JPH0543256A - Production of fluoride glass - Google Patents

Production of fluoride glass

Info

Publication number
JPH0543256A
JPH0543256A JP22371491A JP22371491A JPH0543256A JP H0543256 A JPH0543256 A JP H0543256A JP 22371491 A JP22371491 A JP 22371491A JP 22371491 A JP22371491 A JP 22371491A JP H0543256 A JPH0543256 A JP H0543256A
Authority
JP
Japan
Prior art keywords
fluoride glass
substrate
starting material
compd
diketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22371491A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiura
和夫 藤浦
Kenji Kobayashi
健二 小林
Koji Sato
弘次 佐藤
Shungo Sugawara
駿吾 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22371491A priority Critical patent/JPH0543256A/en
Publication of JPH0543256A publication Critical patent/JPH0543256A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Lasers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To stably produce a large-sized fluoride glass of uniform composition by using a specified complex of Ba and beta-diketone and the gaseous compd. of metallic element as the starting material, mixing the material with a fluorine- contg. gas and subjecting the mixture to a reaction. CONSTITUTION:A specified complex consisting of Ba and beta-diketone is used as a first starting material and the gaseous and/or vaporizable compds. of the metallic elements such as Zr organometallic compd. as a second starting material. A fluorine-contg. gas such as the gaseous mixture of HF and F2 is used as the fluorinating agent. The starting materials are mixed with the fluorinating agent, and the mixture is introduced into a reaction system contg. a substrate. The components are allowed to react with one another in the vapor phase or on the substrate. In this case, a compd. shown by the structural formula is used as the complex. The compd. has a high vapor pressure at low temp. and is thermally stable. Consequently, the volatile raw material of Ba is stably supplied, and an optically homogeneous fluoride glass of uniform composition is formed on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ化物ガラスの製造方
法、さらに詳細には、光ファイバ、レーザガラス、レン
ズ等に用いられる高度に光学的均質なフッ化物ガラスの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fluoride glass, and more particularly to a method for producing a highly optically homogeneous fluoride glass used for optical fibers, laser glasses, lenses and the like.

【0002】[0002]

【従来の技術】フッ化物ガラスは赤外線波長領域におけ
る透過特性が優れており、赤外線波長領域で極低損失光
ファイバを実現できる可能性が高い材料として注目され
ている。このようなフッ化物ガラスを製造する場合、従
来は固相原料バッチの溶融法が用いられていた。この方
法は、固相原料をひょう量し、粉砕して、混合した後、
原料をバッチで溶融し、バッチ内で急冷することによ
り、フッ化物ガラスを製造するものである。このため、
各原料をひょう量し、粉砕して、混合する時に、赤外線
波長領域に吸収を有するFe, Ni, Cu, Cr, Co等の遷移金
属不純物の混入や、酸化物散乱体の原因となる水分の吸
着が生じる。さらに、ガラス溶融の際、バッチ壁の腐食
による不純物の混入が生じるという欠点があった。
2. Description of the Related Art Fluoride glass has excellent transmission characteristics in the infrared wavelength region, and is attracting attention as a material having a high possibility of realizing an extremely low loss optical fiber in the infrared wavelength region. In the case of producing such a fluoride glass, a melting method of a solid phase raw material batch has been conventionally used. In this method, the solid phase raw material is weighed, crushed and mixed,
Fluoride glass is produced by melting raw materials in batches and quenching in the batches. For this reason,
When weighing each raw material, crushing it, and mixing, mixing transition metal impurities such as Fe, Ni, Cu, Cr, and Co that have absorption in the infrared wavelength region and mixing of water that causes oxide scatterers. Adsorption occurs. Further, there is a defect that impurities are mixed due to corrosion of the batch wall when the glass is melted.

【0003】一方、気相合成法は石英系光ファイバで知
られているように、高純度均質ガラスの合成に適した合
成法である。フッ化物ガラスの気相合成法は、特願平1
−49277に記載されているように、Baのβ−ジケト
ン錯体をBa源とする方法によって作製可能であるが、β
−ジケトンの置換基の種類によっては、熱安定性に乏し
かったり、蒸気圧が低い等の欠点があり、安定に供給で
きなかった。
On the other hand, the vapor phase synthesis method is a synthesis method suitable for the synthesis of high-purity homogeneous glass, as is known for silica optical fibers. The vapor phase synthesis method of fluoride glass is described in Japanese Patent Application No.
As described in No. 49277, it can be prepared by a method using a β-diketone complex of Ba as a Ba source.
-Depending on the kind of the substituent of the diketone, there were drawbacks such as poor thermal stability and low vapor pressure, and stable supply could not be achieved.

