JPH04305025A - Production of fluoride glass - Google Patents

Production of fluoride glass

Info

Publication number
JPH04305025A
JPH04305025A JP3068538A JP6853891A JPH04305025A JP H04305025 A JPH04305025 A JP H04305025A JP 3068538 A JP3068538 A JP 3068538A JP 6853891 A JP6853891 A JP 6853891A JP H04305025 A JPH04305025 A JP H04305025A
Authority
JP
Japan
Prior art keywords
glass
oxygen
fluoride glass
ppm
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068538A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiura
和夫 藤浦
Yoshitake Nishida
好毅 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3068538A priority Critical patent/JPH04305025A/en
Publication of JPH04305025A publication Critical patent/JPH04305025A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Abstract

PURPOSE:To prevent the contamination of fluoride glass with carbon impurities and to produce the optically highly homogeneous fluoride glass. CONSTITUTION:A metallic complex as the starting material consisting of the metal elements and beta-diketone constituting fluoride glass is heated and vaporized, the formed gas current and a fluorine-contg. gas are introduced into a reaction system provided with a substrate, and the materials are subjected to reaction in the vapor phase or on the substrate in the reaction system to synthesize a fluoride glass. In this case, oxygen is introduced into the reaction system to prevent the fluoride glass from being contaminated with carbon impurities in the vapor-phase synthesis.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光ファイバやレーザーガ
ラス、レンズ等に用いられる光学的に高度に均質なフッ
化物ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing optically highly homogeneous fluoride glass for use in optical fibers, laser glasses, lenses, etc.

【0002】0002

【従来の技術】従来より、フッ化物ガラスは光学的に高
度に均質で、光ファイバやレーザーガラス、レンズ等に
最適であることが知られており、特に、赤外線波長領域
における透過特性が優れていることから、赤外線波長領
域で極低損失の光ファイバを実現できる可能性の高い材
料として注目されている。
[Prior Art] Fluoride glass has been known to be optically highly homogeneous and ideal for optical fibers, laser glasses, lenses, etc., and has particularly excellent transmission characteristics in the infrared wavelength region. Therefore, it is attracting attention as a material with high potential for realizing ultra-low loss optical fibers in the infrared wavelength region.

【0003】そして、このフッ化物ガラスを素材とする
光ファイバは、石英系を凌ぐ10−2dB/km以下の
伝送損失が期待されており、ZrF4 を主成分とする
フッ化物ガラスは、光ファイバ用のガラス素材として最
も有望視されている。
[0003] Optical fibers made of this fluoride glass are expected to have a transmission loss of 10-2 dB/km or less, which exceeds that of quartz. It is considered the most promising glass material.

【0004】従来、このようなフッ化物ガラスを製造す
る場合、固相原料バッチの溶融により作製したガラス融
液を鋳型に流し込み、冷却して、ガラスロッドを作製す
る鋳造法(キャスティング法)が採用されていた。また
、光ファイバ用母材の製造方法としては、ビルドインキ
ャスティング法(特開昭57−191240号公報参照
)、2層融液法(特開昭61−91032号公報参照)
が提案されている。
[0004] Conventionally, when manufacturing such fluoride glasses, a casting method has been adopted in which a glass melt produced by melting a batch of solid phase raw materials is poured into a mold and cooled to produce a glass rod. It had been. In addition, methods for manufacturing optical fiber preforms include the build-in casting method (see Japanese Patent Application Laid-Open No. 57-191240) and the two-layer melt method (see Japanese Patent Application Laid-Open No. 61-91032).
is proposed.

【0005】しかしながら、これらの方法にあっては、
各原料の秤量、粉砕、混合時に鉄、ニッケル、銅、クロ
ム、コバルトなどの遷移金属の不純物の混入や、水分の
吸着が生じるという問題がある。遷移金属不純物は赤外
線波長領域に吸収を有するので、赤外線波長領域の透過
特性の低下の原因となる。水分は原料の吸着不純物とし
て融液に混入し、溶融時に高温のため脱水縮合により酸
化物を形成する。この酸化物が冷却過程で結晶として析
出し散乱体となる。また、更に、ガラス溶融工程で容器
壁が腐食され、不純物が混入するという問題もあった。
However, in these methods,
There are problems in that impurities of transition metals such as iron, nickel, copper, chromium, and cobalt are mixed in and moisture is adsorbed during weighing, pulverization, and mixing of raw materials. Since transition metal impurities have absorption in the infrared wavelength region, they cause a decrease in transmission characteristics in the infrared wavelength region. Moisture is mixed into the melt as an adsorbed impurity of the raw material, and due to the high temperature during melting, oxides are formed by dehydration condensation. This oxide precipitates as crystals during the cooling process and becomes a scatterer. Furthermore, there was also the problem that the container wall was corroded during the glass melting process and impurities were mixed in.

【0006】一方、これら問題を解決するものとして、
フッ化物ガラスを構成しうる金属元素及びβ−ジケトン
からなる金属錯体を出発原料とし、その金属錯体を加熱
気化したガス流及び含フッ素ガスを基体を設けた反応系
へ導入してこれらを反応系における気相または基体上で
反応させることによりフッ化物ガラスを合成する気相反
応法(特開平2−275726)がすでに本出願人から
提案されている。
On the other hand, as a solution to these problems,
A metal complex consisting of a metal element and β-diketone that can constitute a fluoride glass is used as a starting material, and a gas flow obtained by heating and vaporizing the metal complex and a fluorine-containing gas are introduced into a reaction system provided with a substrate, and these are introduced into the reaction system. The present applicant has already proposed a gas phase reaction method (Japanese Unexamined Patent Publication No. 2-275726) in which fluoride glass is synthesized by reaction in the gas phase or on a substrate.

