600℃まで2時間、6
00℃から800℃まで4時間、さらに800℃で12
時間溶融してガラスを得た。合計の溶融時間は18時間
で、得られたガラスは茶色で、11μmまでの赤外線を
50%以上透過した。 (実施例4)原子%でGe:S:I=40:40:20
のガラス10gを製造するため、6.23gのGeSと
3.77gのIを添加し、石英アンプルに真空封止し
た。これを電気炉中で室温から600℃まで2時間、6
00℃から800℃まで4時間、さらに800℃で12
時間溶融してガラスを得た。合計の溶融時間は18時間
で、得られたガラスは茶色で、11μmまでの赤外線を
50%以上透過した。 (実施例5)原子%でGe:S:Sb=30:60:1
0のガラス10gを製造するため、7.71gのGeS2
と2.29gのIを添加し、石英アンプルに真空封止し
た。これを電気炉中で室温から600℃まで2時間、6
00℃から950℃まで4時間、さらに950℃で12
時間溶融してガラスを得た。合計の溶融時間は18時間
で、得られたガラスはこげ茶色で、11μmまでの赤外
線を50%以上透過した。 (実施例6)原子%でGe:S:Te=23.75:7
1.25:5のガラス10gを製造するため、8.63g
のGeS3 と1.37gのIを添加し、石英アンプルに
真空封止した。これを電気炉中で室温から600℃まで
2時間、600℃から900℃まで4時間、さらに90
0℃で12時間溶融してガラスを得た。合計の溶融時間
は18時間で、得られたガラスは青色で、11.5μm
までの赤外線を50%以上透過した。 (実施例7)原子%でGe:S:I:Se=21.2
5:63.75:10:5のガラス10gを製造するた
め、6.83gのGeS3 と2.42gのIと7.52g
のSeを添加し、石英アンプルに真空封止した。これを
電気炉中で室温から600℃まで2時間、600℃から
900℃まで4時間、さらに900℃で12時間溶融し
てガラスを得た。合計の溶融時間は18時間で、得られ
たガラスは青色で、11.5μmまでの赤外線を50%
以上透過した。 (比較例)原子%でGe:S:I=30:60:10の
ガラス10gを製造するため、4.06gのGeと3.5
8gのSと2.36gのIを添加し、石英アンプルに真空
封止した。これを電気炉中で室温から600℃まで2時
間、600℃から800℃まで4時間、さらに800℃
で12時間溶融しようとしたが、750℃でアンプルが
爆発した。詳細な実験の結果、アンプルを爆発させない
ためには室温から600℃まで12時間、600℃から
800℃まで12時間かける必要があることがわかっ
た。その結果合計の溶融時間は36時間となり、実施例
1の2倍を要した。 また、実施例2〜7のガラスでも
実施例1と同様に短時間で溶融できた。
EXAMPLE An example of the present invention will be described below. (Example 1) Ge: S: I = 30: 60: 10 in atomic%
In order to produce 10 g of glass, 7.64 g of GeS 2 and 2.36 g of I were added and vacuum sealed in a quartz ampoule. 6 hours in an electric furnace from room temperature to 600 ℃
4 hours from 00 ℃ to 800 ℃, 12 at 800 ℃
It melted for a time to obtain glass. The total melting time was 18 hours, the obtained glass was brown and 50% or more of infrared rays up to 11 μm were transmitted. Example 2 Ge: S: I = 22.5: 67 in atomic%.
To produce 10 g of 5:10 glass, 7.5 g of Ge
S 3 and 2.5 g of I were added and vacuum sealed in a quartz ampoule. This in an electric furnace from room temperature to 600 ° C for 2 hours,
4 hours from 600 ℃ to 800 ℃, 1 at 800 ℃
It melted for 2 hours to obtain glass. The total melting time was 18 hours, the obtained glass was brown and 50% or more of infrared rays up to 11 μm were transmitted. Example 3 Ge: S: I = 32: 48: 20 in atomic%.
To produce 10 g of glass, 6.03 g of Ge 2 S 3
And 3.97 g of I were added and vacuum sealed in a quartz ampoule. 6 hours in an electric furnace from room temperature to 600 ℃
4 hours from 00 ℃ to 800 ℃, 12 at 800 ℃
It melted for a time to obtain glass. The total melting time was 18 hours, the obtained glass was brown and 50% or more of infrared rays up to 11 μm were transmitted. Example 4 Ge: S: I = 40: 40: 20 in atomic%.
In order to produce 10 g of glass, 6.23 g of GeS and 3.77 g of I were added and vacuum sealed in a quartz ampoule. 6 hours in an electric furnace from room temperature to 600 ℃
4 hours from 00 ℃ to 800 ℃, 12 at 800 ℃
It melted for a time to obtain glass. The total melting time was 18 hours, the obtained glass was brown and 50% or more of infrared rays up to 11 μm were transmitted. (Example 5) Ge: S: Sb = 30: 60: 1 in atomic%
To produce 10 g of 0 glass, 7.71 g of GeS 2
And 2.29 g of I were added and vacuum sealed in a quartz ampoule. 6 hours in an electric furnace from room temperature to 600 ℃
4 hours from 00 ℃ to 950 ℃, 12 at 950 ℃
It melted for a time to obtain glass. The total melting time was 18 hours, the obtained glass was dark brown and 50% or more of infrared rays up to 11 μm were transmitted. (Example 6) Ge: S: Te = 23.75: 7 in atomic%
8.63 g to make 10 g of 1.25: 5 glass
GeS 3 and 1.37 g of I were added and vacuum sealed in a quartz ampoule. This is heated in an electric furnace from room temperature to 600 ° C for 2 hours, 600 ° C to 900 ° C for 4 hours, then 90
Glass was obtained by melting at 0 ° C. for 12 hours. The total melting time was 18 hours, the glass obtained was blue and had a thickness of 11.5 μm.
50% or more of infrared rays were transmitted. (Example 7) Ge: S: I: Se = 21.2 in atomic%
To produce 10 g of 5: 63.75: 10: 5 glass, 6.83 g of GeS 3 and 2.42 g of I and 7.52 g are prepared.
Se was added and vacuum sealed in a quartz ampoule. This was melted in an electric furnace from room temperature to 600 ° C. for 2 hours, from 600 ° C. to 900 ° C. for 4 hours, and further at 900 ° C. for 12 hours to obtain glass. The total melting time is 18 hours, the resulting glass is blue and 50% of the infrared up to 11.5 μm
The above was transmitted. (Comparative Example) To produce 10 g of Ge: S: I = 30: 60: 10 glass in atomic%, 4.06 g of Ge and 3.5
8g S and 2.36g I were added and vacuum sealed in a quartz ampoule. This in an electric furnace from room temperature to 600 ° C for 2 hours, 600 ° C to 800 ° C for 4 hours, then 800 ° C.
I tried to melt it for 12 hours, but the ampoule exploded at 750 ° C. As a result of detailed experiments, it was found that it is necessary to take 12 hours from room temperature to 600 ° C. and 12 hours from 600 ° C. to 800 ° C. to prevent the ampoule from exploding. As a result, the total melting time was 36 hours, which was twice as long as in Example 1. Also, the glasses of Examples 2 to 7 could be melted in a short time as in Example 1.