【0004】[0004]

【発明が解決しようとする課題】本発明は、フッ化物ガ
ラスの気相合成の際のBa源の安定供給を可能にし、組成
が均一で、かつ大型のフッ化物ガラスを製造する方法を
提供することにある。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a large-sized fluoride glass having a uniform composition, which enables stable supply of a Ba source during vapor phase synthesis of fluoride glass. Especially.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明はBaのβ−ジケトン錯体のうち、下記の構
造式
In order to solve the above problems, the present invention provides the following structural formula among the β-diketone complexes of Ba.

【化2】 で表わされる化合物を第1の出発原料として用いる。[Chemical 2] The compound represented by is used as the first starting material.

【0006】本発明で使用するBaのβ−ジケトン化合物
は、低温で高い蒸気圧を有し、かつ熱的に安定であるの
で、本発明により、これまでは困難であったBaの揮発性
原料の安定供給が可能となり、結果として組成の均一
で、かつ大型のフッ化物ガラスが作製できる。
The β-diketone compound of Ba used in the present invention has a high vapor pressure at low temperature and is thermally stable. Can be stably supplied, and as a result, a large-sized fluoride glass having a uniform composition can be produced.

【0007】[0007]

【実施例】以下、本発明の実施例について詳細に説明す
るが、これにより本発明は何等限定されるものではな
い。
EXAMPLES Examples of the present invention will now be described in detail, but the present invention is not limited thereto.

【0008】実施例1 図1は、本発明のフッ化物ガラスの製造方法に用いる装
置の一例として、実施例に使用した装置の構成を示す概
念図であって、1は反応系としてのAl製のチャンバであ
り、ロータリーポンプにより10mmHgの圧力に保持されて
いる。このチャンバ全体はヒータ2によって190 ℃に保
温されている。チャンバ1内にはCaF2からなる基板3が
設置されている。このチャンバ1は導入口1a, 1bからそ
れぞれ有機金属化合物のガス流および含フッ素ガスが導
入されるようになっている。
Example 1 FIG. 1 is a conceptual diagram showing the constitution of the apparatus used in the example as an example of the apparatus used in the method for producing a fluoride glass of the present invention, in which 1 is made of Al as a reaction system. The chamber is maintained by a rotary pump at a pressure of 10 mmHg. The entire chamber is kept at 190 ° C. by the heater 2. A substrate 3 made of CaF 2 is installed in the chamber 1. Into this chamber 1, a gas flow of an organometallic compound and a fluorine-containing gas are introduced from inlets 1a and 1b, respectively.

【0009】この実施例では、出発原料としてZrとCF3-
COCH2CO-CF3 との化合物(以下、Zr(hfa)4と略記) と、
BaとC2F5-COCH2CO-C(CH3)3との化合物( 以下、Ba(ppm)2
と略記) を使用した。
In this example, Zr and CF 3- were used as starting materials.
A compound with COCH 2 CO-CF 3 (hereinafter abbreviated as Zr (hfa) 4 ),
Compound of Ba and C 2 F 5 -COCH 2 CO-C (CH 3 ) 3 (hereinafter, Ba (ppm) 2
Abbreviated) was used.

【0010】Zr(hfa)4およびBa(ppm)2のガスは、それぞ
れ60℃、220℃に保温して気化させたものを、 Arをキ
ャリアガスとして供給している。すなわち導入口1aには
供給管7a, 7bを介してZr(hfa)4およびBa(ppm)2が充填さ
れた蒸発器8a, 8bが連結されており、この蒸発器8a, 8b
を加熱しつつ、Zr(hfa)4、Ba(ppm)2内にArを導入して、
チャンバ1内に供給している。なお、前述したZr(hfa)4
およびBa(ppm)2は、Arキャリアガスの流量によりそれぞ
れ調整できる。
The gases of Zr (hfa) 4 and Ba (ppm) 2 are vaporized by keeping the temperature at 60 ° C. and 220 ° C., respectively, and Ar is supplied as a carrier gas. That is, the inlet 1a is connected via the supply pipes 7a, 7b to the evaporators 8a, 8b filled with Zr (hfa) 4 and Ba (ppm) 2 , respectively.
While heating, while introducing Ar into Zr (hfa) 4 and Ba (ppm) 2 ,
It is supplied into the chamber 1. In addition, Zr (hfa) 4 mentioned above
And Ba (ppm) 2 can be adjusted by adjusting the flow rate of Ar carrier gas.