【0007】ところが、この方法では含フッ素ガスの供
給量が少ないと原料の分解で生成する炭素が不純物とし
て混入し、炭素によるガラスの着色が生じるという問題
があった。更に、含フッ素ガスの供給量を増加すると、
この含フッ素ガスに含まれるフッ素以外の元素がガラス
中に混入し損失の要因となる問題があった。
However, this method has a problem in that if the amount of fluorine-containing gas supplied is small, carbon produced by decomposition of the raw material will be mixed in as an impurity, causing coloration of the glass due to carbon. Furthermore, when the supply amount of fluorine-containing gas is increased,
There is a problem in that elements other than fluorine contained in this fluorine-containing gas mix into the glass and cause loss.

【0008】本発明はこのような問題点を解決するもの
であって、光学的に高度に均質なフッ化物ガラスの製造
方法を提供することを目的とするものである。
The present invention is intended to solve these problems, and aims to provide a method for producing optically highly homogeneous fluoride glass.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めの本発明のフッ化物ガラスの製造方法は、フッ化物ガ
ラスを構成しうる金属元素及びβ−ジケトンからなる金
属錯体を出発原料とし、該金属錯体を加熱気化したガス
流及び含フッ素ガスを基体を設けた反応系へ導入し、こ
れらを反応系における気相または基体上で反応させるこ
とによりフッ化物ガラスを合成するフッ化物ガラスの製
造方法において、前記反応系に酸素を導入することを特
徴とするものである。
[Means for Solving the Problems] A method for producing fluoride glass of the present invention to achieve the above-mentioned object uses a metal complex consisting of a metal element and β-diketone that can constitute fluoride glass as a starting material, Production of fluoride glass by introducing a gas stream obtained by heating and vaporizing the metal complex and a fluorine-containing gas into a reaction system provided with a substrate, and reacting them in the gas phase in the reaction system or on the substrate to synthesize fluoride glass. The method is characterized in that oxygen is introduced into the reaction system.

【0010】また、本発明のフッ化物ガラスの製造方法
は、含フッ素ガスが、フッ素または水素、炭素、酸素、
ホウ素、イオウ、窒素、塩素、臭素の少なくともいずれ
か一つとフッ素の化合物ガスであり、フッ素もしくは該
化合物ガスのいずれか一つまたは二つ以上の混合ガスで
あることを特徴とするものである。
[0010] Furthermore, in the method for producing fluoride glass of the present invention, the fluorine-containing gas is fluorine, hydrogen, carbon, oxygen,
It is a compound gas of fluorine and at least one of boron, sulfur, nitrogen, chlorine, and bromine, and is characterized by being a mixed gas of one or more of fluorine or the compound gas.

【0011】[0011]

【作用】金属元素及びβ−ジケトンからなる金属錯体を
加熱気化したガス流及び含フッ素ガスを基体を設けた反
応系へ導入すると共にこの反応系に酸素を導入し、気相
または基体上で反応させることによりフッ化物ガラスを
合成することで、その酸素の添加量制御によって炭素不
純物の混入の抑制が可能となる。
[Operation] A gas stream obtained by heating and vaporizing a metal complex consisting of a metal element and β-diketone and a fluorine-containing gas are introduced into a reaction system provided with a substrate, and oxygen is introduced into the reaction system to react in the gas phase or on the substrate. By synthesizing fluoride glass by doing this, it becomes possible to suppress the incorporation of carbon impurities by controlling the amount of oxygen added.

【0012】0012

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明するが、本発明はこの実施例により何等限定され
るものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these embodiments in any way.

【0013】図1に本発明の一実施例に係るフッ化物ガ
ラスの製造方法を実施するための製造装置を示す。
FIG. 1 shows a manufacturing apparatus for carrying out a method for manufacturing fluoride glass according to an embodiment of the present invention.

【0014】図1に示すように,1はロータリーポンプ
からなる排気系により減圧下に圧力調整される反応系と
してのアルミニウム製のチャンバであり、ロータリーポ
ンプにより1torrの圧力に保持されている。そして
、このチャンバ1全体はヒーター2によって250℃に
保温され、且つ、このチャンバ1内にはCaF2 板で
ある基板(円筒管)3が設置されており、ヒーター2に
より250℃に加熱されている。
As shown in FIG. 1, reference numeral 1 denotes an aluminum chamber as a reaction system whose pressure is regulated under reduced pressure by an exhaust system consisting of a rotary pump, and is maintained at a pressure of 1 torr by the rotary pump. The entire chamber 1 is kept at 250°C by a heater 2, and a substrate (cylindrical tube) 3, which is a CaF2 plate, is installed inside the chamber 1 and heated to 250°C by the heater 2. .