【発明の効果】以上の実施例の説明からも明かなように
本発明によれば、赤外線透過性ガラスを短時間かつ安全
に製造できる。また本方法によって製造したガラスは可
視光も透過するので、レンズに形成し組み立てを行うと
きには、肉眼で光軸合わせを行うことができ、簡単な設
備でよい。しかも毒性の無いカルコゲナイドガラスを使
用しているので、民生器具、産業機器に安心して組み込
むことができる。
As is apparent from the above description of the embodiments, according to the present invention, the infrared transparent glass can be manufactured safely in a short time. Further, since the glass produced by this method also transmits visible light, the optical axis can be aligned with the naked eye when the lens is formed and assembled, and simple equipment is required. Moreover, since it uses chalcogenide glass, which is not toxic, it can be incorporated into consumer appliances and industrial equipment with confidence.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 ゲルマニウムとイオウを主体とする赤外
線透過性ガラスの製造において、原料成分としてGe
S,GeS2,Ge23またはGeS3のいずれかを含有
させる赤外線透過性ガラスの製造方法。
Claim: What is claimed is: 1. As a raw material component, Ge is used as a raw material in the production of infrared-transparent glass mainly containing germanium and sulfur.
A method for producing an infrared transparent glass containing any of S, GeS 2 , Ge 2 S 3 and GeS 3 .
JP18446191A 1991-07-24 1991-07-24 Production of infrared ray transmitting glass Pending JPH0524879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18446191A JPH0524879A (en) 1991-07-24 1991-07-24 Production of infrared ray transmitting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18446191A JPH0524879A (en) 1991-07-24 1991-07-24 Production of infrared ray transmitting glass