【0011】また、含フッ素ガスとして選ばれたHFとF2
の混合ガスは、供給管4を介して導入口1bにより供給さ
れているが、このHFおよびF2の供給量は、マスフローコ
ントローラーによって調整できるようになっている。な
お、供給管7a, 7b,4は、ガスの凝縮を抑えるために保
温ヒータ6a, 6b, 5により、それぞれ65℃, 195 ℃, 30
℃に保温されている。
HF and F 2 selected as fluorine-containing gas
The mixed gas of is supplied from the inlet 1b via the supply pipe 4, and the supply amounts of HF and F 2 can be adjusted by a mass flow controller. In addition, the supply pipes 7a, 7b, and 4 are heated to 65 ° C., 195 ° C., and 30 ° C. by the heat insulation heaters 6a, 6b, and 5 in order to suppress gas condensation.
It is kept warm at ℃.

【0012】この実施例では、Zr(hfa)4は2cc/min.、
Ba(ppm)2は1cc/min.、HFは15cc/min.、F2は15cc/mi
n.の条件で2時間反応を行った結果、65 ZrF4-35 BaF2
の組成を有する厚さ5mmのガラス膜が作製できた。この
ようにして作製したガラス中の深さ方向の組成分析を、
X線マイクロアナライザー(XMA) によって測定した結果
を図2に示す。比較のため、Ba源として下記構造式
In this embodiment, Zr (hfa) 4 is 2 cc / min.
Ba (ppm) 2 is 1 cc / min., HF is 15 cc / min., F 2 is 15 cc / mi.
As a result of conducting the reaction for 2 hours under the condition of n., 65 ZrF 4 -35 BaF 2
A 5 mm-thick glass film having the above composition could be prepared. The composition analysis in the depth direction in the glass produced in this way,
The result measured by X-ray microanalyzer (XMA) is shown in FIG. For comparison, the following structural formula is used as the Ba source.

【化3】 および[Chemical 3] and

【化4】 で表わした金属錯体を用いた結果も併記した。[Chemical 4] The results using the metal complex represented by are also shown.

【0013】すなわち図2において、Aは実施例で作製
したガラスの膜厚方向の組成分析結果を示し、Bは化3
で表わした化合物を用いた場合、Cは化4で表わした場
合の組成分析結果を示す。
That is, in FIG. 2, A shows the composition analysis result in the film thickness direction of the glass produced in the example, and B shows the chemical formula 3.
When the compound represented by the formula (4) is used, C represents the composition analysis result in the case of the formula (4).

【0014】図2から明らかなように、Ba(ppm)2を用い
た場合は、膜厚方向に組成の均一なガラスが得られてい
るのに対し、化3および化4で表わした化合物を用いた
場合は、膜厚方向でBaF2の減少がみられる。これは、Ba
(ppm)2が他の化合物に比べて長時間にわたり安定に気化
し、反応系に連続供給できることを示している。
As is clear from FIG. 2, when Ba (ppm) 2 was used, a glass having a uniform composition in the film thickness direction was obtained, whereas the compounds represented by Chemical formulas 3 and 4 were obtained. When used, BaF 2 decreases in the film thickness direction. This is Ba
It is shown that (ppm) 2 is more stably vaporized over a longer period of time than other compounds and can be continuously supplied to the reaction system.

【0015】Baのβ−ジケトン錯体の気化性および熱分
解に対する安定性は、β−ジケトンに含まれる二つの置
換基によって決定される。置換基の一方を−(CH3)3にし
た場合、もう一方の置換基はフッ素を多く含むほど気化
性は高くなる。これは、イオン半径が大きく、電気陰性
度の高いフッ素を多く含むことによって、分子間の相互
作用を低下させることができるためである。しかし、一
方で、フッ素の含有量が多くなると、この置換基の高い
電子吸引性のため、金属との結合に関与する電子密度の
低下が生じ、加熱により金属とβ−ジケトンの結合解離
による分解が生じる。このため−(CH3)3を一つの置換基
とした場合、もう一方の置換基が−CF3であると十分な
蒸気圧が得られず、また−C3F7である場合には熱分解が
生じ易くなる。ここで、−C2F5を用いた場合は、熱分解
に対しても安定で蒸気圧の高いBaのβ−ジケトン錯体が
得られる。
The vaporizability and thermal decomposition stability of the β-diketone complex of Ba are determined by the two substituents contained in the β-diketone. One of the substituents - If you (CH 3) 3, the higher volatile as other substituents rich in fluorine. This is because the interaction between molecules can be reduced by containing a large amount of fluorine having a large ionic radius and a high electronegativity. However, on the other hand, when the content of fluorine is high, the electron density of this substituent is high, so that the electron density involved in the bond with the metal is lowered, and the decomposition by the bond dissociation of the metal and β-diketone is caused by heating. Occurs. Therefore - (CH 3) 3 when the one of the substituents, if other substituents are not sufficient vapor pressure to obtain the is -CF 3, also is -C 3 F 7 heat Decomposition is likely to occur. Here, when -C 2 F 5 is used, a β-diketone complex of Ba which is stable even against thermal decomposition and has a high vapor pressure can be obtained.