【0015】このチャンバ1には導入口1a,1bが形
成されている。導入口1aには外周部に保温ヒーター6
a〜6eを備えた原料供給管7a〜7eが接続されると
共に、この各原料供給管7a〜7eにはアルミニウム製
の蒸発器8a〜8eが連結され、蒸発器8a〜8eの外
周部には保温ヒーター9a〜9eが取付けられ、また、
この蒸発器8a〜8eの内部には原料有機金属錯体10
が充填されている。一方、導入口1bには供給管4が接
続され、外周部に保温ヒーター5が取付けられている。 そして、本実施例では、導入口1aからは有機金属化合
物のガス流が、導入口1bからは含フッ素ガス及び酸素
が導入されるようになっている。
[0015] This chamber 1 has inlet ports 1a and 1b formed therein. The insulating heater 6 is installed on the outer periphery of the inlet 1a.
Raw material supply pipes 7a to 7e equipped with a to 6e are connected to each raw material supply pipe 7a to 7e, and aluminum evaporators 8a to 8e are connected to the raw material supply pipes 7a to 7e. Heat retention heaters 9a to 9e are installed, and
Inside the evaporators 8a to 8e, a raw material organometallic complex 10 is provided.
is filled. On the other hand, a supply pipe 4 is connected to the inlet 1b, and a heat-retaining heater 5 is attached to the outer periphery. In this embodiment, a gas flow of an organometallic compound is introduced through the inlet 1a, and a fluorine-containing gas and oxygen are introduced through the inlet 1b.

【0016】(実施例1)本実施例では、出発原料とし
てZrとCF3 −CO−CH−CO−CF3 との化
合物およびBaとC2 F5 −CO−CH−CO−C
(CH3 )3 の化合物(以下、それぞれZr(hf
a)4 、Ba(ppm)2 と略記)を使用した。そ
して、チャンバ1の導入口1aからZr(hfa)4 
及びBa(ppm)2 を導入している。
(Example 1) In this example, a compound of Zr and CF3 -CO-CH-CO-CF3 and a compound of Ba and C2 F5 -CO-CH-CO-C were used as starting materials.
(CH3)3 compound (hereinafter referred to as Zr(hf
a) 4 , abbreviated as Ba (ppm) 2 ) was used. Then, Zr(hfa)4 is introduced from the inlet 1a of the chamber 1.
and Ba (ppm)2 are introduced.

【0017】Zr(hfa)4 及びBa(ppm)2
 のガスは、それぞれ60℃,200℃に保温して気化
させたArをキャリアガスとして供給している。即ち、
チャンバ1の導入口1aには供給管7を介してZr(h
fa)4 およびBa(ppm)2 が充填された蒸発
器8が連結されており、この蒸発器8を加熱しつつ、Z
r(hfa)4 ,Ba(ppm)2 内にArを導入
することによりチャンバ1内に供給している。なお、上
述したZr(hfa)4 及びBa(ppm)2はAr
キャリアガスの流量によりそれぞれ調整することができ
る。なお、供給管7はガスの凝縮を抑えるために保温ヒ
ーター6により240℃に保温されている。
Zr(hfa)4 and Ba(ppm)2
Ar gases are supplied as carrier gases, which are vaporized by keeping the temperature at 60° C. and 200° C., respectively. That is,
Zr(h
An evaporator 8 filled with fa)4 and Ba(ppm)2 is connected, and while heating this evaporator 8, Z
Ar is supplied into the chamber 1 by introducing Ar into r(hfa)4 and Ba(ppm)2. Note that the above-mentioned Zr(hfa)4 and Ba(ppm)2 are Ar
Each can be adjusted by adjusting the flow rate of the carrier gas. Note that the supply pipe 7 is kept at a temperature of 240° C. by a heat insulating heater 6 in order to suppress condensation of the gas.

【0018】このようにチャンバ1に導入されたZr(
hfa)4 とBa(ppm)2 は気相または円筒管
3内でNF3 と反応してフッ化物を形成し、ここにガ
ラスとして堆積する。
Zr(
hfa)4 and Ba(ppm)2 react with NF3 in the gas phase or in the cylindrical tube 3 to form fluoride, which is deposited there as glass.

【0019】上記反応で円筒管3内に生成したZrF4
 及びBaF2 は円筒管3の温度がガラス転移温度よ
り低いためここでの移動度が小さく、そのまま円筒管3
内に凍結される。従って、急冷した場合と同様に非平衡
状態を実現できる。そして、順次堆積させることにより
ガラス膜またはパルクガラスの作製が可能となる。この
際に、金属元素とβ−ジケトンからなる金属錯体に含ま
れる有機分が熱により分解し、ガラス中に炭素が不純物
として混入する。ここで、供給管4を介して導入口1b
から反応系に酸素を導入することにより、炭素を酸化し
CO2 として系外に除去することができる。更に、反
応系の温度が900℃以下であれば下記の反応は熱力学
的に生成系が安定であり、各温度における平衡分圧を越
えない限りガラス中に酸素の混入は生じない。このため
、気相における酸素の分圧により炭素を除去しつつ、酸
素の添加量を制限したフッ化物ガラスの作製が可能であ
る。 ZrO2 (s)+2F2 (g)→ZrF4 (s)
+O2 (g)
ZrF4 produced in the cylindrical tube 3 by the above reaction
Since the temperature of the cylindrical tube 3 is lower than the glass transition temperature, the mobility of BaF2 is small here, and the temperature of the cylindrical tube 3 is lower than the glass transition temperature.
frozen inside. Therefore, a non-equilibrium state can be realized in the same way as in the case of rapid cooling. By sequentially depositing them, it becomes possible to produce a glass film or bulk glass. At this time, organic components contained in the metal complex consisting of the metal element and β-diketone are decomposed by heat, and carbon is mixed into the glass as an impurity. Here, through the supply pipe 4, the inlet 1b
By introducing oxygen into the reaction system, carbon can be oxidized and removed from the system as CO2. Furthermore, if the temperature of the reaction system is 900° C. or lower, the reaction system described below is thermodynamically stable, and no oxygen is mixed into the glass unless the equilibrium partial pressure at each temperature is exceeded. Therefore, it is possible to produce a fluoride glass in which carbon is removed by the partial pressure of oxygen in the gas phase while limiting the amount of oxygen added. ZrO2 (s) + 2F2 (g) → ZrF4 (s)
+O2 (g)

【0020】本実施例では、Zr(hfa)4 :2s
ccm, Ba(ppm)2 :1sccm, NF3
 :10〜100sccm,O2 :1〜200scc
mの条件で2時間反応を行った結果、65ZrF4 −
35BaF2 の組成を有する厚さ5mmのガラス膜を
作製することができた。
In this example, Zr(hfa)4:2s
ccm, Ba(ppm)2:1sccm, NF3
:10~100sccm, O2 :1~200sccm
As a result of reaction for 2 hours under the conditions of m, 65ZrF4 −
A glass film with a thickness of 5 mm having a composition of 35BaF2 could be produced.