Publications (1)

Publication Number Publication Date
JPH0524879A true JPH0524879A (en) 1993-02-02

Family

ID=16153561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18446191A Pending JPH0524879A (en) 1991-07-24 1991-07-24 Production of infrared ray transmitting glass

Country Status (1)

Country Link
JP (1) JPH0524879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104958A1 (en) 2014-01-09 2015-07-16 日本電気硝子株式会社 Infrared transmission glass
JP2015521148A (en) * 2012-04-20 2015-07-27 ショット コーポレーションSchott Corporation Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra
WO2017110500A1 (en) * 2015-12-25 2017-06-29 日本電気硝子株式会社 Infrared transmitting glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521148A (en) * 2012-04-20 2015-07-27 ショット コーポレーションSchott Corporation Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra
US10294143B2 (en) 2012-04-20 2019-05-21 Schott Corporation Glasses for the correction of chromatic and thermal optical aberations for lenses transmitting in the near, mid, and far-infrared spectrums
WO2015104958A1 (en) 2014-01-09 2015-07-16 日本電気硝子株式会社 Infrared transmission glass
JP2015129072A (en) * 2014-01-09 2015-07-16 日本電気硝子株式会社 Infrared transmitting glass
US10065881B2 (en) 2014-01-09 2018-09-04 Nippon Electric Glass Co., Ltd. Infrared transmitting glass
WO2017110500A1 (en) * 2015-12-25 2017-06-29 日本電気硝子株式会社 Infrared transmitting glass

Similar Documents

Publication Publication Date Title
KR102267522B1 (en) Glasses for the correction of chromatic and thermal optical aberrations for lenses transmitting in the near, mid, and far-infrared sprectrums
US5315434A (en) Infrared-transmissive lens and human body detecting sensor using the same
CN108290773A (en) Optical glass
EP3093275B1 (en) Infrared transmission glass
CN106256796A (en) Infrared transmission chalcogenide glass
WO2017110500A1 (en) Infrared transmitting glass
CN113302164B (en) Infrared ray transmitting glass
JPH0524879A (en) Production of infrared ray transmitting glass
JP6709499B2 (en) Infrared transparent glass
JP6819920B2 (en) Calcogenide glass
US4086123A (en) Zinc sulfide based pigments
WO2020175402A1 (en) Infrared-transmitting glass
US5114884A (en) Alkali bismuth gallate glasses
JPH06183779A (en) Production of infrared-transmissible glass
WO2019167462A1 (en) Infrared transmitting glass
US9994478B2 (en) Alkali selenogermanate glasses
JPH0692652A (en) Production of ir light-transmitting lens
JP6788816B2 (en) Infrared transmissive glass
JPH04342438A (en) Infrared ray transmitting glass and infrared ray detecting sensor using the same
JPH0524880A (en) Infrared ray transmitting lens and human body detecting sensor using the same lens
JPH054835A (en) Infrared-transmitting glass and production thereof
JPH0543268A (en) Visible light and ir transparent material
US3188216A (en) Glass containing strontium and gallium compounds
JPH05229838A (en) Method for forming infrared-transmitting glass rod
US9650287B2 (en) Visible light and infrared light transmitting optical colored glass, composition thereof, and preparing method thereof