【0016】実施例2 実施例1の装置に図1に示したように、8a, 8bと同様の
蒸発器を新たに3個、すなわち蒸発器8c, 8d, 8eを設置
した以外は、実施例1と同じ装置を用いてフッ化物ガラ
スを作製した。新たに設置した蒸発器には、La(ppm)3
Al(fod)3(fod:C3F7-COCH2CO-C(CH3)3 およびNa(ppm) を
充填し、それぞれ180 ℃, 90℃, 150 ℃に加熱してArを
キャリアガスとして反応系に導入した以外は、実施例1
と同様の条件でフッ化物ガラスを合成した。
Example 2 Example 2 is the same as Example 1 except that as shown in FIG. 1, three new evaporators similar to 8a and 8b, that is, evaporators 8c, 8d and 8e are installed. Fluoride glass was produced using the same apparatus as in 1. In the newly installed evaporator, La (ppm) 3 ,
Al (fod) 3 (fod: C 3 F 7 -COCH 2 CO-C (CH 3 ) 3 and Na (ppm) are filled and heated to 180 ℃, 90 ℃ and 150 ℃ respectively, and Ar is used as carrier gas. Example 1 except that it was introduced into the reaction system
Fluoride glass was synthesized under the same conditions as above.

【0017】合成時間は2時間でCaF2基板上に約5.5 mm
のガラスが堆積した。得られたフッ化物ガラスの組成は
53ZrF4-20BaF2-4LaF3-3AlF3-20NaF であった。このガラ
スについてXMA を用いてBaの膜厚方向の分布を測定した
結果、変動は0.1 原子%以下であり、Ba源が安定に供給
されていることがわかった。
The synthesis time is 2 hours and is about 5.5 mm on the CaF 2 substrate.
Of glass deposited. The composition of the obtained fluoride glass is
It was 53ZrF 4 -20BaF 2 -4LaF 3 -3AlF 3 -20NaF. As a result of measuring the Ba distribution in the film thickness direction using XMA for this glass, the variation was 0.1 atomic% or less, and it was found that the Ba source was stably supplied.

【0018】[0018]

【発明の効果】以上説明したように、本発明のフッ化物
ガラスの製造方法は、従来は不可能であったフッ化物ガ
ラスの気相合成の際のBa源の安定供給を可能にし、従来
のBa源を用いた製造方法に比べて組成の均一なフッ化物
ガラスを製造することができる。
Industrial Applicability As described above, the method for producing a fluoride glass of the present invention enables stable supply of a Ba source during vapor phase synthesis of a fluoride glass, which has been impossible in the past. Fluoride glass having a uniform composition can be manufactured as compared with the manufacturing method using a Ba source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で使用したフッ化物ガラスの
製造装置を概念的に示した説明図である。
FIG. 1 is an explanatory view conceptually showing an apparatus for producing a fluoride glass used in Example 1 of the present invention.

【図2】本発明の実施例1で作製したガラスの膜厚方向
の組成分析結果、および化3で表わした化合物を用いた
場合と化4で表わした化合物を用いた場合の膜厚方向の
組成分析結果を示す図である。
FIG. 2 is a composition analysis result in the film thickness direction of the glass produced in Example 1 of the present invention, and shows the results in the film thickness direction when the compound represented by Chemical formula 3 is used and when the compound represented by Chemical formula 4 is used. It is a figure which shows a composition analysis result.