【0021】このようにして作製したガラスについて、
2次イオン質量分析(SIMS)によるガラス中の酸素
、炭素の分析を行った。図2にNF3 を50sccm
として酸素を0〜100sccmまで変化させた時のガ
ラス中の酸素及び炭素の分析結果を示す。図2から明ら
かなように、NF3単独では生成したガラス中に約10
0ppmの炭素が不純物として混入するが、酸素の添加
により炭素が減少し、酸素10sccm以上では1pp
m以下となった。また、酸素を50sccmに固定した
場合は、NF3 :50sccm以上で炭素、酸素1p
pm以下のガラスが得られた。このように、NF3 単
独では、ガラスへの炭素の混入を抑制できないが、酸素
を導入することにより炭素を除去できた。酸素の導入量
は少量でも炭素の除去に効果があり、多量に添加しても
急激にガラスへの酸素の混入量が増加することはないが
、酸素・炭素共に1ppm以下にするには[O2 ]/
[NF3 ](モル比)=0.01〜0.5、1000
ppmまでガラスへの酸素混入量を制御するには[O2
 ]/[NF3 ](モル比)=0.5〜5が望ましい
Regarding the glass thus produced,
Oxygen and carbon in the glass were analyzed by secondary ion mass spectrometry (SIMS). Figure 2 shows NF3 at 50 sccm.
The analysis results of oxygen and carbon in glass are shown when the oxygen concentration is changed from 0 to 100 sccm. As is clear from FIG. 2, when NF3 alone is used, about 10
0 ppm of carbon is mixed as an impurity, but carbon is reduced by adding oxygen, and when oxygen is 10 sccm or more, 1 ppm of carbon is mixed in as an impurity.
m or less. In addition, when oxygen is fixed at 50 sccm, carbon and oxygen 1 p at NF3: 50 sccm or more.
A glass having a particle diameter of 100 pm or less was obtained. As described above, NF3 alone could not suppress the incorporation of carbon into the glass, but carbon could be removed by introducing oxygen. Even a small amount of oxygen introduced is effective in removing carbon, and even if a large amount is added, the amount of oxygen mixed into the glass will not suddenly increase, but in order to reduce both oxygen and carbon to 1 ppm or less, [O2 ]/
[NF3] (molar ratio) = 0.01 to 0.5, 1000
To control the amount of oxygen mixed into glass down to ppm [O2
]/[NF3] (molar ratio)=0.5 to 5 is desirable.

【0022】以上のように、含フッ素ガスに酸素を混入
することにより、ガラスへの炭素の混入を抑制しつつ、
ガラス中の酸素濃度を制御することができる。
As described above, by mixing oxygen into the fluorine-containing gas, while suppressing the mixing of carbon into the glass,
The oxygen concentration in the glass can be controlled.

【0023】(実施例2)本実施例では、反応系に導波
管を用いて2.45GHz のマイクロ波を供給し、プ
ラズマを発生させ反応の励起源とし、Zr(hfa)4
 ,Ba(ppm)2 に加えて、Al(hfa)3 
,Na(ppm),La(ppm)3 を充填した容器
を接続し、含フッ素ガスとしてCF4 を用いた以外は
実施例1と同様の方法でガラスを合成した。合成条件は
、Zr(hfa)4 :2sccm, Ba(ppm)
2 :1sccm, La(ppm)3 :0.1sc
cm,Al(hfa)3 :0.1sccm,Na(p
pm):1sccm,CF4 :10〜100sccm
,O2 :1〜200sccm,マイクロ波出力:50
W,圧力1torrで合成を行い、3時間で2mm厚の
ガラス膜を得た。
(Example 2) In this example, a waveguide was used in the reaction system to supply microwaves of 2.45 GHz to generate plasma as an excitation source for the reaction.
, Ba(ppm)2 plus Al(hfa)3
Glass was synthesized in the same manner as in Example 1, except that a container filled with , Na (ppm), and La (ppm) 3 was connected and CF 4 was used as the fluorine-containing gas. Synthesis conditions are Zr(hfa)4:2sccm, Ba(ppm)
2: 1sccm, La (ppm) 3: 0.1sc
cm, Al(hfa)3:0.1sccm, Na(p
pm): 1sccm, CF4: 10-100sccm
, O2: 1~200sccm, Microwave output: 50
Synthesis was carried out using W and a pressure of 1 torr, and a glass film with a thickness of 2 mm was obtained in 3 hours.