【符号の説明】[Explanation of symbols]

1 チャンバ 1a 原料導入口 1b 含フッ素ガス導入口 2 ヒータ 3 CaF2基板 4 含フッ素ガス供給管 5,6 供給管保温用ヒータ 7 原料供給管 8 蒸発器 9 原料加熱用ヒータ 10 原料β−ジケトン錯体1 Chamber 1a Raw Material Inlet 1b Fluorine Containing Gas Inlet 2 Heater 3 CaF 2 Substrate 4 Fluorine Containing Gas Supply Pipe 5, 6 Supply Pipe Heat Keeping Heater 7 Raw Material Supply Pipe 8 Evaporator 9 Raw Material Heating Heater 10 Raw Material β-diketone Complex

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/00 356 A 7036−2K // H01S 3/08 (72)発明者 菅原 駿吾 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location G02B 6/00 356 A 7036-2K // H01S 3/08 (72) Inventor Sugo Sugawa Tokyo Metropolitan Government 1-16 Uchisaiwaicho, Chiyoda-ku Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Baとβ−ジケトンからなる錯体を第1の
出発原料とし、金属元素のガス状および/または蒸発可
能な化合物を第2の出発原料とし、これらの第1の出発
原料と、第2の出発原料と、フッ素化剤として使用され
る含むフッ素ガスとを混合して、基体を設けた反応系に
導入し、これらの成分を気相または前記基体上で反応さ
せて、前記基体上にフッ化物ガラスを生成する方法にお
いて、前記Baとβ−ジケトンからなる錯体が下記構造式 【化1】 で表わされる化合物であることを特徴とするフッ化物ガ
ラスの製造方法。
1. A complex consisting of Ba and β-diketone is used as a first starting material, a gaseous and / or evaporable compound of a metal element is used as a second starting material, and these first starting material and The second starting material and a fluorine gas used as a fluorinating agent are mixed and introduced into a reaction system provided with a substrate, and these components are reacted in a gas phase or on the substrate to give the substrate. In the above method for producing a fluoride glass, the complex consisting of Ba and β-diketone is represented by the following structural formula: A method for producing a fluoride glass, which is a compound represented by:
JP22371491A 1991-08-09 1991-08-09 Production of fluoride glass Pending JPH0543256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22371491A JPH0543256A (en) 1991-08-09 1991-08-09 Production of fluoride glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22371491A JPH0543256A (en) 1991-08-09 1991-08-09 Production of fluoride glass

Publications (1)

Publication Number Publication Date
JPH0543256A true JPH0543256A (en) 1993-02-23

Family

ID=16802522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22371491A Pending JPH0543256A (en) 1991-08-09 1991-08-09 Production of fluoride glass

Country Status (1)

Country Link
JP (1) JPH0543256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814062A1 (en) * 1996-06-21 1997-12-29 Yamamura Glass Co. Ltd. Process for producing a thin film of a metal fluoride on a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814062A1 (en) * 1996-06-21 1997-12-29 Yamamura Glass Co. Ltd. Process for producing a thin film of a metal fluoride on a substrate
US5891531A (en) * 1996-06-21 1999-04-06 Yamamura Glass Co., Ltd. Process for producing a thin film of a flouride

Similar Documents

Publication Publication Date Title
US5071460A (en) Process for the preparation of fluoride glass and process for the preparation of optical fiber preform using the fluoride glass
US4718929A (en) Vapor phase method for making metal halide glasses
JPH0234896B2 (en)
US5891531A (en) Process for producing a thin film of a flouride
JPS61247626A (en) Manufacture of sodium-containing glass or ceramic product
JPH0543256A (en) Production of fluoride glass
US4882206A (en) Chemical vapor deposition of group IIIB metals
JPS5854102B2 (en) Doped silica glass
US5069701A (en) Preparation of fluoride glass by chemical vapor deposition
US5145508A (en) Method of making fluoride glass using barium β-diketones
JP2979840B2 (en) Method for producing material for fluoride glass fiber
US4661413A (en) Composite materials associating an amorphous barium fluoride coating with a substrate and preparation processes of these materials
JP3159267B2 (en) Manufacturing method of fluoride glass
US5277889A (en) Method for depositing pure metal halide compositions
JP3205371B2 (en) Manufacturing method of fluoride thin film
JP2979839B2 (en) CVD raw material for fluoride glass
US6994800B1 (en) Liquid precursors for formation of materials containing alkali metals
JPH0692676A (en) Amorphous fluoride containing rare earth ion and its production
SU1204588A1 (en) Charge for producing fluorinated glass
EP0502569B1 (en) Method of manufacturing a heavy metal fluoride glass composition
Takahashi et al. Preparation and characterization of amorphous GaF3 and GaF3–BaF2 thin films by ECR microwave plasma-enhanced CVD
JPH04305025A (en) Production of fluoride glass
JPH0692668A (en) Production of fluoride optical fiber preform
JPH0524875A (en) Production of preform for fluoride optical fiber and production device therefor
JPS6140835A (en) Method and apparatus for manufacturing optical fiber