【0024】図3に得られたガラスのSIMS分析結果
を示す。図3から明らかなように、CF4 単独では原
料の分解、CF4 の分解による炭素が1000ppm
以上混入するが、酸素の導入により炭素の混入を抑制す
ることが可能であり、酸素の導入量を増加させることに
よりガラス中への酸素の混入量を制御することが可能で
ある。酸素、炭素共に1ppm以下にするためには、[
O2 ]/[CF4 ](モル比)=0.05〜1が望
ましく、1000ppmまで酸素の混入量を制御するた
めには、[O2 ]/[CF4 ](モル比)=1〜5
が望ましい。なお、CF4のかわりにC2 F6 、C
3 F8 、CHF3 を用いても同様の効果を得るこ
とができる。
FIG. 3 shows the results of SIMS analysis of the obtained glass. As is clear from Figure 3, when using CF4 alone, the amount of carbon due to the decomposition of the raw material and the decomposition of CF4 is 1000 ppm.
However, by introducing oxygen, it is possible to suppress the mixing of carbon, and by increasing the amount of oxygen introduced, it is possible to control the amount of oxygen mixed into the glass. In order to reduce both oxygen and carbon to 1 ppm or less, [
It is desirable that [O2]/[CF4] (molar ratio) = 0.05 to 1, and in order to control the amount of oxygen mixed up to 1000 ppm, [O2]/[CF4] (molar ratio) = 1 to 5.
is desirable. In addition, instead of CF4, C2 F6 , C
Similar effects can be obtained using 3F8 and CHF3.

【0025】(実施例3)本実施例では、CF4 の代
わりにSF6 を用いた以外は、前述した実施例2と同
様の装置を用いてフッ化物ガラスを合成した。この条件
で3時間合成を行い、2.5mm厚のガラス膜を得た。 図4に得られたガラスのSIMS分析結果を示す。図4
から明らかなように、SF6 単独では原料の分解、S
F6 の分解による炭素、硫黄の混入が生じるが、酸素
の添加により抑制できることが分かる。また、炭素、酸
素、硫黄がすべて1ppm以下となるためには[O2 
]/[SF6 ](モル比)=0.05〜1が望ましく
、1000ppmまでの酸素の混入を制御するには[O
2 ]/[SF6 ](モル比)=1〜8が望ましい。
(Example 3) In this example, fluoride glass was synthesized using the same apparatus as in Example 2 described above, except that SF6 was used instead of CF4. Synthesis was carried out under these conditions for 3 hours to obtain a glass film with a thickness of 2.5 mm. FIG. 4 shows the SIMS analysis results of the obtained glass. Figure 4
As is clear from the above, SF6 alone causes decomposition of the raw material and S
It can be seen that although carbon and sulfur are mixed in due to the decomposition of F6, this can be suppressed by adding oxygen. In addition, in order for carbon, oxygen, and sulfur to all be 1 ppm or less, [O2
]/[SF6] (molar ratio) = 0.05 to 1 is desirable, and to control the mixing of oxygen up to 1000 ppm, [O
2]/[SF6] (molar ratio) = 1 to 8 is desirable.

【0026】(実施例4)本実施例では、CF4 の代
わりにNF3 を用いた以外は、前述した実施例2と同
様の装置を用いてフッ化物ガラスを合成した。この条件
で3時間合成を行い、3mm厚のガラス膜を得た。図5
に得られたガラスのSIMS分析結果を示す。図5から
明らかなように、NF3 単独では原料の分解、NF3
 の分解による炭素の混入が生じるが、酸素の添加によ
り抑制できることが分かる。また、炭素、酸素がすべて
1ppm以下となるためには[O2 ]/[NF3 ]
(モル比)=0.01〜3が望ましく、1000ppm
までの酸素の混入を制御するには[O2 ]/[NF3
 ](モル比)=3〜5が望ましい。
(Example 4) In this example, fluoride glass was synthesized using the same apparatus as in Example 2 described above, except that NF3 was used instead of CF4. Synthesis was carried out under these conditions for 3 hours to obtain a 3 mm thick glass film. Figure 5
The results of SIMS analysis of the glass obtained are shown below. As is clear from Fig. 5, NF3 alone causes decomposition of the raw material, NF3
It can be seen that although carbon contamination occurs due to the decomposition of carbon, it can be suppressed by adding oxygen. Also, in order for carbon and oxygen to all be 1 ppm or less, [O2]/[NF3]
(Mole ratio) = 0.01 to 3 is desirable, and 1000 ppm
To control the mixing of oxygen up to [O2 ]/[NF3
] (Molar ratio)=3 to 5 is desirable.

【0027】(実施例5)本実施例では、マイクロ波プ
ラズマの代わりに低圧水銀ランプを用いた以外は、前述
した実施例4と同様の装置を用いてフッ化物ガラスを合
成した。この条件で3時間合成を行い、0.5mm厚の
ガラス膜を得た。図6に得られたガラスのSIMS分析
結果を示す。図6から明らかなように、NF3 単独で
は原料の分解、NF3 の分解による炭素の混入が生じ
るが、酸素の添加により抑制できることが分かる。また
、炭素、酸素がすべて1ppm以下となるためには[O
2 ]/[NF3 ](モル比)=0.01〜5が望ま
しく、1000ppmまでの酸素の混入を制御するには
[O2 ]/[NF3 ](モル比)=5〜10が望ま
しい。
(Example 5) In this example, fluoride glass was synthesized using the same apparatus as in Example 4 described above, except that a low-pressure mercury lamp was used instead of the microwave plasma. Synthesis was carried out under these conditions for 3 hours to obtain a glass film with a thickness of 0.5 mm. FIG. 6 shows the SIMS analysis results of the obtained glass. As is clear from FIG. 6, when NF3 is used alone, the decomposition of the raw material and the contamination of carbon due to the decomposition of NF3 occur, but this can be suppressed by adding oxygen. In addition, in order for carbon and oxygen to all be 1 ppm or less, [O
2]/[NF3] (molar ratio) = 0.01 to 5 is desirable, and [O2]/[NF3] (molar ratio) = 5 to 10 is desirable to control the mixing of oxygen up to 1000 ppm.

【0028】(実施例6)本実施例では、含フッ素ガス
としてBF3 を用いた以外は前述した実施例2と同様
の装置でガラスを合成した。合成条件は、Zr(hfa
)4 :2sccm, Ba(ppm)2 :1scc
m, La(ppm)3 :0.1sccm,Al(h
fa)3 :0.1sccm,Na(ppm):1sc
cm,CF4 :10〜100sccm,O2 :1〜
200sccm,マイクロ波出力:50W,圧力1to
rrで合成を行い、3時間で2.5mm厚のガラス膜を
得た。図7に得られたガラスのSIMS分析結果を示す
。図7から明らかなように、BF3 単独では原料の分
解による炭素、BF3 の分解によるホウ素が20pp
m程度混入するが、酸素の導入により炭素、ホウ素の混
入を抑制することが可能であり、酸素の導入量を増加さ
せることによりガラス中への酸素の混入量を制御するこ
とが可能である。酸素、炭素共に1ppm以下にするた
めには、[O2 ]/[BF3 ](モル比)=0.0
1〜2が望ましく、1000ppmまで酸素の混入量を
制御するためには、[O2 ]/[BF3 ](モル比
)=2〜5が望ましい。
(Example 6) In this example, glass was synthesized using the same apparatus as in Example 2 described above, except that BF3 was used as the fluorine-containing gas. The synthesis conditions were Zr(hfa
)4:2sccm, Ba(ppm)2:1scc
m, La (ppm)3: 0.1 sccm, Al (h
fa)3: 0.1sccm, Na (ppm): 1sc
cm, CF4: 10~100sccm, O2: 1~
200sccm, microwave output: 50W, pressure 1to
Synthesis was carried out using rr, and a glass film with a thickness of 2.5 mm was obtained in 3 hours. FIG. 7 shows the SIMS analysis results of the obtained glass. As is clear from Figure 7, when using BF3 alone, carbon due to decomposition of the raw material and boron due to decomposition of BF3 are 20pp.
However, by introducing oxygen, it is possible to suppress the mixing of carbon and boron, and by increasing the amount of oxygen introduced, it is possible to control the amount of oxygen mixed into the glass. In order to reduce both oxygen and carbon to 1 ppm or less, [O2]/[BF3] (molar ratio) = 0.0
The ratio is preferably 1 to 2, and in order to control the amount of oxygen mixed up to 1000 ppm, [O2]/[BF3] (molar ratio) is preferably 2 to 5.

【0029】(実施例7)本実施例では、CF4 の代
わりにHFを用いた以外は、前述した実施例1と同様の
装置を用いてフッ化物ガラスを合成した。この条件で3
時間合成を行い、3mm厚のガラス膜を得た。図8に得
られたガラスのSIMS分析結果を示す。図8から明ら
かなように、SF6単独では原料の分解による炭素の混
入が生じるが、酸素の添加により抑制できることが分か
る。 また、炭素が1ppm以下となるためには[O2 ]/
[HF](モル比)=0.05〜0.5が望ましく、1
000ppmまでの酸素の混入を制御するには[O2 
]/[HF](モル比)=3〜8が望ましい。
(Example 7) In this example, fluoride glass was synthesized using the same apparatus as in Example 1 described above, except that HF was used instead of CF4. Under this condition 3
Time synthesis was performed to obtain a glass film with a thickness of 3 mm. FIG. 8 shows the SIMS analysis results of the obtained glass. As is clear from FIG. 8, when SF6 is used alone, carbon contamination occurs due to decomposition of the raw material, but it can be suppressed by adding oxygen. Also, in order for carbon to be 1 ppm or less, [O2]/
[HF] (molar ratio) = 0.05 to 0.5 is desirable, and 1
To control oxygen contamination up to 000 ppm [O2
]/[HF] (molar ratio)=3 to 8 is desirable.

【0030】(実施例8)本実施例では、CF4 の代
わりにClF3 を用いた以外は、前述した実施例2と
同様の装置を用いてフッ化物ガラスを合成した。この条
件で3時間合成を行い、3mm厚のガラス膜を得た。図
9に得られたガラスのSIMS分析結果を示す。図9か
ら明らかなように、ClF3 単独では原料の分解によ
る炭素の混入が生じるが、酸素の添加により抑制できる
。また、炭素がすべて1ppm以下となるためには[O
2 ]/[ClF3 ](モル比)=0.01〜1が望
ましく、1000ppmまでの酸素の混入を制御するに
は[O2 ]/[ClF3 ](モル比)=5〜10が
望ましい。ClF3 のかわりにBrF3 を用いても
同様の効果が得られた。
(Example 8) In this example, fluoride glass was synthesized using the same apparatus as in Example 2 described above, except that ClF3 was used instead of CF4. Synthesis was carried out under these conditions for 3 hours to obtain a 3 mm thick glass film. FIG. 9 shows the SIMS analysis results of the obtained glass. As is clear from FIG. 9, when using ClF3 alone, carbon contamination occurs due to decomposition of the raw material, but this can be suppressed by adding oxygen. In addition, in order for all carbon to be below 1 ppm, [O
2]/[ClF3] (molar ratio) = 0.01 to 1 is desirable, and [O2]/[ClF3] (molar ratio) = 5 to 10 is desirable to control the mixing of oxygen up to 1000 ppm. Similar effects were obtained when BrF3 was used instead of ClF3.

【0031】(実施例9)本実施例では、CF4 の代
わりにOF2 を用いた以外は、前述した実施例2と同
様の装置を用いてフッ化物ガラスを合成した。この条件
で3時間合成を行い、1.5mm厚のガラス膜を得た。 図10に得られたガラスのSIMS分析結果を示す。図
10から明らかなように、OF2 単独では原料の分解
による炭素の混入が生じるが、酸素の添加により抑制で
きることが分かる。また、炭素、酸素がすべて1ppm
以下となるためには[O2 ]/[OF2 ](モル比
)=0.02〜0.1が望ましく、1000ppmまで
の酸素の混入を制御するには[O2 ]/[OF2 ]
(モル比)=0.5〜1が望ましい。
(Example 9) In this example, fluoride glass was synthesized using the same apparatus as in Example 2 described above, except that OF2 was used instead of CF4. Synthesis was carried out under these conditions for 3 hours to obtain a glass film with a thickness of 1.5 mm. FIG. 10 shows the SIMS analysis results of the obtained glass. As is clear from FIG. 10, when OF2 is used alone, carbon contamination occurs due to decomposition of the raw material, but it can be suppressed by adding oxygen. Also, carbon and oxygen are all 1 ppm.
In order to achieve the following, it is desirable that [O2]/[OF2] (molar ratio) = 0.02 to 0.1, and to control the mixing of oxygen up to 1000 ppm, [O2]/[OF2]
(Molar ratio)=0.5-1 is desirable.

【0032】(実施例10)本実施例では、CF4 の
代わりにF2 を用いた以外は、前述した実施例2と同
様の装置を用いてフッ化物ガラスを合成した。この条件
で3時間合成を行い、3.5mm厚のガラス膜を得た。 図11に得られたガラスのSIMS分析結果を示す。図
10から明らかなように、F2 単独でも原料の分解に
よる炭素の混入は生じず、炭素の混入量は0.1ppm
以下である。酸素を添加することによりガラスへの酸素
の添加が可能であり、1000ppmまでの酸素の混入
を制御するには[O2 ]/[F2 ](モル比)=2
.5〜5が望ましい。
(Example 10) In this example, fluoride glass was synthesized using the same apparatus as in Example 2 described above, except that F2 was used instead of CF4. Synthesis was carried out under these conditions for 3 hours to obtain a glass film with a thickness of 3.5 mm. FIG. 11 shows the SIMS analysis results of the obtained glass. As is clear from Figure 10, even when F2 is used alone, no carbon is mixed in due to the decomposition of the raw material, and the amount of carbon mixed is 0.1 ppm.
It is as follows. Oxygen can be added to glass by adding oxygen, and to control oxygen contamination up to 1000 ppm, [O2]/[F2] (molar ratio) = 2
.. 5-5 is desirable.

【0033】[0033]

【発明の効果】以上、実施例を挙げて詳細に説明したよ
うに、本発明のフッ化物ガラスの製造方法によれば、フ
ッ化物ガラスを構成しうる金属元素及びβ−ジケトンか
らなる金属錯体を出発原料として加熱気化したガス流及
び含フッ素ガスを基体を設けた反応系へ導入し、これら
を反応系における気相または基体上で反応させることに
よりフッ化物ガラスを合成する過程において、反応系に
酸素を導入するようにしたので、従来は困難であったフ
ッ化物ガラスの気相合成における炭素不純物の混入の抑
制及びガラス中への酸素添加量の制御が可能となり、こ
れによって光学的に高度に均質なフッ化物ガラスを合成
することができる。その結果、これらのガラスを用いて
光ファイバを作製すれば、従来得られなかった超低損失
光ファイバを作製することができる。
Effects of the Invention As described above in detail with reference to Examples, according to the method for producing fluoride glass of the present invention, a metal complex consisting of a metal element and β-diketone that can constitute a fluoride glass can be produced. In the process of synthesizing fluoride glass by introducing a heated and vaporized gas stream and a fluorine-containing gas as starting materials into a reaction system equipped with a substrate and reacting them in the gas phase of the reaction system or on the substrate, By introducing oxygen, it is now possible to suppress the incorporation of carbon impurities during the gas phase synthesis of fluoride glasses, which was difficult in the past, and to control the amount of oxygen added into the glass. Homogeneous fluoride glasses can be synthesized. As a result, by producing optical fibers using these glasses, it is possible to produce ultra-low loss optical fibers that have not been previously available.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係るフッ化物ガラスの製造
方法を実施するための製造装置の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus for carrying out a method for manufacturing fluoride glass according to an embodiment of the present invention.

【図2】実施例1で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 2 is a graph showing the SIMS analysis results of the glass produced in Example 1.

【図3】実施例2で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 3 is a graph showing the SIMS analysis results of the glass produced in Example 2.

【図4】実施例3で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 4 is a graph showing the SIMS analysis results of the glass produced in Example 3.

【図5】実施例4で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 5 is a graph showing the SIMS analysis results of the glass produced in Example 4.

【図6】実施例5で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 6 is a graph showing the SIMS analysis results of the glass produced in Example 5.

【図7】実施例6で作製したガラスのSIMS分析結果
を表すグラフである。
FIG. 7 is a graph showing the SIMS analysis results of the glass produced in Example 6.

【図8】実施例7で作製したガラスのSIMS分析結果
を表すグラフである。
8 is a graph showing the SIMS analysis results of the glass produced in Example 7. FIG.

【図9】実施例8で作製したガラスのSIMS分析結果
を表すグラフである。
9 is a graph showing the SIMS analysis results of the glass produced in Example 8. FIG.

【図10】実施例9で作製したガラスのSIMS分析結
果を表すグラフである。
10 is a graph showing the SIMS analysis results of the glass produced in Example 9. FIG.

【図11】実施例10で作製したガラスのSIMS分析
結果を表すグラフである。
FIG. 11 is a graph showing the SIMS analysis results of the glass produced in Example 10.

【符号の説明】[Explanation of symbols]

1  チャンバ 1a  原料導入口 1b  含フッ素ガス及び酸素の導入口2  保温ヒー
ター 3  基板(円筒管) 4  含フッ素ガス及び酸素の供給管 5,6  原料供給管保温ヒーター 7  原料供給管 8a  Zr(hfa)4 の充填された蒸発器8b 
 Ba(ppm)2 の充填された蒸発器8c  La
(ppm)3 の充填された蒸発器8d  Al(hf
a)3 の充填された蒸発器8e  Na(ppm)の
充填された蒸発器9  原料加熱用ヒーター 10  原料有機金属錯体
1 Chamber 1a Raw material inlet 1b Fluorine-containing gas and oxygen inlet 2 Heat retention heater 3 Substrate (cylindrical tube) 4 Fluorine-containing gas and oxygen supply pipes 5, 6 Raw material supply pipe heat retention heater 7 Raw material supply pipe 8a Zr (hfa) 4 filled evaporator 8b
Evaporator 8c La filled with Ba (ppm)2
(ppm) 3 evaporator 8d Al (hf
a) Evaporator 8e filled with 3 evaporator 9 filled with Na (ppm) Raw material heating heater 10 Raw material organometallic complex

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  フッ化物ガラスを構成しうる金属元素
及びβ−ジケトンからなる金属錯体を出発原料とし、該
金属錯体を加熱気化したガス流及び含フッ素ガスを基体
を設けた反応系へ導入し、これらを反応系における気相
または基体上で反応させることによりフッ化物ガラスを
合成するフッ化物ガラスの製造方法において、前記反応
系に酸素を導入することを特徴とするフッ化物ガラスの
製造方法。
Claim 1: A metal complex consisting of a metal element capable of constituting a fluoride glass and a β-diketone is used as a starting material, and a gas stream obtained by heating and vaporizing the metal complex and a fluorine-containing gas are introduced into a reaction system provided with a substrate. , a method for producing fluoride glass in which fluoride glass is synthesized by reacting these in a gas phase or on a substrate in a reaction system, the method comprising introducing oxygen into the reaction system.
【請求項2】  請求項1記載のフッ化物ガラスの製造
方法において、含フッ素ガスが、フッ素または水素、炭
素、酸素、ホウ素、イオウ、窒素、塩素、臭素の少なく
ともいずれか一つとフッ素の化合物ガスであり、フッ素
もしくは該化合物ガスのいずれか一つまたは二つ以上の
混合ガスであることを特徴とするフッ化物ガラスの製造
方法。
2. The method for producing fluoride glass according to claim 1, wherein the fluorine-containing gas is a compound gas of fluorine or at least one of hydrogen, carbon, oxygen, boron, sulfur, nitrogen, chlorine, and bromine and fluorine. A method for producing fluoride glass, characterized in that the gas is one or a mixture of two or more of fluorine or said compound gas.
JP3068538A 1991-04-01 1991-04-01 Production of fluoride glass Pending JPH04305025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068538A JPH04305025A (en) 1991-04-01 1991-04-01 Production of fluoride glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068538A JPH04305025A (en) 1991-04-01 1991-04-01 Production of fluoride glass

Publications (1)

Publication Number Publication Date
JPH04305025A true JPH04305025A (en) 1992-10-28

Family

ID=13376621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068538A Pending JPH04305025A (en) 1991-04-01 1991-04-01 Production of fluoride glass

Country Status (1)

Country Link
JP (1) JPH04305025A (en)

Similar Documents

Publication Publication Date Title
EP0331483B1 (en) Process for the preparation of fluoride glass and process for the preparation of optical fiber preform using the fluoride glass
US5961682A (en) Method of fabricating optical fiber doped with rare earth element using volatile complex
EP0405580B1 (en) Process for thermal treatment of glass fiber preform
AU596490B2 (en) Vapor phase method for making metal halide glasses
US4076574A (en) Reactive atmosphere crystal growth method
EP0370480B1 (en) Process for the production of high purity zirconium tetrafluoride and other fluorides
JP3665682B2 (en) Method for producing fluoride thin film
JPH0234896B2 (en)
JPH022808B2 (en)
JPH04305025A (en) Production of fluoride glass
US5211731A (en) Plasma chemical vapor deposition of halide glasses
JPS59146947A (en) Manufacture of preform for light conductive body
Huang et al. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition
US5145508A (en) Method of making fluoride glass using barium β-diketones
JP3159267B2 (en) Manufacturing method of fluoride glass
JPH06122523A (en) Production of chalcogenide glass containing rare earth metal ion
US5277889A (en) Method for depositing pure metal halide compositions
JP2979840B2 (en) Method for producing material for fluoride glass fiber
EP0196665A1 (en) Process of and apparatus for manufacturing optical fibres for operation in the medium infrared transmission range
US3932597A (en) Purification of alkali metal halides
GB2158054A (en) Method for dehydrating optical materials by glow discharge
JPH0524875A (en) Production of preform for fluoride optical fiber and production device therefor
JPH0692668A (en) Production of fluoride optical fiber preform
JPH0692676A (en) Amorphous fluoride containing rare earth ion and its production
JP2979839B2 (en) CVD raw material for fluoride glass

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306